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Independent Variables
 Regression models make several 

assumptions about the independent 
variables

 The purpose of this talk is to examine 
some of the more common problems, and 
some methods of fixing them

 Focus on things that not be covered in 
standard MPH-level regression classes



Outline

 Heteroskedasticity

 Clustering of observations

 Data Aggregation

 Functional form

 Testing for multicollinearity



Heteroskedasticity

Yi = β0 + βX + εi

 Assumes that the error terms are 
independent of xi.  Common pattern, as x 
gets bigger, e gets bigger.



Heteroskedasticity

 Biased standard errors

 Parameter estimates unbiased, but 
inefficient



Heteroskedasticity

 Simple solution, “robust” option in Stata 
uses Huber-White method to correct 
standard errors.
 May also consider transformation of 

variables, e.g., log(X) instead of X as a 
RHS variable.



Clustering

Yi = β0 + βX + εi

Assumes that the error terms are 
uncorrelated

 Clustering is a common problem, for 
example, patients are clustered within 
hospitals



Clustering

Yi = β0 + β1x1 + β2x2 + εi
 x1 is a patient level variable, and x2 is a 

hospital level variable
 Regression assumes there are as many 

hospitals as patients
 Result, the standard errors for β2 are too small, 

no effect on parameter estimate.



Correcting for Clustering

 Generalized Estimating Equations (GEE) 
or other hierarchical methods can be used
 Alternatively, Stata “cluster” option uses 

a Huber-White correction of the standard 
errors.  
 Both methods can yield essentially the 

same result, it depends on the data 
structure



Correcting for Clustering

 Hierarchical Linear Modeling.  Method 
of formally incorporating hierarchical 
structures into the model.  
 Can use for non-linear models also.

 Need for HLM, vs. other methods will 
depend on structure of the data.  Often 
very similar answers.



Example of Clustering

 I had a research project that looked at the 
effects of NICU patient volume and 
NICU level on mortality. NEJM 2007. 

 I apologize for not having a VA example, 
but good example where I had the data.



Clustering
 Failure to make this correction happens all 

too often.  It is easy to fix

 Extent of the correction varies with sample 
size, and with the number of clusters, relative 
to the number of observations.

 With big samples, the effects are fairly small.  
My example, N>48,000, >200 hospitals, 10 
years of data, with repeat observations.



Example of Clustering
Level of Care/VLBW volume OR 95% C.I.         unadjusted

Level 1 ≤10 VLBW infants 2.72** (2.37, 3.13) 2.40, 3.07

Level 2 11-25 VLBW infants 1.88** (1.56, 2.26) 1.64, 2.15

Level 2 >25 VLBW infants 1.22 (0.98, 1.52) 1.09, 1.36

Level 3B or 3C ≤25 VLBW 1.51** (1.17, 1.95) 1.25, 1.78

Level 3B or 3C 26-50 VLBW 1.30** (1.12, 1.50) 1.17, 1.42

Level 3B, 3C, or 3D 51-100 1.19* (1.04, 1.37) 1.10, 1.29



Data Aggregation
 Many times, have a choice of how to 

organize data
 Data aggregation can matter:

– In general, increased aggregation will 
reduce variance

– Aggregation can also change the 
relationship between the variable of interest 
and the dependent variable



Example of Data Aggregation
 Data from Bartel, Bealieu, Phibbs, 

Stone., Am Econ J: Applied Econ 
2014:6(2):231-259.

 Patient-level regressions, nurse staffing 
measured at different aggregations
– Unit vs. hospital
– Month vs. year



Effect of Data Aggregation, 
Unit vs. Hospital
Hospital Acute Care 

Units
ICUs

HPPD -0.011*** -0.031*** -0.016***

% LPN -0.194* -0.041 0.215

% UAP 0.138* 0.088** 0.217

% Contract 0.180** 0.31*** 0.333***

16



Why Data Aggregation 
Mattered in this Example

 ICUs and Acute Care units are very 
different units on several dimensions.  In 
this case, especially the severity/nursing 
needs of the patients and the levels of 
nurse staffing.  With much higher staffing 
levels, the effects smaller in ICUs.  
Combing them masks bigger effect on 
Acute Care units.



Functional Form

Yi = β0 + βX + εi
βX assumes that each variable in X has a 

linear relationship with Y

 This is not always the case, can result in a 
mis-specified model



You should check for the functional form 
for every non-binary variable in your 
model.  
 There are formal tests for model 

specification, some of which you may 
have been exposed to in classes.  But, 
these tests don’t really show you what 
you are looking at, just that model is mis-
specified.  Further, tend to be fairly week 
tests.



