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10/2/2018 11:00am Spotlight on Pain Management
Applied HRV Data Interpretation for the Clinician
Ginsberg, JP (Jack)

Heart Rate Variability Biofeedback (HRVB) professionals regularly use quantitative
and graphic methods of analysis of heart rate to understand the physiological and
emotional status of pain patients. This presentation will use actual pre-post HRVB
data from Veterans with PTSD and chronic pain to illustrate how acquisition of the
skill of self-regulation through HRVB affects heart rate patterns and screen displays
and is related to reduced symptoms and improved level of function.



JP (Jack) Ginsberg, PhD

Licensed Clinical Psychologist/Neuropsychologist
and Principal Investigator,
Dorn VA Medical Center
Basic Science Research Assistant Professor
University of South Carolina, School of Medicine,
Dept of Pharmacology, Physiology & Neuroscience
Columbia, SC

jay.ginsberg@va.gov
803.776.4000 x6644


mailto:jay.ginsberg@va.gov
mailto:jay.ginsberg@va.gov

Disclaimer and Disclosure
Neuropsychologist, interest in PTSD and cognitive psychophysiology
* Not expert in cardiology, physiology, medication, or pain
No conflict of interest, affiliations, or product endorsement
Slides are original, available on internet, or acknowledged
* Not copyrighted but please acknowledge
Some portions presented previously
Models are didactic and heuristic
* Correct only as far as they go
* Referenced and consistent with current scientific literature
* Corrections, revisions, expansions, updates are appreciated
» Sketchy, incomplete, simplified, and not elaborated in context
* Not writing medical cardiovascular physiology textbook or

research proposal
Materials that are included in this presentation may include interventions and
modalities that are beyond the authorized practice of mental health professionals. As
a licensed professional, you are responsible for reviewing the scope of practice,
including activities that are defined in law as beyond the boundaries of practice in
accordance with and in compliance with your professions standards.
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Actual Interbeat Interval (IBI) Sample
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RR Interval Time Series Results for a single sample
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Tachygram
A tachygram is a graph of heart rate (HR), either as
inter-beat interval (IBl) or as instantaneous HR (BPM),
over a continuous time period. The illustrations
above are IBl in msecs measured as RR.
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BPM 1Bl (ms)

Same period (=10 secs)
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e 72 BPM, Max-Min 20
1 cycle/10 sec=6 cycles/min
=12 beats/cycle
Vs
60 BPM, Max-Min 30
1 cycle/10 sec=6 cycles/min
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Heart Rate Variability (HRV)

0.793 sec. 0.726 sec.
_ 76BPM 83 BPM

2.5 seconds of heart beat data

Decoding the Intelligence of the Heart I BI = 975+225*C05(t* PI)
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60 BPM, Max-Min 20
1 cycle (10 secs)

60.0
66.4
69.8
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60.0 Beats per minute (instantaneous heart rate)
mathematically derived from a sine/cosine function.
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In the illustration above there are 10 beats in 10 seconds (avg
BPM=60); note however that the beats would not be not evenly
spaced 1 second apart



72 beats per minute @ 1 cycle/10 sec = 12 beats/cycle
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a Sine Wave

The Fourier Transform
will transform any
sinusoidal wave form
into a frequency
spectrum. The
transformed
frequency spectrum is
quantified and
analyzed in terms of
‘oower’ or area under
the curve, across a
range of frequencies.
Power is directly
related to variance of
the untransformed
time series.
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RR Interval Time Series
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VLF: 0.0033-0.04Hz=(300-25) secs/cycle=(0.2-2.4) cycles/min
Minimum 5 minute recording (24 hour is best)
More strongly predictive of all-cause mortality and inflammation than the
other bands
Origins of VLF power unclear
e Intrinsic (pacemaker)
* Predominantly SNS activity however low PNS power also present

LF: 0.04—0.15 Hz=(25-6.7) secs/cycle=(2.4-9) cycles/min
Minimum 2 min recording
‘Baroreceptor range’ during rest
Power from SNS, PNS, and baroreceptors
* SNS not above ~0.1 Hz
* PNS dominant >0.07 Hz

