

Leveraging VA and State Data to Examine Veterans' Injury: TBI, Opioids, and Guns

Kathleen F. Carlson, MS, PhD

Center to Improve Veteran Involvement in Care (CIVIC), VA Portland Health Care System OHSU-PSU School of Public Health, Oregon Health and Science University

U.S. Department of Veterans Affairs

Veterans Health Administration Office of Research & Development

Introduction

Poll Question #1

What is your affiliation with the VA CDA Program?

- Have not heard of the CDA program before
- Interested in applying for a CDA, but have not yet applied
- In the process of applying for a CDA
- Currently have a CDA
- Previously had a CDA
- Other

Poll Question #2

What is your primary training/discipline?

- Medicine
- Psychology
- Other clinical
- Epidemiology
- Sociology
- Other social science
- Other discipline not specified

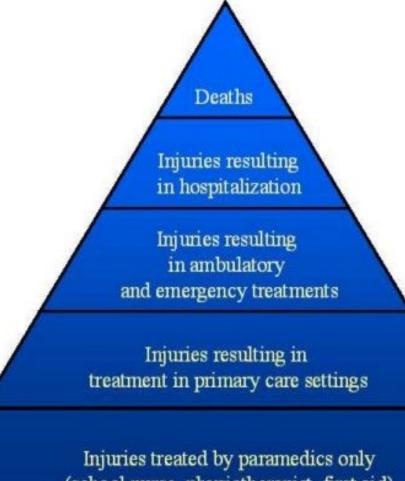
Leading Causes of Death in the U.S.

- 1. Heart Disease
- 2. Malignant Neoplasms
- 3. Cerebrovascular Disease
- 4. Chronic Obstructive Pulmonary Disease
- 5. Unintentional Injury
- 6. Alzheimer's Disease
- 7. Diabetes Mellitus
- 8. Kidney Disease
- 9. Influenza and Pneumonia

10. Suicide

National Vital Statistics Reports

Leading Causes of Death in the U.S.

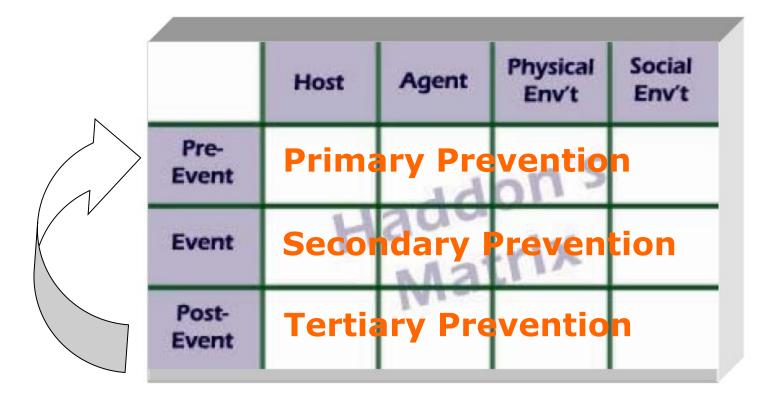

Ages 1 – 44 Years

- 1. Unintentional Injury
- 2. Malignant Neoplasms
- 3. Suicide
- 4. Heart Disease
- 5. Homicide
- 6. HIV
- 7. Liver Disease
- 8. Cerebrovascular Disease
- 9. Diabetes
- 10. Congenital

Ages 45+ Years

- 1. Heart Disease
- 2. Malignant Neoplasms
- 3. COPD
- 4. Cerebrovascular Disease
- 5. Alzheimer's Disease
- 6. Unintentional Injury
- 7. Diabetes Mellitus
- 8. Influenza and Pneumonia
- 9. Kidney Disease
- 10. Septicemia

Injury-related Deaths vs. Inpatient and Outpatient Care



(school nurse, physiotherapist, first aid)

Injury Prevention & Control

Injuries are *not* Accidents! (... not even in combat)

Injury Prevention & Control

Studying Veterans' Injuries

Traumatic Brain Injury

Traumatic Brain Injury in the War Zone

Susan Okie, M.D.

Related article, page 2121

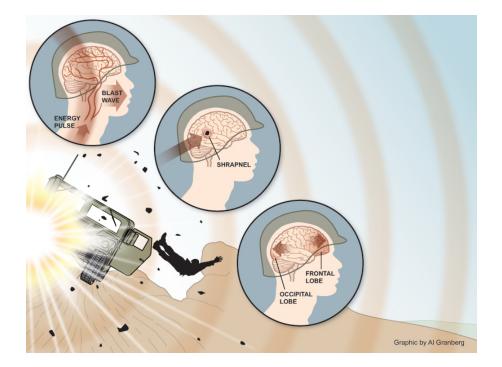
An interview with Dr. Okie can be heard at www. nejm.org.

Sergeant David Emme, a supply officer with a U.S. Army Stryker Brigade, was stationed at a submachine gun on a truck rolling through northern Iraq last November, in a convoy transporting Iraqi volunteers to Mosul for military training. As they entered the town of Talafar, Emme noticed that the streets were unusually quiet: no children were outdoors running toward the vehicles demanding sweets. Emme got on the radio and warned others in the convoy: "Something might happen. They might have some plan for us." Moments later, as they slowed at a traffic circle, an improvised explosive device (IED) went off right next to Emme's truck, knocking him out.

