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Introduction 



Overview 

Regression discontinuity designs (RDDs or RDs) are a 

quasi-experimental design. With the right setup, the estimates 
are causal. 

Today 

• Fundamentals 
• How to interpret 
• How to implement 
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POLL QUESTION 

What is your interest in regression 

discontinuity design? 

• Reading and interpreting other papers 

• Use on a project 
• Expand analytic toolkit 
• Just curious 
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Basics 



Basics 

• When RCTs are not feasible, often have many confounders, 
some observed and some not 

• This generates omitted variable bias 
• Adjustment on observables, matching, and machine 
learning cannot get around this issue 
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Basics 

• Instead, use a threshold or cutoff to determine treatment 
status 

• Treatment = exposure to a policy 
• No treatment = no exposure to a policy 

• Under the right circumstances, individuals will be very 
similar close to the threshold. However some of the 

individuals will not be treated and some will be treated. 
• Comparing these very similar individuals around the 

threshold → We can get the causal effect of a policy/rule. 
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DAG/Conceptual Model 

Figure 1: X (the thing we care about) is related to both the treatment 
(D) and the outcome (Y). With an RD, as X gets close to the cutoff, 
treatment and control units overlap, and X only affects Y through the 
treatment. 
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• Individuals just below 21 years are very, very similar to
those just above 21 years. The only thing that differs
between these groups is legal access to alcohol.

• By comparing the mortality rate of individuals just below
age 21 to those just above 21, with the RD approach, we can
estimate the causal effect of alcohol access on mortality.

• Best shown with figures...

Example 

• Policy = Legal access to alcohol. 
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Example 

Treatment effect equals the jump or “discontinuity” in the 

graph at the threshold (21 years). 

Figure 2: Mortality rate due to motor vehicle accidents 
26
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• It is attractive because of its simplicity: it is just OLS, and
the figures tell the story

• Not event study/interrupted time series

Basics 

RD requires a lot of data and a specific cutoff, but luckily we 

tend to like rules and have many policies we can study. 

• Can be applied to a lot of scenarios: School entry age, 
elections, test scores, newborn birth weight, and Medicare 

eligibility age (65). 
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• A cutoff that is:

• non-manipulable
• arbitrary

• Data to test that these requirements hold
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Interpretation 



Interpretation 

Let’s look at some examples to be able to read and interpret 
RD estimates, starting with the Age 21 threshold. 
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Example - Age 21 
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Example - Age 21 

• Estimates are on ’Over 21’: This is the size of the jump 

• Column (4) - At age 21, there is an increase of 17.2 ED Visits 
per 10,000 people for alcohol intoxication 

• See figure, black line 
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• This means that there is a ≈32 percent increase in ED visits
for alcohol intoxication at age 21

Example - Age 21 

• The constants give the ”just before” estimate. Useful for 
interpretation. 

• Column (4) - For those almost age 21, there the ED visit rate 
of 54.1 per 10,000 people for alcohol intoxication 
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Example - HIV Care (Bor et al. 2012) 

Figure 3: The proportion continuing clinical care after 12 months 
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Example - HIV Care (Bor et al. 2012) 

Column (2) gives the estimate of the jump from the figure –> 

17.9 percent more people at retained at 12 months, a 56 

percent change 
14 



Implementation 



What do we need? 

Main requirements: 

• A continuous measure (sometimes called the ”running” or 
”forcing” variables) 

• An arbitrary, non-manipulable cutoff 
• A smooth distribution of characteristics besides the 

treatment at this threshold. 
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• Best practice is to plot everything. You want your results
to relatively robust these choices

• Start by plotting the running variable against the outcome

What do we do? 

Plot it! 

• You will need to make a few decisions here 
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Figure 4: Violent crime rate relative to Age 21 
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Bins 

• ”Bin” the data to make the figure clean 

• Important: Make sure the bin does not span the threshold 

• Do not run regressions on the binned data 
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Density 

Check to make sure the density is smooth 

• This is called a McCrary Test [McCrary 2008] 
• Want to make sure the distribution of the running variable 
is smooth across the threshold 

• Rounding/Measurement error can render otherwise valid 
applications invalid 
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Density Examples 
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• Use optimal bandwidth procedures, but also try out a
range

• Ideally, want a figure that shows robustness
• Plot the RD estimate as a function of the bandwidth choice

Bandwidth 

Bandwidth is essentially just the range of x you include 

• This is very important in this context 
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Bandwidth Robustness 
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Figure 6: Estimates of the increase at the threshold. Each point is an 
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RD Balance 

Provide evidence that the only thing changing at the threshold 

is the treatment 

• This is similar to a balance check for an RCT 

• To do this, simply change the outcome of interest to 
various characteristics 

• If these do not change at the threshold, we can be 
confident unobservables do not change either 
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RD Balance Example 
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Polynomial Order 

