Modeling Semicontinuous Longitudinal Expenditures: A Practical Guide

VALERIE A. SMITH, DRPH MAREN K. OLSEN, PHD

HERC CYBERSEMINAR

JUNE 20, 2018

Agenda

• Review and compare strategies for analyzing "semicontinuous" health care expenditures collected longitudinally over multiple time points

 Discuss model specification, software available, advantages and disadvantages

• Based on manuscript:

Smith, Valerie A., Matthew L. Maciejewski, and Maren K. Olsen. "Modeling Semicontinuous Longitudinal Expenditures: A Practical Guide." *Health Services Research* (2018).

Goals for this CyberSeminar

- Review well-known strategies for analyzing expenditure data
- Introduce less well-known strategies that may be useful
- Provide a "roadmap" for when to use which approach
- Review frequently encountered modeling complications and how to overcome them

Poll Question #1: What is your experience with analyzing longitudinal healthcare expenditures?

- None, or planned for upcoming work
- Some (< 1 year)
- Moderate (1-5 years)
- Considerable (>5 years)

Health Care Expenditures: An Example of Semicontinuous Data

Data characterized by two components:

1) A clumping of zero values, representing a subgroup of "non-users"

• no utilization \rightarrow zero healthcare costs

2) Paired with a continuous distribution of positive values among users

 some varying amount of utilization → varying levels of costs

Health Care Expenditures: An Example of Semicontinuous Data

Data characterized by two components:

1) A clumping of zero values, representing a subgroup of "non-users"
no utilization → zero healthcare costs

2) Paired with a continuous distribution of positive values among users

 some varying amount of utilization → varying levels of costs

Health Care Expenditures: An Example of Semicontinuous Data

Data characterized by two components:

1) A clumping of zero values, representing a subgroup of "non-users"

• no utilization \rightarrow zero healthcare costs

2) Paired with a continuous distribution of positive values among users

 some varying amount of utilization → varying levels of costs

Modeling issues with semicontinuous data

- > Highly right-skewed distribution precludes direct linear modeling
 - Use link function (e.g., log link) in a generalized linear model (GLM)
 - Transform the data (e.g., log transform) prior to using a linear model
- Decide how to accommodate zero values
 - If log-transform is used with standard model, must add small constant first
 - With a GLM, could choose to not treat zero values as any different than others
 - Utilize two-part models to separately account for the two components

Incorporating Longitudinal Data

- Need to account for correlation among repeated measurements on same individual over time
 - Include random effects for each individual (mixed models)
 - Working correlation structure via generalized estimating equations (GEEs)
- > Issues specific to semicontinuous longitudinal data:
 - Also need to account for correlation across the two components over time
 - (i.e., having a zero vs. positive expenditure at one time point may be correlated with level of expenditures incurred at another time point)
 - The distribution and proportion of positive values depends upon time frame under consideration (e.g., more people will incur costs in a year than in a month)

Example: VA Specialty Care Expenditures

- December 2001: VA increased specialty care visit copayments from \$15 to \$50 → natural experiment to examine outpatient expenditure changes due to copayments
- Specialty care expenditures determined for each year 2000-2003, 2 years prior to & 2 years following copayment change
- Control group: Veterans exempt from copayments due to low income or serviceconnected disability because they did not experience the copayment increase
- 1 to 1 propensity score matching resulted in a sample of 1,693 veterans exempt from copayments & 1,693 veterans required to pay copayments, who experienced the increase

Maciejewski, Matthew L., et al. "How price responsive is the demand for specialty care?." Health economics 21.8 (2012): 902-912.