Emme's version of what happened next is patched together, from his own memories and what like, 10 days later," he recalled. others told him later. "I remember waking up and wondering who the hell I was, where the hell I was, weight armored vehicle.

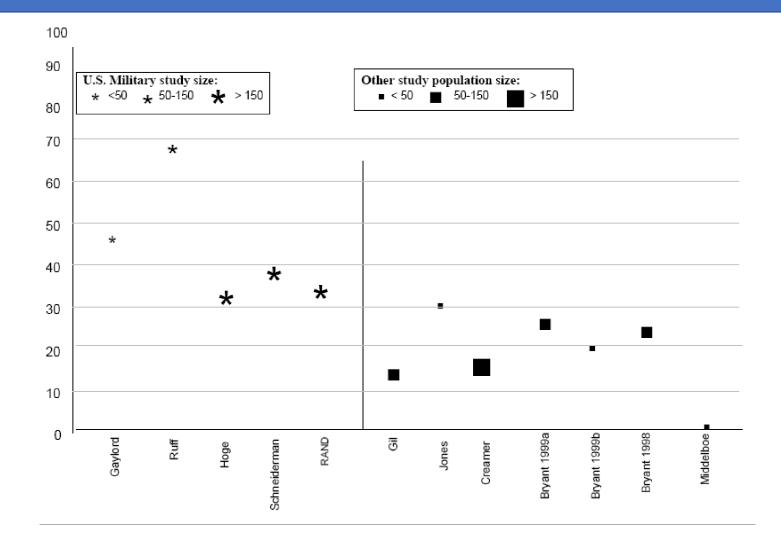
The blast wave and fragments from the explo-

Sergeant David Emme.


"The next time I come to, I'm at Walter Reed -

Emme spent about six days in the intensive care unit, sometimes mistaking nurses for CIA agents and why can't I see or hear? My soldier was scream- or believing he was back in Baghdad. Then he was ing for me to get out of the truck and I told him no, transferred to a room in ward 58, the neuroscience because it hurt too much. So he literally threw me unit at Walter Reed Army Medical Center in Washout of the truck and guided me to a Stryker," a light- ington, D.C. At some point, he became alert enough to realize that he was having difficulty speaking.

"I called for the nurse. . . . I kept on just trysion had blown out Emme's left eardrum, fractured ing to say something, but I couldn't really say anyhis skull, injured his left eye, and caused a severe thing," Emme recalled. The nurse asked him quescontusion in the left frontotemporal area of his tions and waited patiently for him to answer. brain. His fellow soldiers rushed him to the nearby Finally, she left to check on other patients. About a military base, where he partially regained his vision half hour later, she returned, and Emme managed


Source: Okie S., NEJM, 352(20): 2043-2047, 2005

Traumatic Brain Injury

Estimated that about 20% of OEF/OIF/OND Veterans incurred TBI (Rand, 2008)

Traumatic Brain Injury and Posttraumatic Stress Disorder

Carlson et al., J Head Trauma Rehabil, 2009

Relative Risk of Psychiatric Diagnosis by TBI <u>Screening</u> Status in VISN 23 Veterans, 2009

		Negative Screen (n = 10,992)	Positive Screen (n = 2,278)	
	Diagnoses	°/o	%	RR (95% CI)
	Any	42.1	86.0	2.0 (1.99-2.10)*
	Anxiety Disorders	13.5	28.0	2.1 (1.9-2.3)*
	Adjustment Disorders/ Stress Reactions	13.5	27.0	2.0 (1.8-2.2)*
<	PTSD	18.6	62.5	3.4 (3.2-3.5)*
	Depression	22.0	44.8	2.0 (1.9-2.2)*
	Substance Use Disorders	8.9	20.9	2.3 (2.1-2.6)*
	Psychoses	0.6	1.3	2.1 (1.3-3.1)*
	Other	11.2	44.4	4.0 (3.7-4.2)*
	2+ Diagnoses	25.7	66.8	2.6 (2.5-2.7)*

Carlson et al., J Trauma Stress, 2010

Relative Risk of Psychiatric Diagnosis by TBI <u>Diagnosis</u> in VISN 23 Veterans, 2009

		No TBI Diagnosis (n = 1,437)	TBI Diagnosed (n = 841)	
-	Diagnoses	%	%	RR (95% CI)
	Any	83.1	91.0	1.1 (1.06-1.13)*
	Anxiety Disorders	23.2	36.2	1.6 (1.4-1.8)*
	Adjustment Disorders/ Stress Reactions	22.1	35.3	1.6 (1.4-1.8)*
<	PTSD	61.5	64.3	1.0 (0.98-1.12)
	Depression	43.6	46.7	1.1 (0.98-1.18)
	Substance Use Disorders	18.4	25.0	1.4 (1.2-1.6)*
	Psychoses	1.0	1.9	2.0 (0.96-3.98)
	Other	35.0	60.4	1.7 (1.6-1.9)*
	2+ Diagnoses	62.2	74.7	1.2 (1.1-1.3)*