We can use different polynomial orders on the regression 

lines, or use a local linear regression 

• Once again, it is good to try out different choices 
• However, too high is almost always a bad idea 
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Code Snippets and Packages 

R 

my_data <- read_csv("data") 
my_date2 <- my_data %>% 

mutate(run = age - 21) %>% 
mutate(r2 = run^2) %>% 
mutate(r3 = run^3) %>% 
mutate(z = ifelse(run >=0,1,0) %>% 
mutate(interact1 = run*z) %>% 
mutate(interact2 = r2*z) %>% 
mutate(interact3 = r3*z) 

lm(outcome ~ z + run + interact1 + 
r2 + interact2, data=mydata2) 

Packages in R: ’rdd’, ’rdrobust’ 

Packages in Stata: ’rd’, ’rdrobust’ 

Stata 

use "data", clear 
gen run = age - 21 
gen run_sq = run^2 
gen run_cu = run^3 
gen z = 1 if run >= 0 
replace post = 0 if run < 0 
gen run_post = run*post 
gen run_sq_post = run_sq*post 
gen run_cu_post = run_cu*post 

reg outcome z run run_post 
run_sq run_sq_post 
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Example - Time Permitting 

• From Beland (2015) - Does the party of the state governor 
matter for black-white earnings gap? 

• Data from elections and CPS 

• Use close elections as RD 
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a l _ laborSample1 . dta ” )

Beland (2015) - Governor Races 

l i b r a r y ( t i dyve rse ) 
l i b r a r y ( haven ) 
l i b r a r y ( est imatr ) 
P o l i t i c a l _ laborSample1 <− read_ dta ( ” Documents/113580− V1 / P o l i t i c 
sl imdata <− P o l i t i c a l _ laborSample1 %>% 

dplyr : : se lec t ( black2 , wages2 , marginggg , totalhoursapp , wgt ) 
head ( sl imdata ) 

> head ( sl imdata ) 
# A t i bb l e : 6 x 5 

black2 wages2 marginggg totalhoursapp wgt 
<dbl > <dbl > <dbl > <dbl > <dbl > 

1 0 1 1 4 1 9 . 45 1200 1 6 3 2 . 
2 1 0 45 0 1 7 1 8 . 
3 1 0 45 0 1493 . 
4 0 1649 . 45 320 1 3 2 9 . 
5 0 0 45 0 1426 . 
6 0 0 45 0 1 4 3 7 . 
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Beland (2015) - Governor Races 

# reg1 <− lm_ robust ( totalhoursapp ~ z + marginggg 

# + i n t e rac t 1 , data = sl imdata ) 
agg <− P o l i t i c a l _ laborSample1 %>% 

f i l t e r ( black2 == 1 ) %>% 

f i l t e r ( wages2 >0) %>% 

group_by ( marginggg ) %>% 

summarise (mean = weighted . mean ( totalhoursapp , wgt , na . rm=T ) ) 
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) +
’ ) +
) +

Figure 7: Caption

Beland (2015) - Governor Races 

agg %>% 

ggplot ( . , aes ( x = marginggg , y= log (mean ) ) ) + geom_ point ( ) + 

s ta t _smooth ( data = . %>% f i l t e r ( marginggg <0) , method = ’ lm ’ 
s ta t _smooth ( data = . %>% f i l t e r ( marginggg >=0) , method = ’ lm 

xlab ( ” Margin ␣ in ␣ Gubernator ia l ␣ E lec t i on ␣\n( >0 ␣means␣Dem␣win ) ” 
ylab ( ” Log␣ of ␣Hours␣Worked␣\nfor ␣ Black ␣Workers ” ) + 

theme_ c l a s s i c ( ) 
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Takeaways 

• Make a lot of figures 
• Try out different choices 
• Show robustness 

32 



Conclusion and Questions 



Conclusion 

• RD gives a way to get causal estimates when an RCT is not 
feasible 

• Leverage a continuous measure with an arbitrary cutoff to 

determine treatment 
• Need to show: 

• Balance across the threshold 
• A smooth density 
• Robustness to parameters 
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QUESTIONS 

Or via email: liam.rose@va.gov 
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Resources 

• Mastering ’Metrics - masteringmetrics.com 

• Book and associated resources 
• Mostly Harmless Econometrics - more advanced version 

• Causal Inference: The Mixtape -
https://mixtape.scunning.com/ 

• A brilliant guide to practical causal methods. The online 
version is free! 

• Lee, David S., and Thomas Lemieux. (2010). ”Regression 

discontinuity designs in economics.” Journal of economic 
literature. 

• Jacob, R., Zhu, P., Somers, M. A., & Bloom, H. (2012). A 

Practical Guide to Regression Discontinuity. 

https://mixtape.scunning.com
https://masteringmetrics.com
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