Return on Investment Assessment: When, Why, and How to Use It

May 16th, 2018

Melanie D. Whittington, PhD Health Economic Methodologist, Denver/Seattle COIN Research Faculty, University of Colorado Anschutz Medical Campus Melanie.Whittington@va.gov

Webinar Outline

- What is return on investment assessment?
- Why should you use return on investment assessment?
- When can you use return on investment assessment?
- How do you conduct a return on investment assessment?

Poll Question #1

What is your role in the VA? (Select one)

- Research Investigator/PI
- Data manager, analyst, or programmer
- Project coordinator
- Clinical or operations staff
- Other VA role

Poll Question #2

What is your level of knowledge with return on investment assessment? (Select all that apply)

- I have conducted one/multiple.
- I have been trained on how to conduct one, but haven't.
- I have an understanding of the basic concepts.
- I'm brand new to return on investment assessment.

What is Return on Investment?

- A way to calculate financial gains/losses while accounting for resources invested
- Compares the cost offsets of an intervention (from increased revenue, reduced costs) to the investment required

Returns: cost offsets from investment

Investment: investment amount

What is (NOT) Return on Investment?

- Cost-effectiveness analysis (CEA)
- CEA: the cost for each unit of HEALTH GAIN achieved from an action
- ROI: financial gain in monetary units from each dollar invested in the action
- Both: expressed as a ratio, implementation costs

Why Return on Investment?

Why Return on Investment?

- Maximize impact of investments and resource use
- Compare among alternatives (even with different outcomes)
- Inform sustainability of investments and resource use

When to do Return on Investment?

- <u>Before</u> investing in an action
 - Purpose: Planning Tool
 - Outcome: Projected return on investment
 - Other Analyses: Break-even analysis (inputs, time horizon)
 - Data Required: Pilot data, inputs from literature, estimates

When to do Return on Investment?

- <u>After</u> investing in an action
 - Purpose: Evaluation Tool
 - Outcome: Actual return on investment
 - Other Analyses: Sensitivity analyses, Break-even analyses
 - Data Required: Actual data from project

Requirements to do Return on Investment?

- 1. Data are being collected on an outcome that **can be** monetized (utilization, infections, etc.)
- 2. Data on the cost of the investment **can be** collected

How to Do Return on Investment?

The ratio of two monetary values

cost offsets from investment

investment amount

- <u>Numerator</u>: cost offsets from investment
 - Financial gains generated by changes in quality, efficiency, utilization, revenue, etc.
- <u>Denominator</u>: investment amount
 - Costs of developing and operating the action

Steps of Return on Investment:

- 1. Define perspective (costs to whom?)
- 2. Define time horizon (costs when?)
- 3. Calculate cost of investment (denominator)
- Estimate impact of the investment (part of RCT, observational study, etc.)
- 5. Monetize impact of investment (numerator)
- 6. Compute return on investment (divide numerator by denominator)
- 7. Interpret return on investment

Step 1: Define Perspective

- Identify whose costs and revenues you will consider
- All financial estimates should be related to that perspective
- Can choose multiple perspectives (hospital and societal)
- Common Perspectives:
 - Hospital
 - Patient
 - Societal

Step 2: Define Time Horizon

- Could vary from a few months to multiple years
- Should capture when operating procedures are impacted
- Long enough to see the financial impact of investment
- Need to adjust all costs to the same year
 - Inflation
 - Discounting

Step 3: Cost of Investment

- Identify and quantify all financial contributors
- Costs could occur at different stages:
 - Start-Up
 - Implementation
 - Maintenance
- Cost categories:
 - Personnel
 - Supplies/equipment
 - Training
 - Information systems
 - Communication
 - Indirect costs

Step 4: Impact of Investment

- Define a comparison group
 - 2 conditions: with the action and without the action
- Pre/Post
 - Doesn't control for time trends
- Intervention vs. Control
 - Similar characteristics
- Pre/Post and Intervention vs. Control (difference in differences)
 - Parallel pre-period trends
- Return on investment is usually an add-on to this type of evaluation