Example: VA Specialty Care Expenditures

						1500 -	Year	r = 2000		Yea	r = 2001	
Year	% Zeros	Mean (SD)	Median (Q1-Q3)	Maximum		1000 -						
2000	29%	\$904 (1923)	\$225 (0-902)	\$24,800		500 -						
2001	26%	\$963 (1854)	\$277 (0-1008)	\$28,619	Count	0 -	Year	r = 2002		Yea	r = 2003	
2002	23%	\$953 (2060)	\$286 (21-1019)	\$59,565		1000 -						
2003	27%	\$999 (2024)	\$271 (0-1047)	\$27,320		500 -				L		
						o 4	20000	40000	60000 0	20000	40000	60000

Specialty Care Expenditures

Strategies for Analysis of Longitudinal Health Care Expenditures

- "One-part" generalized linear models
 - Treats zero and positive values the same i.e., as coming from one distribution
- "Two-part" uncorrelated generalized linear models
 - Separates the two components but requires strong, often unrealistic assumptions to be valid
- Correlated conditional two-part models
 - Separates the two components with the second component being conditional on having a positive expenditure
- Correlated marginalized two-part models
 - Explicitly incorporates zero-values but target of inference is mean of both components

One-part Generalized Linear Models (GLMs)

- Observed expenditures (Y) are from a single distribution
- Link function (often log link) accommodates non-normally distributed data: $\log \left(E(Y_{ij}) \right) = \beta_0 + \beta_1 x_{1ij} + \dots + \beta_p x_{pij}$ i = individual, j = time point

• Fit using generalized estimating equations (GEEs) coupled with empirical "sandwich" variance estimation (often referred to as "robust" standard errors)

One-part GLMs: Advantages

- Easily implemented in most statistical software
 - SAS's PROC GENMOD using REPEATED statement or PROC GEE
 - Stata's xtgee
 - R's geepack
- Single component with link function allows simple estimation of populationaverage effects on original (i.e., dollar) scale
- When a log link is used, $\exp(\beta_k)$ represents the multiplicative effect on the overall mean associated with a one-unit increase in x_{kij}
- Results are typically easy to communicate with research team or policy makers

One-part GLMs: Limitations

> Not suitable for data containing a significant proportion of zeros at any given time point, particularly for smaller sample sizes

➢ Simulation studies have shown significantly biased covariate effect estimates and high type I error rates when fit to data containing 20% or more zeros (Smith et al. 2017)

- While GEE methodology is asymptotically unbiased, sample size needs to be very large (> 50,000)
- "Robust" standard errors utilized with GEEs do not overcome this

Recoding Longitudinal Expenditures for a Two-part Model

Patient A : Continuous Part

Uncorrelated Two-Part GLMs via GEEs

Two GLM models: one for "binary part" and one for "continuous part" $logit(Pr(Y_{ij} > 0)) = \alpha_0 + \alpha_1 x_{1ij} + ... + \alpha_p x_{pij}$ $log(E(Y_{ij}|Y_{ij} > 0)) = \gamma_0 + \gamma_1 x_{1ij} + ... + \gamma_p x_{pij}$

- Each part separately accounts for correlation among repeated measures over time
- Each part is fit via GEEs similarly to one-part GLMs

Uncorrelated Two-Part GLMs: Limitations

> Challenging interpretation

- Binary component: population-average estimates of probability of incurring positive expenditures *for the entire sample at all time points*
- Continuous component: estimates of mean level of expenditures among the subset of individuals who incurred expenses at each time point → target population changes depending on time point

Potentially biased estimates

- Two components are typically correlated over time (e.g., probability of incurring any expense at one time point correlated with level of expense at another time point)
- Failure to account for the correlation between the two components leads to biased results (Su, Tom, Farewell 2009)

Due to simple implementation, this provides a tempting option but there are critical problems with this approach! We do not recommend this as an alternative.

