# **Right Hand Side** (**Independent**) **Variables**

#### Ciaran S. Phibbs March 29, 2017





#### **Independent Variables**

- Regression models make several assumptions about the independent variables
- The purpose of this talk is to examine some of the more common problems, and some methods of fixing them
- Focus on things not likely to be covered in standard econometric classes

#### Outline

- Heteroskedasticity
- Clustering of observations
- Data Aggregation
- Functional form
- Testing for multicollinearity

#### Heteroskedasticity

# $Y_i = \beta_0 + \beta X + \varepsilon_i$

 Assumes that the error terms are independent of x<sub>i</sub>. Common pattern, as x gets bigger, e gets bigger.

#### Heteroskedasticity

- Biased standard errors
- Parameter estimates unbiased, but inefficient

#### Heteroskedasticity

- Simple solution, robust option in Stata uses Huber-White method to correct standard errors.
- May also consider transformation of variables, *e.g.*, log(X) instead of X as a RHS variable.

#### Clustering

# $\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}\mathbf{X} + \boldsymbol{\varepsilon}_{i}$

Assumes that the error terms are uncorrelated

Clustering is a common problem, for example, patients are clustered within hospitals

#### Clustering

# $\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}\mathbf{x}_{1} + \boldsymbol{\beta}_{2}\mathbf{x}_{2} + \boldsymbol{\varepsilon}_{i}$

- x<sub>1</sub> is a patient level variable, and x<sub>2</sub> is a hospital level variable
- Regression assumes there are as many hospitals as patients
- Result, standard errors for  $\beta_2$  are too small, no effect on parameter estimate.

# **Correcting for Clustering**

- Generalized Estimating Equations (GEE) or other hierarchical methods can be used
- Alternatively, Stata "cluster" option uses a Huber-White correction of the standard errors.
- Both methods can yield essentially the same result, it depends on the data structure

## **Correcting for Clustering**

- Hierarchical Linear Modeling. Method of formally incorporating hierarchical structures into the model.
  - Can use for non-linear models also.
- Need for HLM, vs. other methods will depend on structure of the data. Often very similar answers.

#### **Example of Clustering**

- I had a research project that looked at the effects of NICU patient volume and NICU level on mortality. NEJM 2007.
- I apologize for not having a VA example, but I had already carefully addressed these issues for this project.

#### Clustering

- Failure to make this correction happens all too often. It is easy to fix
- Extent of the correction varies with sample size, and with the number of clusters, relative to the number of observations.
- With big samples, the effects are fairly small. My example, N>48,000, >200 hospitals, 10 years of data, with repeat observations.

## **Example of Clustering**

| Level of Care/VLBW volume  | OR     | 95% C.I.     | unadjusted |
|----------------------------|--------|--------------|------------|
| Level 1 ≤10 VLBW infants   | 2.72** | (2.37, 3.13) | 2.40, 3.07 |
| Level 2 11-25 VLBW infants | 1.88** | (1.56, 2.26) | 1.64, 2.15 |
| Level 2 >25 VLBW infants   | 1.22   | (0.98, 1.52) | 1.09, 1.36 |
| Level 3B or 3C ≤25 VLBW    | 1.51** | (1.17, 1.95) | 1.25, 1.78 |
| Level 3B or 3C 26-50 VLBW  | 1.30** | (1.12, 1.50) | 1.17, 1.42 |
| Level 3B, 3C, or 3D 51-100 | 1.19*  | (1.04, 1.37) | 1.10, 1.29 |

## **Data Aggregation**

- Many times, have a choice of how to organize data
- Data aggregation can matter:
  - In general, increased aggregation will reduce variance
  - Aggregation can also change the relationship between the variable of interest and the dependent variable

## **Example of Data Aggregation**

- Data from Bartel, Bealieu, Phibbs, Stone., Am Econ J: Applied Econ 2014:6(2):231-259.
- Patient-level regressions, nurse staffing measured at different aggregations
  - Unit vs. hospital
  - Month vs. year

# Effect of Data Aggregation, Unit vs. Hospital

|            | Hospital | Acute Care<br>Units | ICUs      |
|------------|----------|---------------------|-----------|
| HPPD       | 0.011*** | -0.031***           | -0.016*** |
| % LPN      | -0.194*  | -0.041              | 0.215     |
| % UAP      | 0.138*   | 0.088**             | 0.217     |
| % Contract | 0.180**  | 0.31***             | 0.333***  |

#### **Functional Form**

# $Y_i = \beta_0 + \beta X + \varepsilon_i$

- **βX** assumes that each variable in X has a linear relationship with Y
- This is not always the case, can result in a mis-specified model

- You should check for the functional form for every non-binary variable in your model.
- There are formal tests for model specification, some of which you may have been exposed to in classes. But, these tests don't really show you what you are looking at.