Carlson et al., J Trauma Stress, 2010

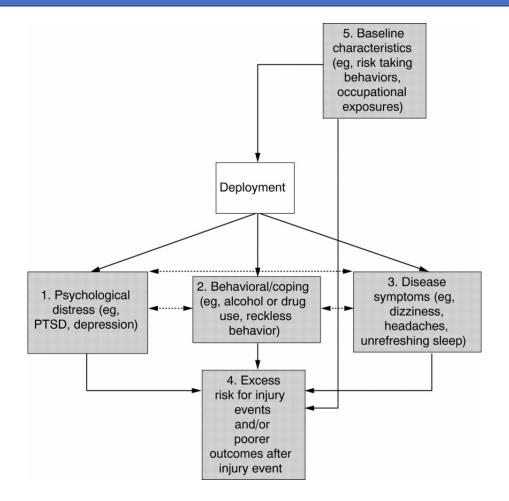
Using ICD-9-CM Diagnosis Codes to Examine TBI

	CDC	VA	VA-Plus
	series ¹	Series ²	Series ³
	⁰∕₀	0⁄0	0⁄0
Accuracy/Concordance	67.7	75.3	75.0
Sensitivity	55.4	70.3	71.8
Specificity	85.4	82.4	79.5

1. ICD-9 codes included 800.xx-801.xx, 803.xx-804.xx, 850-xx-854.xx, and 959.01.

- **2.** ICD-9 codes included those in the CDC series, plus 905.0, 907.0, 950.1-950.3, 310.2, V15.52, and 959.9.
- **3.** ICD-9 codes included those in the VA series, plus 310.0, 310.1, 310.8, 310.9, 780.0x, 802.xx, 830.xx, 873.xx, 908.3, 910.xx, 920.xx, and 959.8.

Carlson et al., Brain Injury, 2013


Ongoing TBI-related Research

- Implementation of PTM: "Chronic Tinnitus among Veterans with and without TBI: Service Needs and Interests" (RR&D SPiRE)
- TBI and Opioids: "Effects of Opioid and Other Psychotropic Drug Exposures on Long-term Outcomes of TBI: Developing Measurement Best Practices" (RR&D SPiRE)
- Epidemiology of TBI: "Longitudinal Effects of Mild TBI and Other Military Exposures on Auditory Functioning in Recently-Discharged Veterans and Active Duty Service Members: CENC Study 1" (DoD/VA CSR&D; CENC PI: Cifu; Study 1 PI: Walker)
- TBI and Community Care: "Community Care Utilization among Post-9/11
 Veterans with Traumatic Brain Injury" (HSR&D IIR Application)

Preventing Veterans' Injuries

Increased Risk of Fatal Injury among Post-deployment Veterans

- Post-deployment Veterans have ~20% increased risk of fatal injury in the first 5 years after deployment
- Mostly unintentional
- Mostly motor vehicular

Source: Bell et al., Inj Prev, 2001

Public Health Model

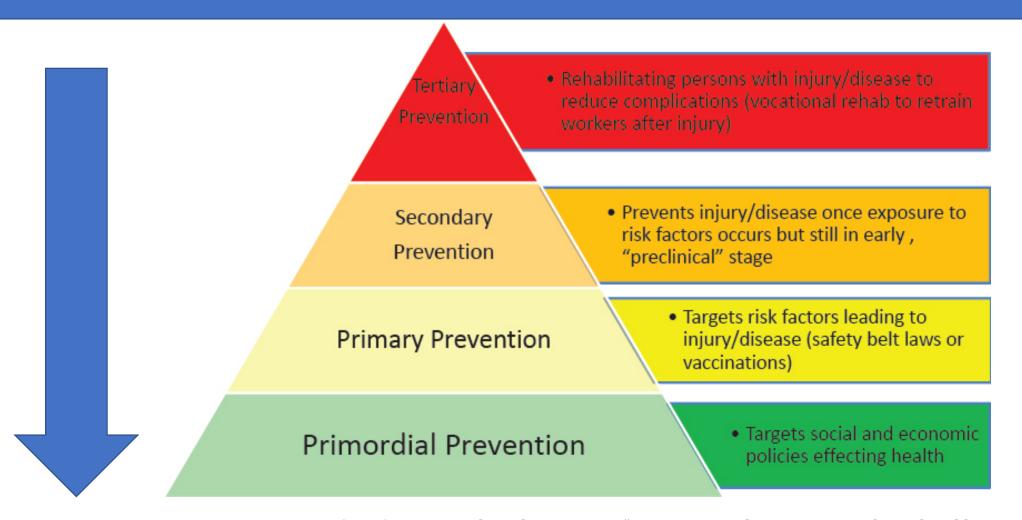


Image: Eisenman D. (2017) In National Academies Press, "Countering Violent Extremism through Public Health Practice: Proceedings of a Workshop."