HF: 0.15—-0.40 Hz=(6.7-2.5) secs/cycle=(9-24) cycles/min
Minimum 1 minute recording
‘Respiratory band’
PNS power
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Mean HR 72.0

Max-Min 20.0

SDNN (ms) 83.9

RMSSD (ms) 47.0

VLF power (ms?) 0

LF power (ms?2) 6959.0
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Physiological Bases of HRV
|. Respiratory Sinus Arrhythmia (RSA)
 Abdominothoracic Pump, Respiratory Pump, Cardio-respiratory Coupling,
Cardiopulmonary Reflex, Lung-heart Pump
Results from interactions of
* Respiration (e.g. rate, depth, volume, effort)
* Vagal parasympathetic tone
e Oscillations in cardiac output
Occurs at normal respiration rate
 0.15-0.4 Hz=9-14 BrPM
May be measured as either instantaneous HR or IBI
 Max-min (‘peak to trough’) over a single respiratory cycle or
averaged over many respiratory cycles
* HRVindices
A higher resting vagal tone may be adaptive
* Energy reserve capacity for active states
Il. Resonant Frequency Breathing (RFB)
* QOccursin LF, around 0.1 Hz="6 BrPM
* Baroreceptor reflex (BR)
* Interrelations of respiration, HR, BR, BP, and vasomotor tone (VT)
* ‘Coherence’



RSA: Respiration and Vagal Parasympathetic Tone-I
Normal Respiration produces rhythm of cardiac acceleration and
deceleration

 (Cardiac acceleration on inhalation

e (Cardiac deceleration on exhalation
Synchronization of respiratory and cardiovascular processes and
regulation of energy exchange
Vagal tone is measured by HR responses to cholinergic and
adrenergic stimulation and blockade

Respiration
Ach, Rate, . HRRSAIBI
NE depth, etc —) HR\;)r

Vagal tone




RSA: Respiration and Vagal Tone-ll
RSA magnitude is affected by respiration and vagal tone separately
Vagal tone reflects oscillations of cardiac vagally modulated parasympathetic
(cholinergic) effects upon the sinoatrial node and, therefore, HR
Respiratory parameters (e.g. rate, volume or depth) affect or confound the function
linking RSA and vagal tone
* RSA due to respiration rate and cardiac vagal tone can dissociate
RSA magnitude more closely related to changes in respiratory parameters than to
changes in cardiac vagal tone
* Greater tidal volume, lower breath rate increase RSA with constant vagal tone
HR max-min is sensitive to respiration rate independent of vagal tone
HF power changes may not be accompanied by changes in HR
HF power and RSA do not represent vagal tone
RSA magnitude is affected by vagal tone and beta-adrenergic status
* Vagolytic agents (e.g. atropine, muscarinic cholinergic antagonists) block Ach
and increase beta-2 adrenergic activity
* Decrease RSA, increase HR, no BP change
e Abolish LF and HF power
* Blocks SA Ach released by vagus
* Does not alter HR in absence of vagal nerve activity
* Beta-adrenergic blockade (e.g. propranolol, atenolol)
* |ncrease RSA, decrease HR and BP



RSA: Respiration and Oscillation in Cardiac Output
(Intra-thoracic Pressure, Venous Return)
* RSA is also elicited by cardiovascular reflexes due to changes in venous
filling of the heart during normal respiration
* Respiratory activity influences venous return to the heart. Inspiration
expands the right atrium, lowers intra-pleural pressure, enhances venous
return, increases HR
* Increasing the depth of inhalation promotes venous return (like pulling
out on a bellows or syringe), enhances cardiac output, and increases HR
 Cardiac output = stroke volume x HR
* Low pressure arterial baroreceptors at veno-atrial junctions of the heart
(‘cardio-pulomonary receptors’) are innervated by myelinated vagal
afferents and respond to atrial filling and contraction. During inhalation,
right atrial expansion and reduced pressure increase venous return, blood
volume stretch recptors, and HR via withdrawal of vagal parasympathetic
activity to the SA node (Bainbridge Reflex). During exhalation, right atrial
contraction and increased pressure decrease stretch receptors which
decreases venous return and HR via activation of vagal reflex.
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RSA is affected by inhalation vs exhalation changes in venous return
and cardiac output

