CARE MANAGEMENT FOR EFFECTIVE USE OF OPIOIDS (CAMEO)

Matthew J. Bair, MD, MS

VA HSR&D Center for Health Information and Communication, Indiana University School of Medicine, and Regenstrief Institute, Indianapolis, IN

ACKNOWLEDGEMENTS

2

VA HSR&D Merit Review (IIR 10-128)

Study Team

- Brad Baecher, MSW
- Teresa Damush, PhD
- Chanda Dodge, PharmD
- Dustin French, PhD
- Amanda Froman, MSW
- Mac Gallagher, MD
- Matt Jackson, PhD
- Carol Kempf, RN
- Erin Krebs, MD, MPH

- Kurt Kroenke, MD
- Samantha Outcalt, PhD
- Chandan Saha, PhD
- Christy Sargent, BS
- James Slaven, MS
- Kathy Snow, MS
- Win Turner, RPH
- Alan Zillich, PharmD

BACKGROUND

5

Chronic pain in the US

100 MILLION ADULTS

1 in 3 AMERICANS

High costs of chronic pain

Costs \$560-\$635 billion/ yr

Relieving America

A Blueprint for Transforming Prevention, Care, Education, and Research

OF THE NATIONAL ACADEMIES

Chronic Pain

 As population ages, number with pain conditions expected to rise

back pain and osteoarthritis

Pain: A major problem among military veterans

• 50% of Veterans in primary care report chronic pain (Kerns et al., 2003; Clark, 2002)

• Prevalence as high as 75% in women Veterans (Haskell et al., 2006)

Importance

- Low back pain is common
- Enormous burden in patient suffering
- Detriments to quality of life
- Most common cause of disability
- Exorbitant health care costs

Optimal Approach for Treating Chronic Low Back Pain

• ??

- Options Many!
 - Medications Injections Physical
 - Psychological Surgery
- Complementary
- Evidence for individual approaches
 - Limited time frames (few months, few estimates of durability)
 - "Efficacy" rather than "Effectiveness" or "Comparative Effectiveness"

Treating Chronic Low Back Pain

- Evidence supported analgesic treatment and cognitive behavioral therapy for CLBP
 - Had not been compared head to head

- "Opioid conundrum"
 - Prescriptions had increased
 - Concerning trends in opioid overdose and admissions for OUD treatment

STUDY OBJECTIVE AND AIMS

Study Objective

 To compare the effectiveness of pharmacological treatment and optimization vs. cognitive behavioral therapy for Veterans with chronic lower back pain on chronic opioid therapy

Specific Aims

• Compare PHARM vs. BEHAV on pain impact, intensity, and interference at 6 and 12 months

Compare intervention effects on other outcomes

- Patient global impression of change
- Health-related quality of life
- Pain beliefs
- Opioid dose

Compare cost-effectiveness of interventions

Biopsychosocial Model

Biological

- Neurotransmitters
- Cytokines
- Peripheral sensory
- Genetic

Sociocultural

- Cultural beliefs
- Gender
- Social & job roles
- Secondary gain & disability

Psychological

- Depression & anxiety
- Amplification
- Attentional
- Attributional
- Personality
- Secondary gain

CAMEO Trial Design

- 5 primary care clinics at Roudebush (Indianapolis) VA Medical Center
- 2 Community-based outpatient clinics
 Bloomington
 - Terre Haute

Participants

• N = 261 Veterans

- Moderate to severe chronic low back pain
 - Brief Pain Inventory 5 or greater
 - •> 6 months
- On long-term opioid therapy > 3 months

Exclusion Criteria

- Severe medical conditions
- Active psychosis
- Schizophrenia
- Active Suicide ideation
- Pending back surgery

- Moderately severe cognitive impairment
- Active substance use disorder
- Pregnant or planning to become pregnant
- Involved in ongoing pain trial

INTERVENTIONS

Interventions

Pharmacological (PHARM) arm

- Nurse care management
- Focused on analgesic treatment and optimization according to algorithm

<u>Behavioral (BEHAV) arm</u>

 Cognitive behavioral therapy delivered by clinical psychologists

Pharmacological Arm

- Algorithm-based co-analgesic treatment
- Guideline-concordant opioid management
- Delivered by nurse care manager
- Supervised by study MD/PharmD

Pharmacological Arm

- Algorithm-based co-analgesic treatment
- Guideline-concordant opioid "rules"

- Telephone-delivered by nurse care manger
- Supervised by study MD/PharmD

Analgesic Algorithm: Non-opioids

Step	Analgesic
Step 1 (Simple analgesics)	AcetaminophenNaproxen
Step 2 (other NSAIDs)	 Ibuprofen Meloxicam Etodolac Diclofenac Salsalate
Step 3 (Topicals, gabapentin, muscle relaxants, tramadol)	 Capsaicin (topical) Gabapentin Cyclobenzaprine Tramadol
Step 4 (TCAs)	NortriptylineAmitriptyline