Correlated Conditional Two-Part (CTP) Models

Two mixed-effects models: one for "binary component" and one for "continuous component"

$$logit(Pr(Y_{ij} > 0)) = \alpha_0 + \alpha_1 x_{1ij} + ... + \alpha_p x_{pij} + b_{1i}$$

$$E(log(Y_{ij}|Y_{ij} > 0)) = \delta_0 + \delta_1 x_{1ij} + ... + \delta_p x_{pij} + b_{2i}$$

Random intercepts, b_{1i} and b_{2i} , assumed to jointly follow a multivariate normal distribution to both account for correlation among repeated measures over time & correlation among the two components of the model

Correlated Conditional Two-Part (CTP) Models: Advantages

- > Fully parametric model fit with maximum likelihood estimation
 - Missing at random assumption for missing data
- > Variance components of random effects quantifies how two parts are related:
 - Positive estimate of covariance between the binary component's random intercept and the continuous component's random slope → probability of any expenditure is positively related to the amount of expenditures over time.
- > Models with random intercepts can be fit in standard software packages
 - SAS PROC NLMIXED, Mplus

Correlated Conditional Two-Part (CTP) Models: Limitations

- Models with more complex random effects specification are computationally challenging
- Conditional model does not allow for model estimates to convert predictions from the log-\$ scale back to the \$ scale
- Subject-specific interpretation may not be of primary interest to researchers and policy makers

Correlated Marginalized Two-Part (MTP) Models

- Blends marginal interpretations of the one-part GLMs and the structure of the correlated CTP model
- First part models the probability of a positive expenditure, but second part incorporates both the zero and positive values: $logit(Pr(Y_{ij} > 0)) = \alpha_0 + \alpha_1 x_{1ij} + ... + \alpha_p x_{pij} + b_{1i}$ $log(E(Y_{ij})) = \beta_0 + \beta_1 x_{1ij} + ... + \beta_p x_{pij} + b_{2i}$
- Random intercepts, b_{1i} and b_{2i} , assumed to jointly follow a multivariate normal distribution to both account for correlation among repeated measures over time & correlation among the two components of the model

Correlated MTP Models: Advantages

- Allows estimation of both probability of use component and covariate effects on the overall mean expenditures, which may of interest to policy-makers or investigators
 - $\exp(\alpha_k)$ represents subject-specific odds ratio for incurring positive expenditures associated with one-unit increase in k^{th} covariate
 - $\exp(\beta_k)$ represents multiplicative effect on overall mean expenditures of entire population associated with a one-unit increase in k^{th} covariate. This has a dual population average & subject specific interpretation, assuming the k^{th} covariate is not also a random effect itself.
- When implemented in SAS PROC MCMC, any value calculated from the parameters can be easily obtained with corresponding credible intervals or highest posterior density intervals (Bayesian analog to confidence intervals)

Correlated MTP Models: Limitations

- Computationally challenging
 - It is difficult computationally to allow the cross-part correlation, which can lead to long run times and convergence issues
- Not as easily implemented in standard software
 - We provide SAS PROC MCMC code, and can provide SAS PROC NLMIXED code, but it is not incorporated as standard procedures in any software

Poll Question #2: What is your experience using any the 4 methods presented?

- One Part GLM
- Two Part GLM
- Correlated Conditional Two-Part Model
- Correlated Marginalized Two-Part Model

How do I choose which method to use?

First steps:

Use descriptive statistics and plots to understand distribution at EACH time point

- What is the % of 0's at each time point?
- Degree of skewness and extreme values at each time point
- > What is the overall sample size at each time point?
- > What are my research questions of interest?

How do I choose which method to use?

	N at each time point	% of 0's at each time point	
Scenario 1	200 – 1,000	<u><</u> 10%	One-part GLM
Scenario 2	1,000 - 50,000	10% - 15%	
Scenario 3	> 50,000	15% - 30%	

Examples of research questions that can be answered with this method:

1. What is the effect of being required to pay a copayment on **overall mean specialty care expenditures** in each year?

2. What are the estimated or predicted **overall mean expenditures** for those with and without a copayment requirement in each year?

How do I choose which method to use?