## **Using Dummy Variables to Examine Functional Form**

- 1. Look carefully at the distribution of each variable
- 2. Create a set of dummy variables for reasonably small intervals, with no excluded category
- 3. Run model with no intercept

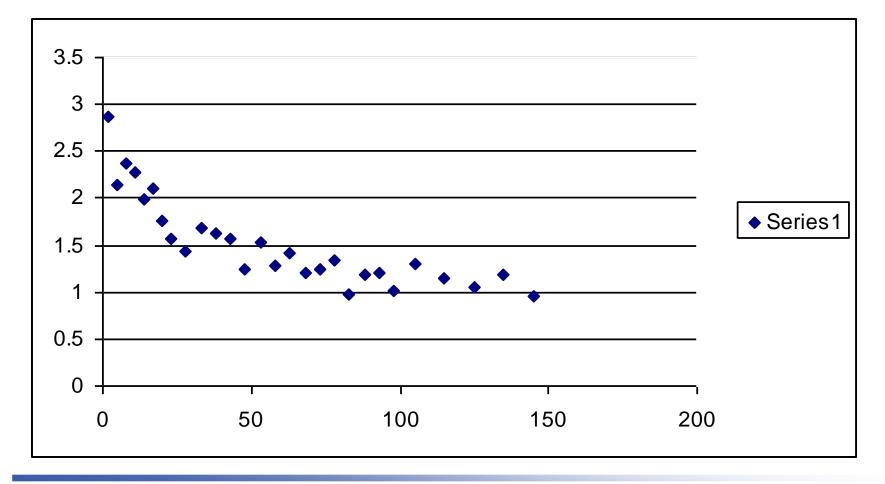
#### Example of Using Dummy Variables to Examine Functional Form

- Same NICU dataset as before.
- Effect of NICU patient volume on mortality
- Overall, and within level of care

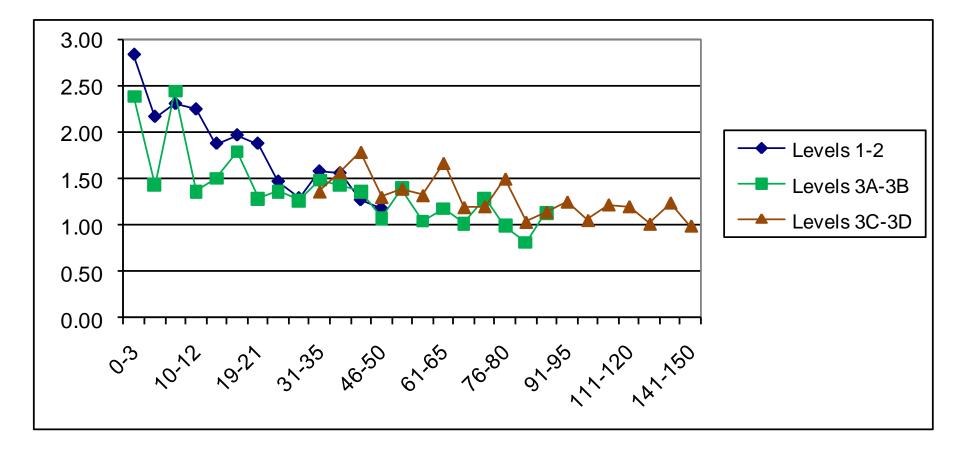
# Example of Using Dummy Variables to Examine Functional Form

- Graph out the parameter estimates for each dummy variable.
- Gives you a good idea of what the function looks like.
- Can use to determine which functional forms would be good starting points, or where to make the cuts for categorical variables.

#### Dummy Variable Look at Functional Form



#### Dummy Variable Look at Functional Form



# Example of Using Dummy Variables to Examine Functional Form

- For some applications you may just want to use dummy variables, instead of a continuous functional form. This may be especially useful when there are complex relationships. It can be very difficult to get a continuous function to accurately predict across the entire range of values.
- Aside, categorical variables frequently easier to present to medical audiences.

## **Dummy Variables to Capture Complex Functional Forms**

Level of Care/VLBW volume OR 95% C.I. Level 1 ≤10 VLBW infants 2.72\*\* (2.37, 3.13) Level 2 11-25 VLBW infants 1.88\*\* (1.56, 2.26) Level 2 >25 VLBW infants (0.98, 1.52)1.22 Level 3B or 3C ≤25 VLBW 1.51\*\* (1.17, 1.95) Level 3B or 3C 26-50 VLBW  $1.30^{**}$  (1.12, 1.50)

Level 3B, 3C, or 3D 51-100 1.19\* (1.04, 1.37)

#### Multicollinearity

# $\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}\mathbf{x}_{1} + \boldsymbol{\beta}_{2}\mathbf{x}_{2} + \boldsymbol{\varepsilon}_{i}$

- What if x<sub>1</sub> and x<sub>2</sub> are strongly correlated?
  Regression has trouble attributing effect to each variable.
  - Increases standard errors
  - -Can affect parameter estimates

## Multicollinearity

- Strong simple correlation, you have a problem.
  But, can be hidden problems not detected by simple correlations.
- Variance Inflation Factor (/VIF SAS, vif in Stata Regression Diagnostics) measures the inflation in the variances of each parameter estimate due to collinearities among the regressors
- Tolerance, which is 1/VIF
- VIF > 10 implies significant collinearity problem

#### **Testing for Multicollinearity**

• Look at the simple correlations.

