Natural Experiments and Difference-in-Differences

Christine Pal Chee, PhD March 1, 2017

Overview

- Causal effects and randomized controlled trials
- Natural experiments
- Difference-in-differences estimator

Poll: Natural Experiments

- Which of the following best describes your familiarity with natural experiments?
 - A. I am very familiar with the concept of natural experiments
 - **B**. I have a working understanding of what natural experiments are
 - C. I am new to the concept of natural experiments

Poll: Difference-in-Differences

- Which of the following best describes your familiarity with difference-indifferences?
 - A. I am very familiar with difference-indifferences
 - B. I have a working knowledge of differencein-differences
 - C. I am new to difference-in-differences

Objectives

- Provide an overview of natural experiments
 - Motivation, definition, examples
- Provide an overview of the difference-indifferences estimator
 - Motivation, definition, assumptions, example, limitations

Causal Effects

- Many questions in health services research aim to estimate causal effects
 - Does the adoption of electronic medical records reduce health care costs or improve quality of care?
 - Did the transition to Patient Aligned Care Teams (PACT) improve quality of care and health outcomes?
 - What effect will the Affordable Care Act (ACA) have on the demand for VHA services?
- Ideally studied through randomized controlled trials (RCTs)

RCTs: Estimating Causal Effects

• What is the effect of treatment on outcomes?

 $outcome_i = \beta_0 + \beta_1 treatment_i + e_i$

- e_i includes other factors that affect the outcome (e.g., age, gender, pre-existing conditions, income, education, etc.)
- In a RCT, treatment is randomly assigned:
 - Treatment is exogenous
 - $E(e_i | treatment_i) = 0$
 - *e* and treatment are uncorrelated
 - $\hat{\beta}_1$ = average effect of treatment

Idealized Experiment

- To estimate the causal effect of treatment, randomly assign treatment
 - Not always feasible, ethical, or practical
 - Useful as a conceptual benchmark for observational studies

Natural Experiments

- External circumstances produce what appears to be randomization
 - Legal institutions, geography, timing of policies or programs, natural randomness in weather, birthdates, or other factors that are unrelated to the casual effect of interest
- Variation in individual circumstances make it appear *as if* treatment is randomly assigned

– Exogenous variation in treatment

Example (1)

- What are the returns to physician human capital?
 - Doyle, Ewer, and Wagner (2010)
 - Setting:
 - VA hospital with affiliations with two medical schools
 - Residency programs vary substantially in terms of their rankings
 - Clinical teams from the two programs operate independently
 - Patients are assigned to clinical teams based on the last digit of their SSN (odd/even)
 - "As if" randomization of patients to clinical teams

Example (2)

- Does increasing Medicaid payments for primary care increase primary care visits and reduce hospital and emergency department use?
 - Gruber, Adams, and Newhouse (1997)
 - Setting:
 - In 1986, Tennessee increased its payments for primary care services
 - The neighboring state Georgia had a similar Medicaid reimbursement system and there were no other changes in the structure of payment incentives in either state during the study period
 - Exogenous increase in Medicaid payments for primary care

Example (3)

- Does more intensive treatment of acute myocardial infarction (AMI) in the elderly reduce mortality?
 - McClellan, McNeil, and Newhouse (1994)
 - Setting:
 - Patients who live closer to hospitals that have the capacity to perform more intensive treatments are more likely receive those treatments
 - The distance a patient lives from a given hospital should be independent of his health status
 - Distance affects the probability of intensive treatment of AMI

"As if" Randomization

- If the "as if" randomization fails to produce random assignment of treatment, then the OLS estimator, $\hat{\beta}_1$, is biased
- Evaluating the validity of the "as if" randomization assumption:
 - Check for differences between the treatment and control groups
 - Finding no observable differences is not sufficient
 - Use contextual knowledge and judgement to assess whether "as if" randomization assumption is reasonable

Types of Natural Experiments

• Two types of natural experiments:

- Variation in individual circumstances cause treatment to be as if randomly assigned
 - Examples 1 and 2
 - Can use OLS to estimate the causal effect
- Variation in individual circumstances only partially determines treatment
 - Example 3
 - Use instrumental variables regression to estimate the causal effect
 - More on this in the Instrumental Variables Regression lecture on March 8

Estimating Causal Effects

One option is to compare pre- and posttreatment outcomes in the treatment group:

$$outcome_{it} = \beta_0 + \beta_1 post_t + e_i$$
$$post_t = \begin{cases} 1, & t \ge treatment \ date \\ 0, & t < treatment \ date \end{cases}$$

– Issue: if other factors that affect the outcome or treatment changed during the study period, our estimate of the treatment effect, $\hat{\beta}_1$, will be biased

Estimating Causal Effects (2)

Another option is to compare the post-treatment outcomes between treatment and control groups:

$$outcome_{i} = \beta_{0} + \beta_{1}treatment_{i} + e_{i}$$
$$treatment_{i} = \begin{cases} 1, & i \text{ in treatment group} \\ 0, & i \text{ not in treatment group} \end{cases}$$

– Issue: if there are differences between the two groups, our estimate of the treatment effect, $\hat{\beta}_1$, will be biased

Difference-in-Differences Estimator

Compare the change in the pre- and posttreatment outcomes across treatment and control groups:

 $outcome_{it} = \beta_0 + \beta_1 treatment_i + \beta_2 post_t \\ + \beta_3 treatment_i \times post_t + e_{it}$

- $\hat{\beta}_3$: average change in outcome for those in the treatment group, minus the average change in outcome for those in the control group
 - Average treatment effect in the population studied

