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Poll Question #1

* When | say Antimicrobial Stewardship, you
say’?
— HSR!
— What'’s antimicrobial stewardship?



Poll Question #2

e Select the role that best describes you:
— Steward
— Clinician usually receiving advice from a steward
— Clinician that’s not heard of stewardship
— Researcher interested in stewardship

— Researcher that doesn’t yet realize a latent
interest in stewardship



Objectives

Discuss what antimicrobial stewardship is

Discuss what stewardship needs

Outline cognitive needs of stewards

Discuss antimicrobia

Discuss decision sup

effects

oort in complex systems



Poll Question #3

At the dawn of modern medicine, there was
no specialty of infectious diseases because

— Cardiovascular and cerebrovascular disease, and
cancer were the biggest killers

— It lagged behind the other specialties in methods
and discoveries

— Most of what everyone treated was infectious
diseases
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Antimicrobial resistance, practice,
outcomes, and stewardship

Antimicrobial Antimicrobial
outcomes tl outcomes t4

Antimicrobial Antimicrobial Antimicrobial
resistance tO resistance t2 resistance t5

Antimicrobial Antimicrobial
practice t1 practice t4

Antimicrobial Antimicrobial
stewardship t3 stewardship t6




Getting on the antimicrobial bus

* Need to clarify goals?
* Need to clarify effects?

* Need to support
decisions3

1. Whose goals? 2. Effects on me & on you. 3. By decision-maker perspective



What's the hold up?

Comparison of 41 IDSA guidelines using percentage
distribution of quality of evidence underlying individual
recommendations.
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Swiss cheese model—why diversity may be
good in antimicrobial stewardship

Hazards

N

Losses

By Davidmack - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31679759


https://commons.wikimedia.org/w/index.php?curid=31679759

Specific Aims

1. Characterize the information needs and
decision-making patterns of stewards when
making antibiotic recommendations

2. ldentify predictors of antibiotic coverage and
emergence of resistance from local antibiotic
use and resistance data

3. Develop a clinical decision-support system that
nudges and prompts stewards to use local
hospital data and test the influence on stewards



Semi-structured interviews based on
Rasmussen’s decision ladder

| construct _____________| Explanation |

Activation/
alert

Appraisal/
interpretaton

Information to act

Activity/
action

Expectation/evaluati
on

Information
gathering
Information strategy

Contexts, situations, and electronic triggers bring a potential problem to one’s notice. Often these
were social or embedded automatic work processes.

What is the nature or “gist” of the problem? A common, systematic process was used to clarify the
nature of the problem. The patient’s acuity and the team’s impression were the most vivid source
of information. Chart review was performed when the details of the case did not fit a recognized
pattern.

What information do | need to act? Information on diagnosis, urgency, and team motivation and
expertise were integrated to identify what to do. If the situation matched a protocol, they would
use it directly, suggesting a mental shortcut or System 1 thinking in Dual Process Theory? parlance.

Some have learned to avoid talking about resistance as a motivation or to use indirect narratives to
negotiate the balance between resistance and treatment. Actions were taken to set up future
“triggers” as part of the negotiation process as well as action in the future.

What more needs to be done? How has the patient responded? Many stewards noted that it is
easier to make changes after 2-3 days of therapy. One steward expressed “if something happens
[when recommending antibiotics or no antibiotics in the first few days] they’re going to blame you
from here to eternity.”

Do | need more information to evaluate?

Where and how do | find the information that | need?



System 2



1.1

“Force fields”

* Diagnosis

e Severity of illness

e Culture

* Personal valuation of science
* Curiosity

* Bedside access

* Power

* Legitimacy

e Social influence



Examples

Construet ______FExample

Activation/alert receive alert, phone call, consult; search for orders, review in COTS; might
miss

Appraisal/interpretati Dx->Abx->Guidelines->minimize resistance

on

Information to act Labs, imaging, vitals-->hx, Rx, abx hx, allergies

Activity/ action Make recommendation, concede, conversation, make follow-up plan,
consult, go up the chain,

Expectation/ follow-up labs, follow acceptance rates, look at the patient, develop

evaluation metrics

Information gathering is the information is inconsistent, incoherent

Information strategy review the chart, call the team, see the patient



DEALING WITH HUMAN CREATIVITY SO
THAT YOU CAN DO QUANTITATIVE
RESEARCH



Understanding Potential for Vancomycin
De-escalation

Anti-MRSA Agents Used
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Matching weights analysis:
Initial choice of antibiotics on d4+
outcomes (cohort d4+)