Analgesic Algorithm: Opioids

Step	Analgesic
Step 5 (SA opioids)	 Hydrocodone/acetaminophen Oxycodone/acetaminophen
Step 6 (LA opioids)	 Morphine SR Morphine IR Methadone

Pharmacological Arm Weekly case management meetings

- Regular contacts w/ participants to
 Monitor pain/function
 - Response to treatment
 - Assess for side effects

Behavioral Arm

- 8 phone or face-to-face contracts in 6 months
- Emphasis on:
 - Pain coping skills
 - Pain self-management
- Delivered by clinical psychologist and clinical psychology PhD students

Behavioral arm

Pain Self-Management/Coping Skills

- Overview and causes of CLBP
- Identifying pain triggers and influences
- Handling pain flare-ups
- Increasing physical activity
- Goal Setting and planning
- Problem solving
- Overcome fear of movement/re-injury
- Positive thinking
- Activity-rest cycling
- Scheduling pleasant activities
- Relaxation and deep breathing
- Attention-diversion techniques
- Tips for better sleep
- Effective communication with providers
- Reframing or changing cognitions

Behavioral Arm

Supervised by clinical psychologist

CBT treatment manual

MEASURES

Primary Outcome

- Brief Pain Inventory total score ("Pain impact")
- Between-group difference of 1-point
 - Clinically meaningful difference (0.3 SD effect size)
 - Mixed effects models for repeated measures

Brief Pain Inventory

SEVERITY

Describe your pain (past week)

- At its worst
- At its least
- On average
- Right now

IMPAIRMENT

How has pain interfered with your

- General activity
- Mood
- Walking ability
- Work
- Relationships
- Sleep
- Enjoyment of life

Additional measures

- Pain severity
- Pain disability
- Psychological symptoms
- Stress
- Opioid misuse
- Opioid side effects
- Health-related quality of life (HRQL)

- Pain beliefs and coping
- Treatment response
- Opioid dose
- Back function
- Self-management behaviors
- PROMIS (sleep, fatigue)
- Health care utilization/costs

RESULTS

Sample characteristics (n=261)

- Mean age: 57.9 (9.5)
- Sex: 92.3% men
- Married: 53.3%
- Race:
 - 73.2% White
 - 20.7% Black
- Income
 - 71.9% adequate

Sample characteristics (n=261)

- Duration of pain = 22 years
- Disability compensation = 74%
- Comorbidity (0-14) = 3.8

Pain treatments, n (%)	
Pain clinic	165 (63.2)
Pain school	59 (22.6)
Psychiatrist/psychologist	152 (58.7)
Physical therapy	184 (70.8)
Orthopedist/rheum	156 (59.8)
Surgery for back	73 (28.2)
Chiropractor	122 (46.9)
Acupuncture	33 (12.7)
Massage	56 (21.5)

Baseline Pain Measures

Measure	PHARM	BEHAV	P-value
	Mean (SD)	Mean (SD)	
BPI Total (Impact)	6.45 (1.79)	6.49 (1.67)	0.8230
BPI-Pain severity	6.78 (1.65)	6.76 (1.47)	0.9295
BPI-Pain Interference	6.34 (2.07)	6.39 (1.99)	0.8265

Disability and psychological

Measure	PHARM	BEHAV	P-value
	Mean (SD)	Mean (SD)	
Roland Disability	16.6 (4.7)	16.7 (4.2)	0.8164
PHQ-9 Depression	11.2 (6.4)	11.2 (5.8)	0.9970
Pain catastrophizing	23.9 (12.8)	24.4 (11.3)	0.7407

Results: Pain Impact

BPI total score (pain impact) was decreased 0.64 points ([SD] = 0.22) in the BEHAV group at 12 months

Decreased by 1.14 points (SD = 0.23) in the PHARM group

Between group difference of 0.5 points, p = 0.0423

Results: Pain Intensity

BPI pain intensity decreased by 0.40 points in the BEHAV group (SD = 0.19)

Decreased by 1.02 points (SD = 0.20) in the PHARM group

Between group difference of 0.62, p = 0.0044).

Pain interference

Mean decrease from baseline in the BPI interference score was 0.71 points in the BEHAV group

1.19 points in the PHARM group

Between group difference of 0.48 points; p = 0.0846

Limitations

- All Veterans; Do results apply to other patients (non-Veterans)?
- Conducted at a single medical center
- No control group to definitely determine treatment effect relative to usual care

A nurse care management intervention focused on pharmacological management reduced pain impact and intensity more than a behavioral intervention involving cognitive behavioral therapy.

Discussion

- Both treatment groups improved, but improvement was modest
 - PHARM group improvement was statistically significant but between-group difference may not represent clinically significant differences

Future Directions

- Side effects and costs may differ favoring the BEHAV group
- To Improve treatment effects, will need combination therapy especially for patients with "complex" chronic pain

Pre-emptive responses to potential questions

- Secondary outcomes
- Opioid dose at baseline and follow-up
- Fidelity to treatment manual
- Adherence to intervention contacts
- Economic evaluation

QUESTIONS?

Thank you for attending