.\ n &Lung Inhale, start .n
ol cycle again .
B XN <Blood volume

stretch receptor

Inhale, thoracic ° >
volume increases
’ . HR, blood
5y L °

pressure decreases
flow decrease

~—/

\’ Venous blood

Exhale
Inhale flow and HR Exhale, thoracic A Pressure
T Pressure increase volume decreases, * Volume. blood
Volume, blood ~— pressure increases flow. HR
flow, HR

Increasing the depth of respiration promotes venous return through changes in right
atrial (chest cavity) pressure. During inspiration, the chest wall expands as the
diaphragm descends, causing right atrial pressure to fall which facilitates venous
return.. As pressure falls and venous return flow rises, cardiac rate accelerates...
During expiration, the opposite occurs.. Increasing right atrial pressure impedes
venous return and slows HR... Increasing the depth of ventilation increases the range
of HR over the respiratory cycle.



Resonance Frequency Breathing (RFB)
* HRV is related to frequency of respiratory cycle

* At ~ 6 breaths/minute =10 seconds per breath=0.1 Hz
= 0.1 cycles/second
=1 cycle/10 seconds
= 6 cycles/60 seconds
= 6 cycles/minute

* @RFB, respiration and HRV synchronize
e ‘Resonance’
* Indicator of ‘Coherence’



0° phase relationship between oscillations in respiratory
and HR cycles
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When HRV and respiration are synchronized, a spectral
peak occurs at the RFB, ~0.1 Hz, due to resonance of HRV
amplitude.



Resonance Frequency Breathing: Effect of Various Respiration Frequencies
on HRV Averaged RSA Amplitude and Phase Frequency Characteristics
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RSA (HR max-min) Differs between People but all have max ~0.1 Hz

Subject A Subject B
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ors T 2JJ
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T —— 0.075-0.108  —
Hz range

Breathing ~0.1Hz caused highest HR oscillation amplitude for all Ss
HR always synchronized with breathing at this frequency (phase=0°).
Peak HR amplitudes at ~0.1 Hz (resonance in CVS ) at this frequency.
Peak HR amplitude found in range of 0.075-0.108 Hz (=4.5-6.5 BrPM)




Resonance is the tendency of a system to oscillate with greater
amplitude at some frequencies than at others. Relative maximum
frequency of oscillation is the system's resonance frequency. At
these resonance frequency, even small periodic driving forces can
produce large amplitude oscillations

Pushing a person in a
swing is an example of
resonance. Pushing a
swing in time with its
resonant frequency will
make the swing go higher
and higher (maximum
amplitude), while
attempts to push it at a
faster or slower tempo
results in smaller arcs.

28




Coherence of Cardiac Rhythm: Effect of RFB on HRV
coherence.com (Richard Brown, MD and Stephen Elliott, Ph.D.)

I R S A & 30 BrPM (0.5 Hz) , HRV(avg) = 2
7.5 BrPM (0.125 Hz), HRV(avg) = 11
e | / 5.5 BrPM (0.092 Hz), HRV(avg) = 34

Time (Seconds) 100

The difference w s e e Baroreflex

between the maxand " SOV V| activates

min HR for each cycle / 73 R
i I (‘Coherence’)

center; averaging

across consecutive

cycles yields HRV(avg), RFB>

one of the many

measures of HRV. 3
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http:coherence.com

Mean HR 72.0
Max-Min 20.0
HR/(max-min) 3.6
SDNN (ms) 83.9

RMSSD gmsz 47.0

VLF power [(ms)?] 0
LF power [(ms)2] | 6959
LF peak (Hz) 0.1
HF power [(ms) 2] 4
Total Power [(ms) 2] | 6963
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Respiration, HR, and BP are interrelated

BP: Sys/Dias, Pulse, Mean Arterial
'he Valsalva Maneuver

‘raube-Hering and Mayer Waves

. Baroreceptor Reflex (BR)

a. HR goes down when blood pressure goes

up, and HR goes up when blood pressure
goes down

b. The baroreflex amplifies HR oscillations

C.