Impact of anti-MRSA antibiotics

Outcome Unweighted Weighted

MRSA Acquisition 1.3347 (95%Cl 1.2063-1.4768) 1.1923 (95%Cl 1.0390-1.3682)
Nosocomial MRSA 1.1661 (95%Cl 0.9709-1.4005) 1.0460 (95%Cl 0.8261-1.3243)

Open Forum Infect Dis (2015) 2 (suppl_1):1143



Anti-MRSA therapy and MRSA
acquisition and MRSA-positive cultures
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Misclassification of the exposure

MRSA+ cx among those

MRSA-neg ’ ?
Misclassified MRSA Rxd for 2CONS BS|
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MRSA screens predict other MDRO

New Clinical
MDR-GNB
63%

20%
7%
11%

MRSA Screen +
History of MDRO

Fig 1. Euler diagram of admissions that have a positive (+) methicillin-resistant Staphylococcus
aureus (MRSA) polymerase chain reaction hospital admission nares screen, have a history of a
clinical multidrug-resistant organism (MDRO) (including MRSA, vancomyc...

Makoto Jones, Christopher Nielson, Kalpana Gupta, Karim Khader, Martin Evans

Collateral benefit of screening patients for methicillin-resistant Staphylococcus aureus at
hospital admission: Isolation of patients with multidrug-resistant gram-negative bacteria
American Journal of Infection Control, Volume 43, Issue 1, 2015, 31-34

http://dx.doi.org/10.1016/j.ajic.2014.09.016


http://dx.doi.org/10.1016/j.ajic.2014.09.016

Predicting CR-Klebsiella

CRK proportion of all cultures
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Table 2. Multi-variable model predicting CRK growth

**Non-susceptibility to an antibiotic in an organism that is not constitutively resistant.

amikacin resistant 2.03 1.41-2.93

History of non susceptibility in the past year (any organism)**

aztreonam resistant 1.45 1.06-1.97
cefepime resistant 1.68 1.21-2.34
fluoroquinolone resistant 1.37 1.09-1.71
carbapenem resistant 3.52 2.65-4.68
piperacillin/tazobactam resistant 1.45 1.07-1.97

non susceptible Klebsiella 6.15 2.87-13.18

oded history of pneumonia from K. pneumoniae in the past year 3.31 2.05-5.34

History of positive urine nitrites in the past year 5.06 3.73-6.86
History of peripheral blood band neutrophils in the pasts year 1.92 1.23-2.99

2.42 1.99-2.94

2.00 1.3-3.06



Diversity of pathogens
harboring carbapenem

resistance at example stations

Diversity of carbapenen-resistant GNR

1 2 3

B CR-E. coli B CR Acinetobacter B CR-Other Enterobacteriaceae

B CR-Pseudomonas aeruginosa M CR-Klebsiella




Take away

* Antibiotics may have direct effects on patient
acquisition of antibiotic-resistant organisms,
as well as infections with them

* We can predict antibiotic-resistant organisms

* Need to work on understanding indirect
effects on antibiotics and broadening to more
organisms



Maxwell’s demon and the quest for
control
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By User:Htkym - Own work, CC BY 2.5,
https://commons.wikimedia.org/w/index.php?curid=1625737


https://commons.wikimedia.org/w/index.php?curid=1625737

Data-Information-Knowledge
“Knowledge is heavy”—Cesar Hidalgo

Information



The Cynefin Framework [adapted from Snowden (Cognitive Edge, 2010)]

Complex | Complicated

Probe Sense
Sense Analyse
Respond Respond

Emergent 4 Good practice

Chaotic
Act
S Caisgétrise
Respond‘ Respond

Novel &\Best practice

Eric K. Van Beurden et al. Health Promot. Int.
2011;heapro.dar089

© The Author (2011). Published by Oxford University Press. All rights Health Promotion International
reserved. For Permissions, please email:

journals.permissions@oup.com


mailto:journals.permissions@oup.com

Aggregate Antimicrobial Use

Complicated
* Your antibiotic use is 589 AD/1000 DP s
— |Is this good or bad? Respond

Good pract
— Which part of it is good or bad? LOO PO

— If it’s bad, how do | know what to fix?

Relation between actual and adjusted, predicted antibiotic use
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Aggregate Antimicrobial Use

Complicated
* Your antibiotic use is 589 AD/1000 DP s
— |Is this good or bad? Respond

Good pract
— Which part of it is good or bad? LOO PO

— If it’s bad, how do | know what to fix?
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complex

Complex antimicrobial decisions

Sense
Respond

What worked before will not necessarily  “"%¢" ‘
now

Not always a right answer

Sometimes need more detailed (qualitative)
information

Requires thinking deeply



Themes from an antibiotic timeout

intervention

* (Captures and controls attention

* Enhances informed and deliberative
reasoning

* Redirects decision direction by making

inappropriate vancomycin and and think
piperacillin/tazobactam discontinuation

easier than continuation more deeply
* Fosters autonomy and improves team

empowerment
* Limits use of emotion-based heuristics.