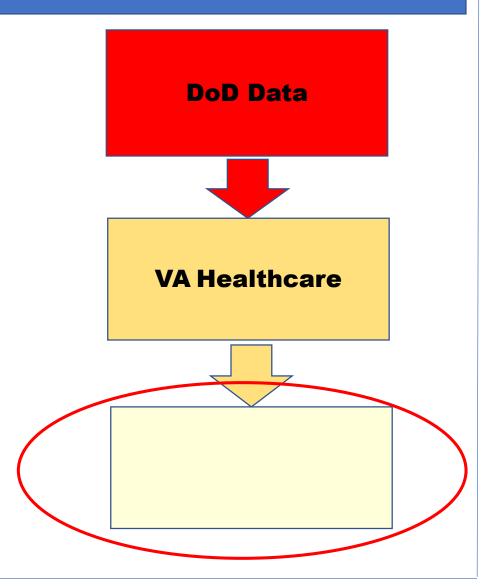
Correlates of Post-deployment Injury among Veterans

		INJURED (n = 348)		IOT = 394)	BIVARIATE MODEL	MULTI-V MODEL	
VARIABLE	n	(popn%)	n	(popn%)	OR (95% CI)	OR (95% CI)	
Screening Measur PTSD screen	<u>res</u>						
Positive	169	(52.0)	120	(32.5)	2.2 (1.4-3.5)	2.1 (1.3-3.5)	\triangleright
Negative	179	(48.0)	274	(67.5)	Reterent	Referent	
Drug/Alcohol Scre	en						
Positive	139	(44.0)	119	(32.8)	1.6 (1.0-2.5)	1.5 (0.9-2.5)	
Negative	209	(56.0)	275	(67.2)	Referent	Referent	
Self-reported Diag	<u>gnoses</u>						
PTSD							
Yes, diagnosed	145	(42.1)	91	(24.1)	2.3 (1.4-3.6)	1.8 (1.1-3.1)	\triangleright
Not diagnosed	197	Source: Bell	ct ₃₀₀ In	^{j P} (7 5.9) ⁰¹	Referent	al., inj Prev. 2001 Referent	
					Carlson	et al., Inj Prev, 2012	

Correlates of Post-deployment Injury among Veterans

		INJURED (n = 348)		NOT = 394)	BIVARIATE MODEL	MULTI-V MODEL
VARIABLE	n	(popn%)	n	(popn%)	OR (95% CI)	OR (95% CI)
Self-reported Diag	noses					
Traumatic brain in	jury					
Yes, diagnosed	18	(6.3)	12	(2.3)	2.8 (1.0-8.0)	1.5 (0.5-5.1)
Not diagnosed	328	(93.7)	379	(97.7)	Referent	Referent
Depression						
Yes, diagnosed	154	(40.9)	79	(18.6)	3.0 (1.9-4.9)	3.4 (1.7-6.6)
Not diagnosed	191	(59.1)	314	(81.4)	Referent	Referent
Receipt of MH The	erapy					
Yes, currently	99	(28.0)	50	(13.0)	3.3 (1.8-5.8)	1.9 (0.8-4.5)
Yes, in the past	118	(30.4)	112	(23.9)	1.9 (1.2-3.2)	1.2 (0.6-2.4)
No	129	641.16e: 1	Bel 22 0a	I., Ir(68ra), 20	001 Referent	Referent

Carlson et al., Inj Prev, 2012


Association between TBI Diagnoses and Inpatient Stays for MVC

	Unadjusted Model	Adjusted Model
VARIABLE	HR (95% CI)	HR (95% CI)
TBI diagnosis	5.6 (4.5-6.9)	4.2 (3.3-5.3)

 Veteran VA users diagnosed with TBI in the first year after deployment were four times more likely to be hospitalized for MVC in 5 years' follow-up than those without TBI diagnoses

Public Health and Veterans

- How we can move farther upstream when we may only have VA data?
- If we could combine health data systems, we could make meaningful comparisons:
 - Veterans to non-Veterans
 - Veterans with certain characteristics (or VA users with certain characteristics) to those without

Public Health Data Systems

- Infectious disease surveillance
- Cancer registries
- Exposure registries
- Behavioral risk factors
- Ambulatory care
- Emergency care/syndromic surveillance
- Medical marijuana
- Medicaid/Medicare