at its resonance frequencies
HRV Resonance @RFB->Coherence




The Valsalva Maneuver
Real-time blood pressure and heart rate responses to deep breathing provide
autonomic information
RSA and Valsalva maneuver share a BP and HR linking mechanism
In @ normal Valsalva maneuver, BP and HR both normalize. In autonomic failure,
HR remains high and BP stays low
Quantified by the Expiratory/inspiratory (E/I) or Valsalva ratio =
Longest R-R interval (phase IV) /
Shortest R-R interval (phase 1)
 E/lratio reflects PNS afferent (baro-receptor) and PNS and SNS efferent
(parasympathetic and sympathetic) relation
e E/I>1.20is normal, <= 1.20 is abnormal

VAW e

Procedure for the Valsalva Maneuver

. While continuously recording BP and HR:

Take a deep breath, pinch your nose, and keep your mouth closed.
Try to exhale moderately forcefully for 10 to 15 seconds, as if inflating a balloon.
Gently release after about 15 seconds and breathe normall

. Produces 4 stages of HR and BP changes
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In this
example,
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1.9; for
autonomic
failure E/I
is about
0.45/0.50=
0.9



HR and BP: Traube-Hering and Mayer Waves
Named for Ludwig Traube, Karl Konstantin Hering, and Siegmund Mayer
Taube-Hering
Rhythmical variations in blood pressure with a frequency varying from 6 to 10
cycles per minute (0.10 to 0.16 Hz)
Related to variations in vasomotor tone
Discovered in 1865 by Traube
Confirmed in 1869 by Hering

Mayer
Oscillations similar to Taube-Hering waves observed in 1876 by Mayer

« Thought they might be a separate entity than Traube-Hering
Frequency ~0.1 Hz (10-second waves), correlated with HRV
Due to oscillating sympathetic vasomotor tone (VT) of arterial blood vessels
Cyclic waves in arterial blood pressure
Waves in arterial blood pressure brought about by oscillations
iIn_baroreceptor and chemoreceptor reflex control systems.
Vasodilation due to action on alpha adrenergic receptors
Abolished or attenuated by blockade of alpha-adrenergic receptors Seen both in
ECG and continuous blood pressure
Arterial blood pressure linear frequency coupling with SNS
Low frequency and non-synchronous with ventilatory pattern
Frequency does not depend on gender, age or posture
Shift to lower frequency may be associated with risk of hypertension




Baroreceptor Reflex (BR)
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Figure 1. Location and innervation of ; ympat etic

cardiac nerve
——Sympathetic chain

arterial baroreceptors.

How does it work? BR mediates BP changes in response to HR changes via pressure

receptors in the aortic arch and carotid arties. These baroreceptors increase discharge
rate when stretched by BP elevation caused by increased HR. This signal (through CNIX
from carotid and CNX from aorta) goes to the cardiovascular control center in medulla
which then decreases vasomotor SNS and dilates vessels and increases cardiac vagal
PNS, so that HR decreases. When BP falls, BR lower discharge leads to vasomotor SNS
increase and vessel constriction, cardiac SNS increase and PNS withdrawal, and results
in HR acceleration.



Resonance of HRV due to BR at RFB

At RFB (0.07-0.11 Hz, and corresponding to Mayer waves), the BR-
mediated BP oscillatory period is 180° out of phase with HR
oscillations. HR oscillations are thus amplified at resonant frequency.
Maximal BP is reached after ~5 second delay from the previous cycle
of BR-mediated BP increase and therefore occurs at the same time
that HR reaches a minimum, which lowers HR even further; conversely,

minimal BP occurs as HR reaches maximum and increases HR even
more.