	N at each time point	% of 0's at each time point	
Scenario 4	200 – 1,000	> 10%	Correlated MTP or CTP
Scenario 5	1,000 - 50,000	> 15%	
Scenario 6	> 50,000	> 30%	

Choice depends upon:

- Research questions and estimated quantities of interest
- Computational challenges of model estimation

Correlated CTP vs MTP: Example Research Questions

	Conditional Two-Part Model	Marginalized Two-Part Model		
Binary part	In each year, what is probability of incurring specialty care expenditures for an individual required to pay a copayment as compared to if that individual was not required to pay a copayment			
Continuous part	Conditional upon having a specialty care visit, is there a difference in specialty log- expenditures in each year for an individual required to pay a copayment as compared to an individual not required to pay?	What are the estimated overall mean specialty care expenditures for those with and without a copayment requirement in each year?		
Variance components of random effects	How is probability of any expenditure related to log- positive expenditures over time?	How is probability of any expenditure related to overall mean expenditures over time?		

Distribution Choices

For either the CTP or MTP models, three popular distributional choices are:

- Log-normal: Assumes log of positive values follows a normal distribution
- Log-skew-normal: Allows additional skewness on the log-scale & takes the lognormal as a special case
 - Chai & Bailey, 2008; Smith et al., 2017b
- Generalized gamma: Takes Weibull, gamma, inverse gamma, and log-normal distributions as special cases
 - Liu et al., 2010

Correlated CTP and MTP Computational Challenges

- Correlated random effects make it difficult for these models to converge
 - Maximum likelihood solution (e.g., proc nlmixed) can take many hours
 - Both CTP and MTP may be fit with Bayesian methods
 - Smith et al (2018) provides example SAS proc mcmc code for MTP
 - Cooper et al (2007) provides example WinBugs code for CTP
- > Extreme skewness also impacts model fit and convergence

Correlated CTP and MTP Computational Challenges: Our tips

- Start with estimating uncorrelated model
 - Make sure this simplified model converges
 - Use final estimates as starting values for correlated model estimation
- Try different software options --- underlying maximization and estimation algorithms differ slightly
 - See Tips and Strategies for Mixed Modeling with SAS/STAT Procedures (2012)
- > Try a different distribution choice
- > Consider simple modifications to your data or research question
 - increasing time period of observation \rightarrow decreases % of 0's
 - reducing study design to pre-post, rather than repeated longitudinal

Conclusion

- > Model selection driven by both data structure and research goals
 - Two-part models are often necessary when data have > 10-15% zeros
 - Two-part models accommodate multiple research question forms

Correctly modeling longitudinal expenditures with many zeros can be computationally complex, but code is provided in many papers

> Statistical methods still evolving in this area

References

Smith, Valerie A., Matthew L. Maciejewski, and Maren K. Olsen. "Modeling Semicontinuous Longitudinal Expenditures: A Practical Guide." *Health Services Research* (2018)

Maciejewski, Matthew L., et al. "How price responsive is the demand for specialty care?" *Health Economics* 21.8 (2012): 902-912.

Smith, Valerie A., et al. "Two parts are better than one: modeling marginal means of semicontinuous data." *Health Services and Outcomes Research Methodology* 17.3-4 (2017): 198-218.

Cooper, Nicola J., et al. "Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis." *Health economics* 16.1 (2007): 37-56.

References

Chai, High Seng, and Kent R. Bailey. "Use of log-skew-normal distribution in analysis of continuous data with a discrete component at zero." *Statistics in Medicine* 27.18 (2008): 3643-3655.

Smith, Valerie A., et al. "A marginalized two-part model for longitudinal semicontinuous data." *Statistical methods in medical research* 26.4 (2017b): 1949-1968.

Liu, Lei, et al. "A flexible two-part random effects model for correlated medical costs." *Journal of Health Economics* 29.1 (2010): 110-123.

Kiernan, Kathleen, Jill Tao, and Phil Gibbs. "Tips and Strategies for Mixed Modeling with SAS/STAT® Procedures." SAS Global Forum 2012. Available at http://support.sas.com/resources/papers/proceedings12/332-2012.pdf

Questions?

Feel free to contact:

Valerie Smith

valerie.smith9@va.gov

Maren Olsen

maren.olsen@va.gov