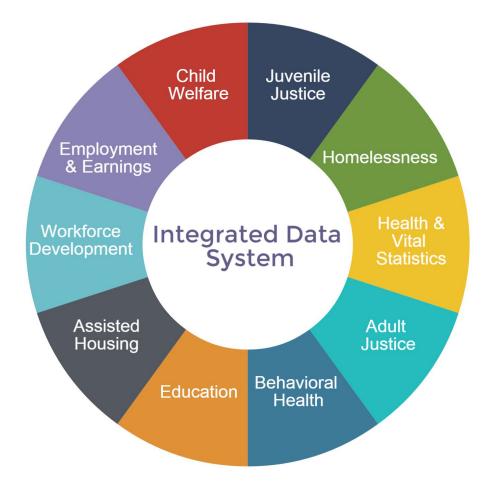
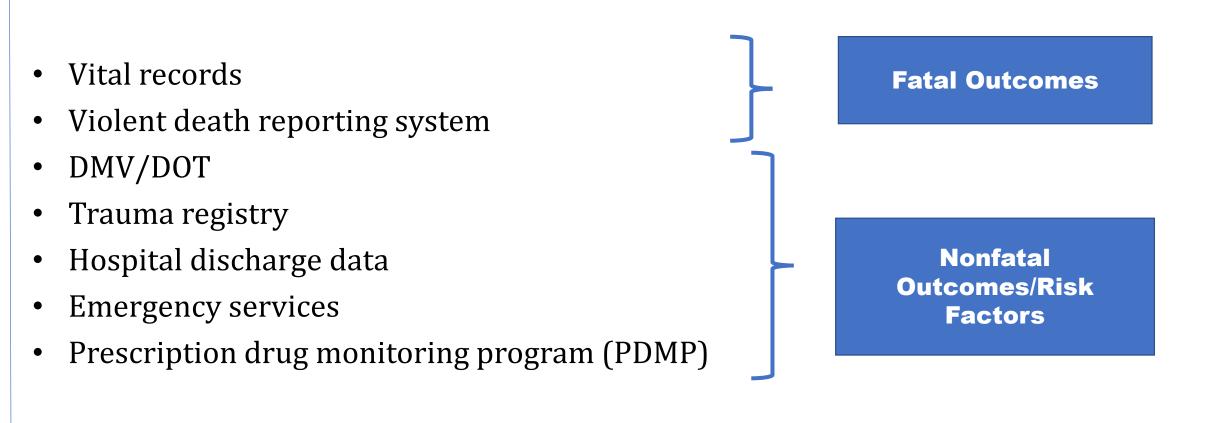



Image: University of Pennsylvania (2018) "Integrated Data Systems" https://www.aisp.upenn.edu/integrated-data-systems

Public Health Data Systems

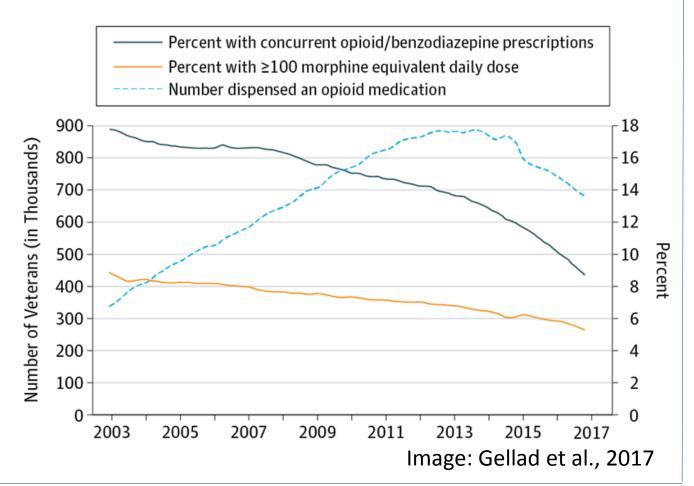
Opioids and Guns as Sources of Veterans' (Preventable) Injuries

Image: https://www.texasmedclinic.com/prescription-opioidaddiction/

Veteran Opioid Prescribing and Overdose Risk

- Veterans who use VA healthcare have twice the risk of fatal drug overdose than non-Veterans.¹
- Large proportions of Veterans receive long-term opioid therapy (LTOT) for chronic pain.^{2,3}
- Among Veterans on LTOT, high proportions also receive BZDs.^{2,3}
- Veterans receiving LTOT and/or BZD within VA may <u>also</u> receive opioid and/or BZD prescriptions from non-VA prescribers.
- Post-9/11 Veterans frequently diagnosed with pain, receive high levels of opioids, and prevalent concurrent opioid/benzodiazepine use.^{3,4}

¹ Bohnert et al., Med Care 2011.


- ² Dobscha et al., Clin J Pain 2011.
- ³ Seal et al., JAMA 2012.

⁴ Macey et al., Pain Med 2011.

VA Opioid Safety Initiative

- Multifaceted approach to decrease unsafe opioid prescribing practices
- Nationally, between 2012 and 2014¹:
 - 16% reduction in the number of Veterans receiving MMEs >100
- Between 2012 and 2016²:
 - 25% reduction in Veterans receiving opioids; 36% reduction in Veterans receiving MMEs >100; 47% reduction in co-prescribed opioids/benzodiazepines

¹ Lin et al., Pain, 2017 ² Gellad et al., JAMA, 2017

Research Questions

- What proportions of Veterans are receiving opioids, benzodiazepines, or other psychotropic medications from **both VA and non-VA healthcare providers**?
- Are there higher risk subgroups?
- How does the Veterans Choice Program (MISSION Act) affect VA/non-VA medication overlap?
- Are dual system users at greater risk of **adverse outcomes**?
 - Fatal or nonfatal overdose
 - Fatal or nonfatal other injuries
 - Treated inside or outside VA system of care
- Do Veterans whose opioids are tapered or discontinued instead receive non-VA opioids?