Step 5: Monetize Impact

- Changes in revenues and costs
- Often use utilization: admissions, length of stay, outpatient visits, etc.
 - Indirect approach: Multiply unit cost by utilization rates
 - Direct approach: Use cost data from utilization
- Productivity/efficiency costs (often for patient or societal perspective)

Step 6: Compute Return on Investment

• Return on Investment (ROI):

cost offsets from improvement actions

investment in improvement actions

- Numerator: cost offsets from improvement actions
 - financial gains from the implementation of the improvement actions, which are generated by changes in quality, efficiency, and utilization of services or payments for those services
- Denominator: investment in improvement actions
 - costs of developing and operating the improvement actions
- Numerator is cost offsets, not net savings
 - Net savings=cost offsets-cost of investment

Step 7: Interpret Return on Investment

- ROI greater than 1: returns are greater than the investment
 - Positive ROI
 - ROI of 1.8 indicates that for every \$1 invested in the action, \$1.80 will be gained for the VHA
- ROI less than 0: there are no returns
 - Negative ROI
 - ROI of -1.5 indicates that for every \$1 invested in the action, \$1.50 will be lost by the VHA
- *ROI between 0 and 1*: returns are positive but not greater than the investment
 - Negative ROI
 - ROI of 0.8 indicates that for every \$1 invested in the action, 80 cents will be recouped by the VHA

Return on Investment: Example 1

Whittington, M. D., Atherly, A. J., Bradley, C. J., Campbell, J. C. & Lindrooth, R. C. 2017. Value of Public Health Funding in Preventing Hospital Bloodstream Infections in the United States. *American Journal of Public Health*, *107*(11).

- **Background:** In 2013, 15 state health departments received funding to prevent healthcare-associated infections
- **Objective:** Evaluate the impact of the funding on bloodstream infection rates and calculate return on investment
- Econometric Analysis: Difference-in-differences specification with fixed effect was modeled controlling for regression to the mean
- Return on Investment: Cost offsets due to infections averted divided by the investment

Step 1: Define Perspective

- Health System Perspective
- Costs included:
 - Investment allocated to state public health departments
 - Money saved from infections averted
- Could also be patient-level costs (productivity) that were not included

Step 2: Define Time Horizon

- Base-Case: 1 year (2013), the only year of funding allocation
- Sensitivity Analysis: 2 years (2013-2014), one year of funding, and one year after

Step 3: Cost of Investment

- Due to perspective and study design, we used the full amount allocated to the state health departments
 - \$6,839,735 in 2013
 - \$0 in 2014
- Sub-analyses could have identified individual state health departments to micro-cost how they used the investment

Step 4: Impact of Investment

- Intervention Population: 15 states that received the funding
- Comparator Population: 35 states and Washington, DC that did not receive the funding
- Analysis: difference in differences specification with standardized infection ratio as the primary outcome; extrapolated reduction in infection ratio to infections averted
- Data: publicly available data from CMS Hospital Compare from 2011-2014

Step 4: Impact of Investment

	Fixed Effect	Regression to the Mean	GLM
Reduction in CLABSI Rates			
Percent Change in 2013	-34.8%*	-33.7%*	-36.7%*
	(16.6%)	(13.3%)	(14.5%)
Percent Change in 2014	-6.1%	0.8%	13.8%
	(16.8%)	(18.0%)	(9.3%)
Reduction in CLABSI Infections			
Number Averted in 2013	1,652	1,600	1,742
*			

*p<0.05

Step 5: Monetize Impact

Unit * Unit Cost

- Multiplied number of infections averted (unit) by the average cost of a bloodstream infection (unit cost)
- Average cost of a bloodstream infection: \$25,135