~ 5 sec time delay in BR produces arterial pressure oscillation resonance with HRV

HR and respiration periods synchronize;

@RFB - BR +5 second delay—=>BP 180° out of phase with HR; - Coherence
resonance of HRV;
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BR: Focus on neural circuits
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HR Amplitude Resonance due to BP Phase Frequency Shift
from BR 5-second delay creates the sharp 0.1 Hz peak
characteristic of Coherence

ayer

0.10 Hz (e.g. respiration,
muscle tension)

1 T 7\ a fa
NN AN A AN

/

7 \/I\/|\/ Jf / \
VAV AYAvaY,
ANV

SN 5s
BR:BP BR:BP
delay delay




Baroreceptor reflex (BR)

HR changes in response to Respiration
BR changes in response to HR to maintain homeostasis
BP changes in response to BR
HR amplitude resonates with BP at RFB
* Fixed time delay ~5 sec in BR produces 0.1 Hz arterial pressure
oscillation that resonates HR amplitude at 0.1 Hz
RFB synchronizes respiration, HR, BR, BP
BR also important in 0.03 Hz VT oscillations
 Complex relationship between HR and 0.03 Hz VT oscillations

‘Coherence’
Uncertainty whether Mayer waves are independent of BR

e ?Central oscillator?
 ?Additive to resonance?



Schematic Model of HR, Baroreflex, BP, and Vascular Tone Systems
Based on Vaschillo and Lehrer

0.10 Hz o — 0.03 Hz
N—

~5 s delay Y N ~15 s delay
Blood pressure Vascular tone
waves
Resonance
RESPIRATION HR

Baroreceptors

Triggered by respiration @ 0.1 Hz, BR links HR and BP via CNS, produces
HRV resonance, and maintains BP homeostasis. 0.03 Hz oscillations of VT
also influence HR and BR.



Properties of HRV Coherence

» Produced by resonant frequency breathing (RFB)
* RFB occurs ~0.1 Hz (=6 cycles/minute=10 sec/cycle=10 sec/ period)
» Produced by HRV Biofeedback
» Also produced by other stimuli at 0.1 Hz frequency (e.qg.
rhythmical muscle tension, chanting, picture presentation, etc.)
» Due to interactions between cycles of respiratory sinus arrhythmia
(RSA) and baroreflex feedback control of vasomotor tone
» 0” phase between respiratory and sinusoidal HR cycles
» 180°phase between baroreflex and sinusoical HR cycles
» Associated with maximum RSA (max-min HR over respiratory cycle)
» Discrete sharp peak in power spectrum at resonant frequency
» Associated with improved adaptive behaviors

« alertness, responsiveness

« emotional self-regulation

* cognitive function
» distinct from “relaxation’
* Healthy people do not have Coherence during non RFB periods
« Extended high coherence may be a sign of inflexibility of cardiac
adjustment

41




Summary: RSA and BR work together to produce HRV

1. RSA
 Relatively small amplitude HR oscillations
. Frequency range of normal respiration
e ~10-24 breaths/minute= 0.17Hz-0.40Hz
HR accelerates on inspiration (SNS)
Returns to resting HR on exhalation (PNS)
Oscillations of cardiac output
 Affects intra-thoracic pressure and venous return=>HR
Smaller BP oscillations (Traube-Hering waves?)
Hypertension reduces RSA and vagal tone

2. BR
e BPchanges in response to HR for homeostasis (?Mayer waves?)
RFB synchronizes respiration, HR, BR, BP>‘Coherence’
Larger amplitude HR oscillations than RSA
* Can be very large
Frequency range of ~4.2-7.5 breaths/minute (= 0.07-0.12 Hz),
 Increases max and min of HR compared to slow respiration cycle
* Average HR may not change
Important in 0.03 Hz VT oscillations
HRVB reduces BP
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The heart rhythm pattern shown in the top graph is characterized by its erratic,
irregular pattern (incoherence), and associated with negative emotions such as
anger or frustration. The bottom graph shows a coherent heart rhythm pattern,
observed when an individual is experiencing sustained, modulated positive

emotions such as gratitude or happiness.




Three components of Autonomic Self-Regulation a
1. HRV Biofeedback = resonant frequency breathing
2. Mindful attention

3. Positive emotional state



ASR coaching essential elements

* Paced breathing at resonant frequency and the production
of HRV Coherence through HRV Biofeedback

* Mindfulness or imagery focused on breathing and the heart.
Focused attention on air entering and exiting the chest and
passing thorough the heart

* Positive emotional state (PES). Occupy the mind during the
HRVB session with thoughts of compassion, gratitude,
apreciation, etc.