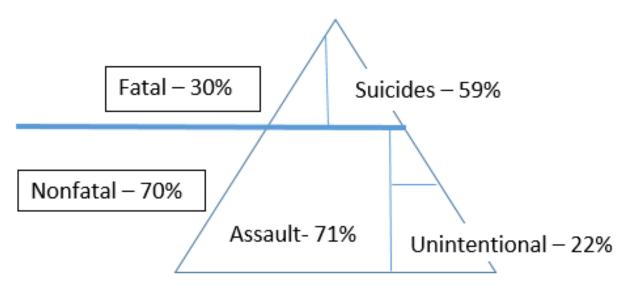
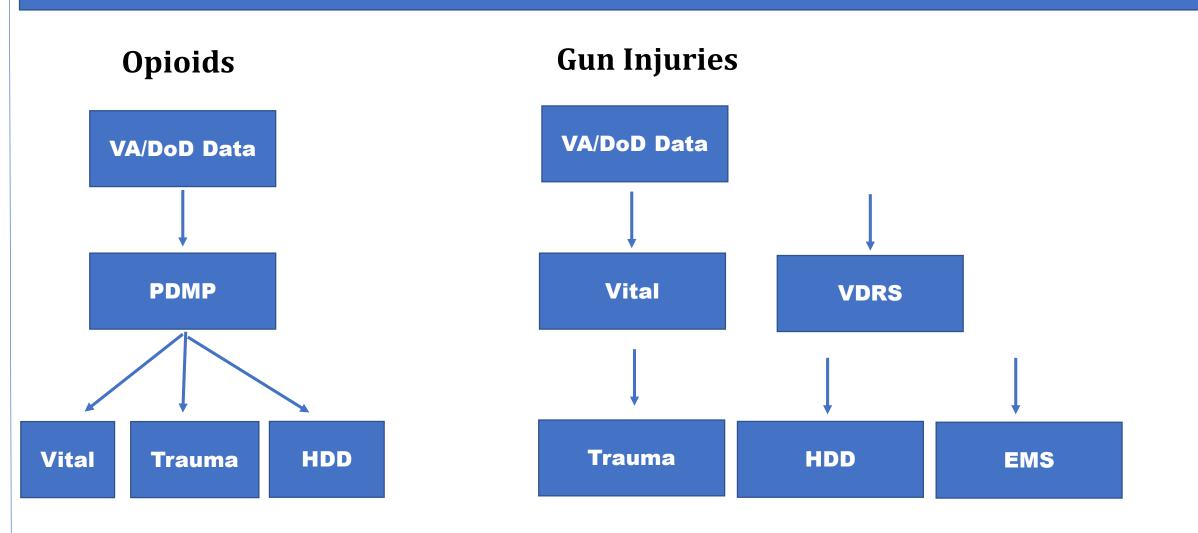

EALTH Ν RES 5 NAG0(BARS 🙄 α BS HA X ш BACKGROUN 2 RIFI LE E E ш HOLE SEMI-AI P STOCK

Image: https://pixabay.com/en/word-cloud-gun-violence-3261119/

Gun Injuries in the U.S.

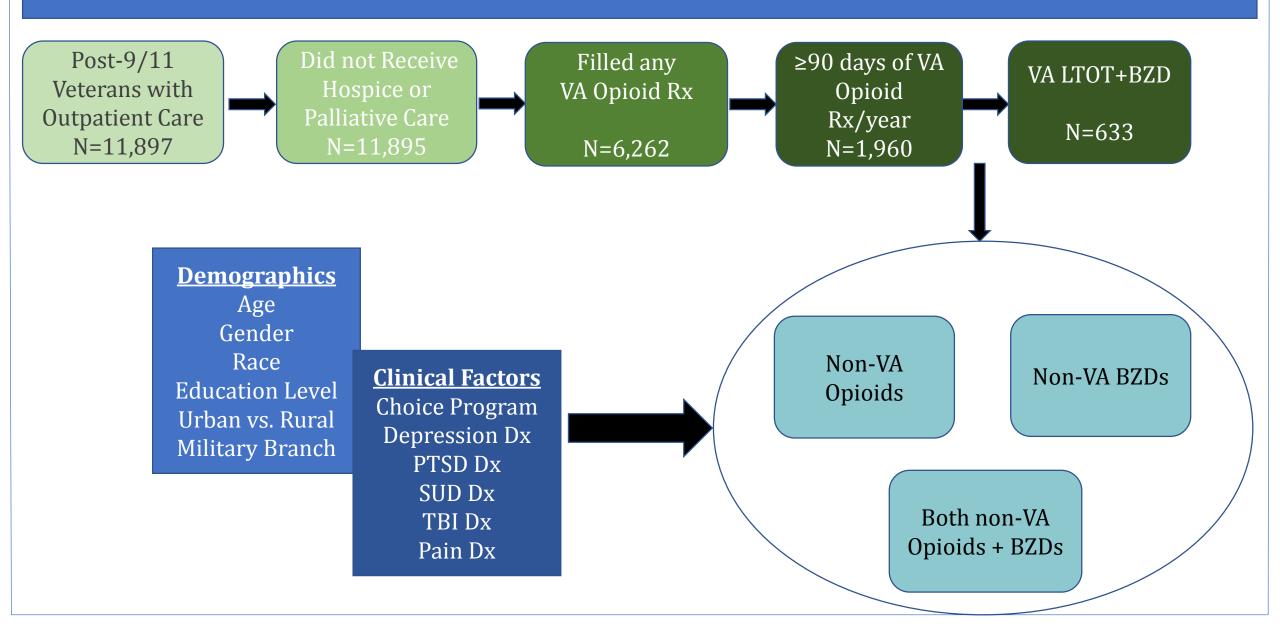
- Firearms are one of the most common causes of **fatal and nonfatal injuries** in the U.S.
- Fatalities comprised 30% of all gun injuries among US adults; 59% of fatal gun injuries were suicide
- Assaults comprised 71% of nonfatal injuries; and unintentional comprised 22%