Makoto Jones, Jorie Butler, Christopher J. Graber, Peter Glassman, Matthew H. Samore, Lori
A. Pollack, Charlene Weir, Matthew Bidwell Goetz

Think twice: A cognitive perspective of an antibiotic timeout intervention to improve
antibiotic use

Journal of Biomedical Informatics, 2016, Available online 18 June 2016

http:/dx.doi.org/10.1016/}.jbi.2016.06.005


http://dx.doi.org/10.1016/j.jbi.2016.06.005

Stop and think

“Like as a resident you try to, of course, avoid unnecessary use of antibiotics
regardless, so it’s kind of like, it reminds us to think about it...”
Enhances informed and deliberative “It makes you think twice.”
reasoning

Redirects decision direction by making “No, seriously, the fact that they handed me this form in the morning saying,
inappropriate vancomycin and oh, we’re tracking your vanco usage made me not want to use it.
piperacillin/tazobactam discontinuation

easier than continuation

Fosters autonomy and improves team “I think the template is good in that it forces the team to really discuss it.”
empowerment

Limits use of emotion based heuristics. Clinician 1: “And when we speak to the pharmacist as well, if they’re saying,
well, | don’t see why you’re choosing this antibiotic; why don’t you just choose
this? We can say to them person to person, look, my concern...my clinical
concern is high enough | think they need more aggressive therapy at least for
right now and usually they will agree to that because it’s clinical judgment; it
comes down to that so the template kind of does the same thing, so...”
Clinician 2: “... You can say that about everybody and put everybody on
vancomycin...”

http://dx.doi.org/10.1016/}.jbi.2016.06.005



http://dx.doi.org/10.1016/j.jbi.2016.06.005

Information
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Actionable

* Contains all or nearly all of the contextual
information necessary to make a decision

* Represents information that is of sufficient
quality to act
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Information environment

Active treatment order entropy Active information request order entropy

hd hd

p1 lowess p1 hd lowess p1 hd

Information available and new information entropy not performed yet

10



Future direction

Data—> Information
nformation—>Knowledge

Find information that interacts with
<nowledge to inform decision

Present information so that it makes it easy to
make the right decision



Resources

e Makoto Jones

— makoto.jones@va.gov


mailto:makoto.jones@va.gov

Explaining Predictive Models

e State-of-the-art techniques, e.g., neural networks, are
black box

* the example below estimates the predicted
probability of future acute kidney injury at 83%

 New algorithms (LIME) facilitate interpretation of
black box models
Model explanation for future POSITIVE Acute Kidney Injury

InPat Dx : Hypertensive chronic kidney disease
unspecified with renal failure

InPat Dx : Chronic Diastolic Heart Failure

Clinical Notes : Nephrology Consult

InPat Dx : Anemia in Chronic Kidney Disease

InPat Dx : Transient cerebral ischemia

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05



Representing “evidence,” “data”

Model/Evidence

N

Y; = g7 (BosBixei + -+ Bpxpi) + €

Data/Context



Veterans Like Mine

Timecourses for refractory VRE
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The naive view
(or the Greek Oracle Model)




Why didn’t the Greek oracle model
work?

Performance expectancy
— |t took longer to do what physicians could already do

— Things that weren’t already obvious would have to be reviewed
because of vulnerability to errors

Effort expectancy

— Took time to enter information, difficult to understand
Social influence

— No one “important” uses the system yet

Facilitating conditions

— Doesn’t fit into workflow

Attitude toward using technology
— “Don’t trust” the data; GIGO

DOI: 10.1007/s10459-009-9186-y



New approach: “Fundamental
theorem” of biomedical informatics—
an aspiration, not a rule

Much, much less and selective input per patient
Much more short term memory
Reliable long term memory

Processing cagability
~gb/sec input that is always on

-
+ @) >
&
Short term memory: 3-7 items

Very large, unreliable long-term memory
Gargantuan subconscious processing capability

Make the computer do what the computer does best—not what the human does best.

doi: 10.1197/jamia.M3092



http://dx.doi.org/10.1197/jamia.M3092

Questions? Comments?

e Makoto Jones

— makoto.jones@va.gov


mailto:makoto.jones@va.gov