‘COHERENCE’



AUTONOMIC SELF-REGULATION

PES
Compassion,
gratitude, etc

RFB
Mindful
attention
\ \L /
HRV
HRV

COHERENCE
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Figure 1 (a - d) depicts the Pre-Post HRVE Training the R-R Interval Tachogram and Power Spectra Density of one

PTSD+ subject.
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Peak Power at 0.095 Hz = 53.5 ms/Hz ; Total LF power = 3695.9 ms?/Hz

0.04 015 0.4

Coherence ratio=0.02

- Frequency(Hz) o B 9



HRV Power Spectrum

Peak Power at 0.099 Hz = 960.4 ms? ; Total LF Power = 2344.4 ms?/Hz

‘ Power spectrum at 0.0995033 Hz = 953?51\
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Calculation of McCraty’s Coherence Ratio (CR) from the HRV

Power Spectrum
Find the highest pealk within the range
of 0.0440.26 He

Fealk FPower: Integral of the window 0.015 Hz
abowve and belowar the haghest peak

A00- Total Power: (0.0033-0.4 Hz)

EEI}: - - Cohere nee Fatio:
- / Peak Power f (Total Power — Pealk Power)
+

rrrrprrisprriria rrri rrri

005 0.1 015 02 025 03 035 0.4 045 0.5

McCraty, R., Atkinson, M., Tomasﬁ]o, D., %L%-Edley, R.T. (2009). The Coherent Heart: Heart-
brain interactions, psychophysiological coherence, and the emergence of system
wide order. Integral Review 5, 2 (10-106).
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Flgure 3 A typical heart rate variability (HRV) recording over a 15-minute period during resting conditions in a heafthy individual

McCraty, R., & Shaffer, F. (2015). Heart rate variability: new perspectives on
physiological mechanisms, assessment of self-regulatory capacity, and health
risk. Global Advances in Health and Medicine, 4(1), 46-61.



Beyond Coherence?
Calculation of the Parasympathetic Ratio (PR) from the HRV Power Spectrum

- Find highest peak within the range of 0.07-0.40 Hz (=eHFp)

- Find eHF Peak Power: Integral of the window 0.015 Hz
above and below the highest peak (=eHFpp)

- Determine Total Power (TP) in the spectrum, 0.0033-0.4 Hz

- Calculate the Parasympathetic Ratio (PR) as:
eHFpp/(TP-eHFpp)
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HRV(B) Case Data
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Empirical keys of HRV profiles

LFpp>eHFpp: excessive SNS (PR<0.4)
eHFpp>LFpp and RMSSD>SDNN: excessive SNS with PNS (PR le ~0.4)
eHFpp>LFpp and SDNN>RMSSD: PNS dominant (PR gt ~0.4)

PR and CR are useful for comparing intra-individual change



CR vs PR after HRVB in a Sample of Veterans with Chronic Pain
Pre- | Post- | TP2 PR-TP2 PR (SE) | TP2 CR-TP1 CR1 (SE)
n n ‘Diff CR’ ‘Diff PR’
Active | 26 22 0.53 (0.23)1 0.62 (0.22)*
Sham | 29 19 0.06 (0.03)2 0.05 (0.05)2
1p< .005 2ns

Predictive Strength of CR vs PR

Active HRVB Group
Rho (Diff PR with Diff Outcome) vs Rho (Diff CR with Diff Outcome)
4% change in variance cutoff (bold means changed ns to significant)

Minutes weekly practice | GT Perceived Stress Scale | ND
Minutes HM coherence | GT BPI Severity ND
CRP GT BPI Interference ND
PASAT GT Pain Catastrophizing ND
PVT Reaction Time GT (-) ff Physical Fatigue ND
Reduced Motivation GT (-) f Mental Fatigue ND
List Learning ND Total Fatigue ND
Beck Depression ND