Fatal and Nonfatal Firearm Injuries in the United States, 2001-2016


Data Source: Centers for Disease Control and Prevention, 2018

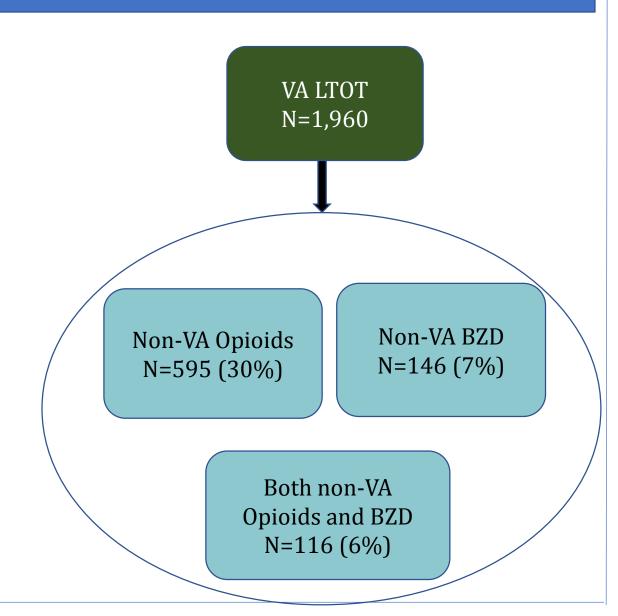
Research Questions

- Why do we have the gun violence problem?
- What can we do about it?
- What is the rate of gun injuries among Veterans relative to non-Veterans?
 - Fatal and nonfatal
 - Intentional and unintentional
- How have rates changed over time?
- What are risk factors for gun injuries?
- Among VA users, what upstream health factors might predict gun injuries
 - Does **mental health** predict risk?
 - Are there clinical touchpoints where risk could be addressed?