Difference-in-Differences

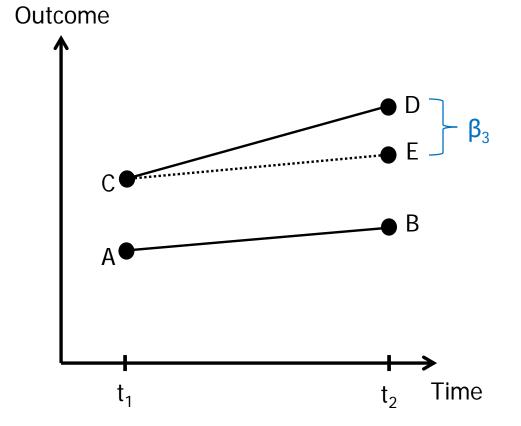
 $y_{it} = \beta_0 + \beta_1 t x_i + \beta_2 post_t + \beta_3 t x_i \cdot post_t + e_{it}$ $E(y_{it}|tx_i = 0, post_t = 0) = \beta_0$ $E(y_{it}|tx_i = 0, post_t = 1) = \beta_0 + \beta_2$ $E(y_{it}|tx_i = 1, post_t = 0) = \beta_0 + \beta_1$ $E(y_{it}|tx_i = 1, post_t = 1) = \beta_0 + \beta_1 + \beta_2 + \beta_3$

$$d_0 = \beta_2$$

$$d_1 = \beta_2 + \beta_3$$

$$dd = d_1 - d_0 = (\beta_2 + \beta_3) - \beta_2 = \beta_3$$

Difference-in-Differences



Average outcome for:

- A: control group, pre
- B: control group, post
- C: tx group, pre
- D: tx group, post
- E: tx group, post (absent treatment)

Assumption: Common trends in the absence of treatment

Common Trends

- Assumption: Trends in the outcome would be the same in both treatment and control groups in the absence of treatment
 - Difference-in-differences estimates the deviation (due to treatment) from the common trend
- Check pre-treatment trends
 - Data and contextual knowledge

D-D Example

- Does increasing Medicaid payments for primary care increase primary care visits and reduce hospital and emergency department use?
 - Gruber, Adams, and Newhouse (1997)

D-D Example (2)

Table 1Dominant Site of Care

	Tennessee			Georgia			
	Before	After	Diff	Before	After	Diff	Diff-in-Diff
Physician's office	0.259	0.294	0.035	0.355	0.335	-0.020	0.055
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
	{34.1%}	{38.5%}		{47.9%}	{45.7%}		[21.2%]
Clinic	0.197	0.165	-0.032	0.084	0.092	0.008	-0.041
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
	{26.0%}	{21.6%}		{11.3%}	{12.5%}		[-20.8%]
Hospital outpatient department	0.187	0.221	0.035	0.181	0.217	0.036	-0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
	{24.6%}	{29.0%}		{24.4%}	{29.6%}		[0.53%]
Emergency room	0.117	0.083	-0.034	0.122	0.089	-0.032	-0.002
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
	{15.4%}	{10.8%}		{16.4%}	{12.2%}		[-1.71%]

Notes: Figures are the share of enrollees for whom each site is their dominant site of care for the year. Standard errors in parentheses; site effects as a share of all sites in brackets {}; DD estimates as a percentage of baseline (1985) values for Tennessee in square brackets []. "Before" is 1985; "After" is 1987 and 1988; "Diff" is after minus before; "Diff-in-diff" is diff for Tennessee minus diff for Georgia. N = 179,159 for Tennessee and 259,323 for Georgia.

Poll: Underlying Assumptions

- Select all that apply:
 - A. Tennessee and Georgia are similar
 - B. There were no other changes besides the change in fee policy that affect the variables of interest in Tennessee relative to Georgia
 - C. What would have happened to the variables of interest in Tennessee had the fee policy not been changed is what happened in Georgia

Limitations

- Limitations of estimating causal effects in natural experiments:
 - Generalizability of results to contexts other than the one studied may be limited
 - Mechanism for the treatment effect is often unknown

Additional Considerations

- When using repeated cross-sectional or panel data, estimated standard errors must account for serial correlation
 - For more details, see: Bertrand, Duflo, and Mullainathan (2004)

Summary

- Natural experiments are situations where external circumstances produce what appears to be randomization
 - As if treatment is randomly assigned
- Difference-in-differences is one method of estimating the causal treatment effect in natural experiments
 - In order to estimate the causal effect of treatment need:
 - Exogenous (as if random) variation in treatment
 - Common underlying trends
 - Difference-in-differences estimates the average treatment effect

References and Resources

- Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. "How Much Should We Trust Differences-in-Differences Estimates?" *Quarterly Journal of Economics*, 119(1): 249-275.
- Doyle Jr., Joseph J., Steven M. Ewer, and Todd H. Wagner. 2010. "Returns to physician human capital: Evidence from patients randomized to physician teams." *Journal of Health Economics*, 29(6): 866-882.
- Gruber, Jonathan, Kathleen Adams, and Joseph Newhouse. 1997.
 "Physician Fee Policy and Medicaid Program Costs." *Journal of Human Resources*, 32(4): 611-634.
- McClellan, Mark, Barbara J. McNeil, and Joseph P. Newhouse. 1994.
 "Does More Intensive Treatment of Acute Myocardial Infarction in the Elderly Reduce Mortality?" *Journal of the American Medical Association*, 272(11): 859-866.
- Stock, James H. and Mark W. Watson, 2011. Introduction to Econometrics (Third Edition). Boston, MA: Addison-Wesley. (Chapter 13: Experiments and Quasi-Experiments)