- General rule of thumb, need to look of r>0.5
- Note, can still have collinearity problems with r<0.5</li>

#### **Example of Correlation and VIF**

- Study of nurse staffing and patient outcomes.
  - Problem variables. RN Tenure and RN Age
  - -R=0.46

VIF range, 18-30, depending on subset
 Result, many fewer statistically significant results than we expected.

#### **Fixing multicollinearity**

- More observations. As long as there isn't perfect correlation, additional observations help.
- Revise data in ways that reduce the correlation
- In nurse staffing example, dropped age from model

# **Example of parameter effects of multicollinearity**

- Average RN tenure on unit and average age of RNs on unit, corr = 0.46
  - Tenure only -0.013\*\*
  - Age only -0.003 \*\*

# **Example of parameter effects of multicollinearity**

- Average RN tenure on unit and average age of RNs on unit, corr = 0.46
  - Tenure only -0.013\*\*
  - Age only -0.003 \*\*
  - -Both tenure -0.003 ns Age -0.0051 ns

#### Multicollinearity

- Strong simple correlation, you have a problem.
  But, can be hidden problems not detected by simple correlations.
- Regression, n-space, correlation on each of the regression planes can matter.
- Collin option in SAS, looks at how much of the variation in each eigen vector is explained by each variable. Intuitively, the correlation in the Nth dimension of the regression.

#### **SAS Collin option**

- SAS Model Y= var1 ... varN/collin;
- Continue newborn example
- Birth weight and gestational age very correlated. R=0.56
- Simple model, only BW, GA, Black

# **Interpreting Collin output**

- Condition index >10 indicates a collinearity problem
- Condition index >100 indicates an extreme problem
- There is strong correlation in the variance proportion if 2 or more variables have values >0.50.

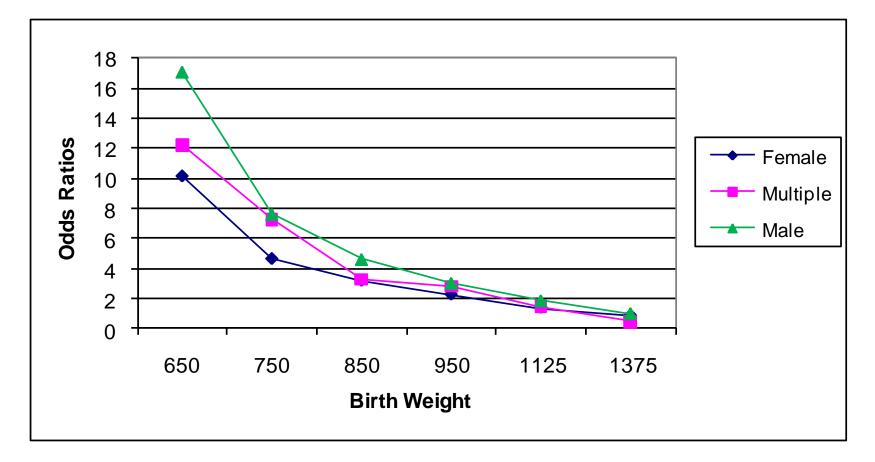
#### **SAS Collin output**

| Eigen<br>value | Condition index | Black | BW   | GA   |
|----------------|-----------------|-------|------|------|
| 3.18           | 1.00            | 0.02  | 0.00 | 0.00 |
| 0.77           | 2.03            | 0.96  | 0.00 | 0.00 |
| 0.04           | 9.27            | 0.01  | 0.80 | 0.02 |
| 0.001          | 18.41           | 0.00  | 0.39 | 0.98 |

## Fixing multicollinearity, NICU example

- Used dummy variables for BW in 100g intervals to 1000g, then 250g intervals.
- Separate BW dummies for singleton males, singleton females, and multiple births,
- Gestation in 2 week intervals.
- Max condition index < 8, i.e. no serious collinearity problem.</p>
- Model predictions also improved.

#### **Dummy Variables To Fix Collinearity**



#### References

Belsley, D.A., Kuh, E., and Welsch, R.E. (1980) Regression Diagnositics. New York, John Wiley & Sons.

#### **Next lecture**

Limited Dependent Variables Ciaran Phibbs April 5, 2017