GT=Greater Than; ND=No Difference




Take-aways

HRV from resting HR tachygram can be quantified in a number
of ways
SNS HRV power above 0.07 Hz is minimal and becomes
negligible by 0.1 Hz

* PNS power below 0.07 Hz is minimal
HRV power below 0.07 Hz is common in clinical populations and
may indicate pathology

e Reflected by eHF peak power vs LF peak Power
Interpretation of a single tachygram requires both graphic
display and several indices
Intra-person comparisons are generally informative

* Coherence and Parasympathetic Ratios are both promising
Inter-person comparisons require both graphic display and
several indices

 eHFpp vs LFpp and SDNN vs RMSSD

e Parasympathetic Ratio may be more predictive
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Blood pressure (BP) and heart rate (HR) are continually varying. The nervous
mechanisms behind this variability have been studied extensively in non-human
animal models (for reviews, see Eckberg & Sleight, 1992). Since the 1980s, the
combined availability of non-invasive blood pressure measurement by the
Penaz-Wesseling Finapres, and more and more powerful computers in the
laboratory, have revived research into prevalence and physiological meaning of
this variability in humans. When Fourier analysis was applied to analysis of BP
variability (BPV) and HR variability (HRV), two frequency peaks stood out: one
around the respiratory frequency and one around 0.1 Hz, or one oscillation in 10
s. These frequencies had been observed in blood pressure recordings before,
actually over 130 years ago: Traube-Hering waves (coupled to respiration) and
Mayer waves, the 0.1 Hz and slower oscillations. In the earlier research it had
been established that oscillating sympathetic activity causes the Mayer waves in
blood pressure. The respiration-coupled blood pressure oscillations were partly
explained by mechanical effects of respiration and possibly by the vagally
induced heart period oscillations coupled to respiration, known as respiratory
sinus arrhythmia (RSA) (Eckberg & Sleight, 1992).



Bernardi, L., Porta, C., Gabutti, A., Spicuzza, L., & Sleight, P. (2001).
Modulatory effects of respiration. Autonomic neuroscience, 90(1-2), 47-56.

Respiration is a powerful modulator of heart rate variability, and of baro- and
chemoreflex sensitivity. Abnormal respiratory modulation of heart rate is often an
early sign of autonomic dysfunction in a number of diseases. In addition, increase in
venous return due to respiration may help in maintaining blood pressure during
standing in critical situations. This review examines the possibility that
manipulation of breathing pattern may provide beneficial effects in terms not only
of ventilatory efficiency, but also of cardiovascular and respiratory control in
physiologic and pathologic conditions, such as chronic heart failure. This opens a
new area of future research in the better management of patients with
cardiovascular autonomic dysfunction.



Julien, C. (2006). The enigma of Mayer waves: facts and models. Cardiovascular
research, 70(1), 12-21.

Mayer waves are oscillations of arterial pressure occurring spontaneously in conscious
subjects at a frequency lower than respiration (~0.1 Hz in humans). Mayer waves are tightly
coupled with synchronous oscillations of efferent sympathetic nervous activity and are almost
invariably enhanced during states of sympathetic activation. For this reason, the amplitude of
these oscillations has been proposed as a surrogate measure of sympathetic activity, although
in the absence of a clear knowledge of their underlying physiology. Some studies have
suggested that Mayer waves result from the activity of an endogenous oscillator located either
in the brainstem or in the spinal cord. Other studies, mainly based on the effects of sino-aortic
baroreceptor denervation, have challenged this view. Several models of dynamic arterial
pressure control have been developed to predict Mayer waves. In these models, it was
anticipated that the numerous dynamic components and fixed time delays present in the
baroreflex loop would result in the production of a resonant, self-sustained oscillation of
arterial pressure. Recent analysis of the various transfer functions of the rat baroreceptor reflex
suggests that Mayer waves are transient oscillatory responses to hemodynamic perturbations
rather than true feedback oscillations. Within this frame, the amplitude of Mayer waves would
be determined both by the strength of the triggering perturbations and the sensitivity of the
sympathetic component of the baroreceptor reflex.
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