Step 5: Monetize Impact

	Mean (Interval)	
Number Infections Averted	1,600*	
	(324, 2,876)	
Cost per Infection	\$25,135	
Cost Offsets	\$40,216,000*	
(Infections Averted x Cost per Case)	(\$8,143,740, \$72,288,260)	
Cost of Investment	\$6,839,735	
Cost Savings	\$33,376,265*	
(Cost Offsets - Investment)	(\$1,304,005, \$65,448,525)	
Used be states prime to identify interval even destimates $*n < 0.05$		

Used bootstrapping to identify interval around estimates, *p<0.05

Poll Question #3

What is the return on investment and how would you interpret it? (Select one)

- 4.88, positive
- 4.88, negative
- 5.88, positive
- 5.88, negative

Step 6: Compute Return on Investment

	Mean (Interval)
Number Infections Averted	1,600 (324, 2,876)
Cost per Infection	\$25,135
Cost Offsets	\$40,216,000
(Infections Averted x Cost per Case)	(\$8,143,740, \$72,288,260)
Cost of Investment	\$6,839,735
Cost Savings	\$33,376,265
(Cost Offsets - Investment)	(\$1,304,005, \$65,448,525)
Return on Investment	5.88
(Cost Offsets / Investment)	(1.19, 10.57)

Step 7: Interpret Return on Investment

- For every \$1.00 invested, there was a return of \$5.88
- Positive return on investment
 - Improvement in health outcomes (cost offsets=numerator) outweighed the investment (cost=denominator)
- Suggests continued funding of activity as a good use of resources

Return on Investment: Example 2

- Background: Up to 50% of Veterans are dual-users, receiving VA and non-VA care. Strategies for effectively coordinating care in this dual-use population have not kept pace, resulting in worse outcomes for dual-users.
- Objective: Estimate the costs, potential cost offsets, net savings, and return on investment associated with the implementation of a care coordination program.
- Study: Develop and implement a care coordination program for high-risk dualusers.
- **Return on Investment:** Cost offsets associated with a reduction in healthcare utilization costs, divided by the cost of the care coordination program.

Step 1: Define Perspective

Veterans Health Administration

Step 2: Define Time Horizon

• Through 90 days after receipt of care coordination

Step 3: Cost of Investment

- There is a cost associated with implementation; therefore, we want to estimate the cost of all potential resource use needed to implement the care coordination program
- Use micro-costing techniques to determine total cost of intervention
 - Time logs
 - Invoices
 - Key informant interviews
- Cost buckets:
 - Personnel, supplies, equipment and depreciation, training, information systems, outreach and communication, external consultants

Step 4: Impact of Investment

Comparator:

- Dual-use Veterans who do not receive care coordination
- A within-person comparison that compares an individual's likelihood of hospitalization within 90 days (from their CAN score) to their observed likelihood of hospitalization over the 90 day period
- Compare changes in healthcare utilization

 (hospitalizations, ED visits, outpatient visits, laboratory
 tests, observation stays) over time in the intervention and
 comparator groups

Step 5: Monetize Impact

- Approach #1: use utilization counts and unit cost from HERC average cost files
- Approach #2: use actual costs from MCA/DSS cost data or other fee files
- non-VA utilization paid for by VA

Step 6: Compute Return on Investment

cost offsets from care coordination program investment in care coordination program

Step 7: Interpret Return on Investment

- Greater than 1 (positive return on investment): greater cost offsets than investment
- Between 0 and 1 (negative return on investment): cost offsets observed, by not greater than investment
- Less than 0 (negative return on investment): no cost offsets observed

Negative ROI Still Good Value?

- A positive return on investment requires more savings (numerator) than investment (denominator)
- A return on investment less than 1 may still be considered good value for money
 - If payer is willing to pay more for improvements in health
 - Question becomes how much more payers are willing to pay for improvements in health

Resources

 Return on Investment Estimation, Quality Indicators Toolkit, Agency for Healthcare Research and Quality

Questions?

Melanie.Whittington@va.gov