Methods

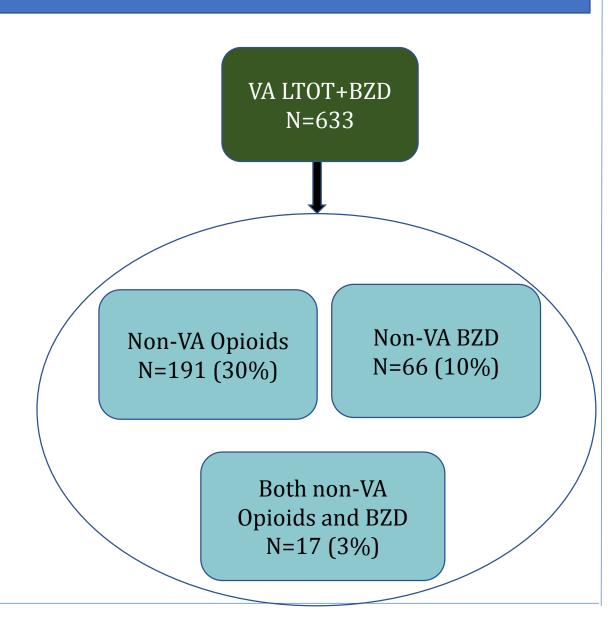
Linkage of VA to State Datasets

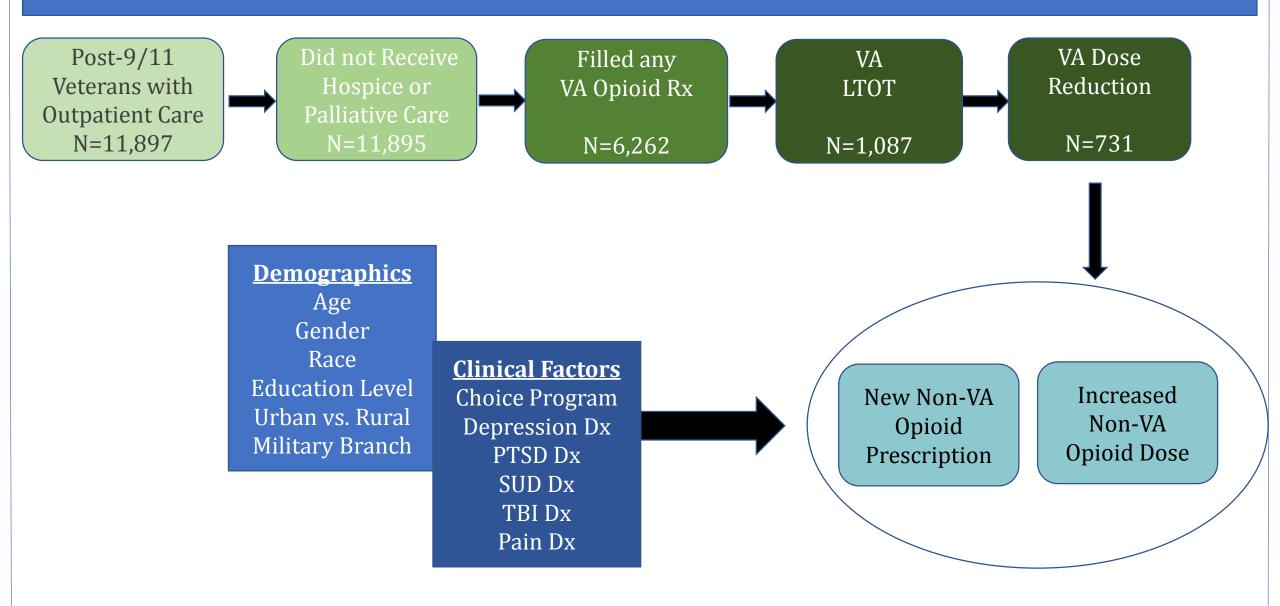
Results – Opioid Injuries


Study Population

Prevalence of Concurrent VA/non-VA Prescriptions, 2011-2016

• Among 1,960 Veterans on VA LTOT:


- **30%** had received concurrent non-VA opioids.
- **7%** had received concurrent non-VA BZDs.
- **6%** had received concurrent non-VA opioids and BZDs.


Prevalence of Concurrent VA/non-VA Prescriptions, 2011-2016

• Among 633 Veterans on VA LTOT+BZDs:

- **30%** had received concurrent non-VA opioids.
- **10%** had received concurrent non-VA BZDs.
- **3%** had received concurrent non-VA opioids and BZDs.

Study Population

Prevalence of <u>New</u> Non-VA Opioid Prescriptions

• Among 731 Veterans with VA dose reduction:

	n	%
Received Non-VA Opioids	195	27%
Year-Prior and Year-After (Ongoing)	104	14%
Year-After Only (New)	91	12%
Did Not Receive Non-VA Opioids	536	73%
Year-Prior Only	106	15%
Neither Year-Prior nor Year-After	430	59%

Prevalence of <u>Increased</u> Non-VA Opioid Prescription Dose

• Among 731 Veterans with VA dose reduction:

	n	%
Non-VA Opioids	195	27%
Increased dose	167	23%

Results – Gun Injuries

Gun Injuries among Veterans and Non-Veterans

- 7,191 firearm events from 2007-2016 among Oregon adults
 - 104 (1.5%) Veterans 21.4 events/10,000 population^a
 - 7,087 (98.5%) non-Veterans 18.0 events/10,000 population^b

Characteristic	Veterans	Non- Veterans	Total
Male	103 (99%)	6,038 (85%)	6,141 (85%)
Age (mean, SD)	31.0 (7.4)	46.2 (19.1)	46.0 (19.1)
Fatalities	45 (43%)	4,924 (69%)	4,969 (69%)
Hospital stays	44 (42%)	1,596 (23%)	1,619 (23%)

^a Source: National Center for Veteran Analysis and Statistics, 2018

^b Source: American Community Survey, 2018

Gun Injuries among Veterans and Non-Veterans

• Intent of firearm event

	Fatal (n=4,969)		
	Veterans	Non-Veterans	
Intent	(n=45)	(n=4,924)	
Unintentional	0 (0%)	51 (1.0%)	
Intentional	45 (100%)	4,819 (98.0%)	
Assault	3 (6.7%)	702 (14.3%)	
Self-Inflicted	39 (86.7%)	4,021 (81.7%)	
Legal Intervention	3 (6.7%)	96 (2.0%)	
Undetermined	0 (0.0%)	54 (1.1%)	

	Nonfatal (n=2,222)		
	Veterans Non-Veterar		
Intent	(n=59)	(n=2,163)	
Unintentional	32 (54.2%)	755 (34.9%)	
Intentional	26 (44.1%)	1.296 (59.9%)	
Assault	15 (25.4%)	930 (43.0%)	
Self-Inflicted	7 (11.9%)	282 (13.0%)	
Legal Intervention	4 (6.8%)	84 (3.9%)	
Undetermined	1 (1.7%)	112 (5.2%)	

Conclusions

13 Years In...

- Follow your passion
 - Veterans' well-being!
 - Health sciences
- Explore new areas
- Explore new collaborations
- Take some risks
- Mentorship is everything!

Acknowledgements

VA Mentors

Nina Sayer, PhD Joan Griffin, PhD David Cifu, MD Daniel Storzbach, PhD James Henry, PhD Linda Ganzini, MD and Steven Dobscha, MD *So many others!*

<u>Sites</u>

CCDOR, Minneapolis VA CIVIC, Portland VA NCRAR, Portland VA

Funders

VA HSR&D – CDA 08-025 VA RR&D and CSR&D DoD and NIMH

Thank you!

kathleen.carlson@va.gov