Using Dummy Variables to 
Examine Functional Form

1. Look carefully at the distribution of 
each variable

2. Create a set of dummy variables for 
reasonably small intervals, with no 
excluded category

3. Run model with no intercept



Example of Using Dummy 
Variables to Examine 

Functional Form

 Same NICU dataset as before.  

 Effect of NICU patient volume on 
mortality

 Overall, and within level of care



Example of Using Dummy 
Variables to Examine 

Functional Form
 Graph out the parameter estimates for each 

dummy variable.    
 Gives you a good idea of what the function 

looks like.
 Can use to determine which functional forms 

would be good starting points, or where to 
make the cuts for categorical variables.



Dummy Variable Look 
at Functional Form
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Dummy Variable Look 
at Functional Form
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Example of Using Dummy 
Variables to Examine 

Functional Form
 For some applications you may just want to 

use dummy variables, instead of a continuous 
functional form. This may be especially useful 
when there are complex relationships.  It can 
be very difficult to get a continuous function 
to accurately predict across the entire range of 
values.

 Aside, categorical variables frequently easier 
to present to medical audiences. 



Dummy Variables to Capture 
Complex Functional Forms
Level of Care/VLBW volume OR 95% C.I. 

Level 1 ≤10 VLBW infants 2.72** (2.37, 3.13)

Level 2 11-25 VLBW infants 1.88** (1.56, 2.26)

Level 2 >25 VLBW infants 1.22 (0.98, 1.52)

Level 3B or 3C ≤25 VLBW 1.51** (1.17, 1.95)

Level 3B or 3C 26-50 VLBW 1.30** (1.12, 1.50)

Level 3B, 3C, or 3D 51-100 1.19* (1.04, 1.37)



Multicollinearity
Yi = β0 + β1x1 + β2x2 + εi

 What if x1 and x2 are strongly correlated?  
Regression has trouble attributing effect 
to each variable.  
– Increases standard errors
– Can affect parameter estimates, can even get 

offsetting effects with highly correlated 
variables



Multicollinearity
 Strong simple correlation, you have a problem.  

But, can be hidden problems not detected by 
simple correlations.

 Variance Inflation Factor (“/VIF” SAS, “vif” 
in Stata Regression Diagnostics) measures the 
inflation in the variances of each parameter 
estimate due to collinearities among the 
regressors

 Tolerance, which is 1/VIF
 VIF > 10 implies significant collinearity 

problem



Testing for Multicollinearity

 Look at the simple correlations.  
– General rule of thumb, need to look of r>0.5
– Note, can still have collinearity problems 

with r<0.5 



Example of Correlation and VIF

 Study of nurse staffing and patient 
outcomes.  
– Problem variables. RN Tenure and RN Age
– R=0.46
– VIF range, 18-30, depending on subset
Result, many fewer statistically significant 

results than we expected.  



Fixing multicollinearity

 More observations. As long as there isn’t 
perfect correlation, additional observations 
help.

 Revise data in ways that reduce the correlation

 In nurse staffing example, dropped age from 
model



Example of parameter effects of 
multicollinearity

 Average RN tenure on unit and average 
age of RNs on unit, corr = 0.46
– Tenure only -0.013**
– Age only -0.003 **



Example of parameter effects of 
multicollinearity

 Average RN tenure on unit and average 
age of RNs on unit, corr = 0.46
– Tenure only -0.013**
– Age only -0.003 **
– Both tenure -0.003 ns

Age -0.0051 ns



Multicollinearity

 Strong simple correlation, you have a problem.  
But, can be hidden problems not detected by 
simple correlations.

 Regression, n-space, correlation on each of the 
regression planes can matter. 

 Collin option in SAS, looks at how much of 
the variation in each eigen vector is explained 
by each variable.  Intuitively, the correlation in 
the Nth dimension of the regression.



SAS Collin option

 SAS  Model Y= var1 … varN/collin;
 Continue newborn example
 Birth weight and gestational age very 

correlated.  R=0.56
 Simple model, only BW, GA, Black



Interpreting Collin output

 Condition index >10 indicates a 
collinearity problem

 Condition index >100 indicates an 
extreme problem

 There is strong correlation in the variance 
proportion if 2 or more variables have 
values >0.50.



SAS Collin output
Eigen 
value

Condition 
index

Black BW GA

3.18 1.00 0.02 0.00 0.00

0.77 2.03 0.96 0.00 0.00

0.04 9.27 0.01 0.80 0.02

0.001 18.41 0.00 0.39 0.98



Fixing multicollinearity,
NICU example

 Used dummy variables for BW in 100g 
intervals to 1000g, then 250g intervals.

 Separate BW dummies for singleton males, 
singleton females, and multiple births,

 Gestation in 2 week intervals.
 Max condition index < 8, i.e. no serious 

collinearity problem.  
 Model predictions also improved.



Dummy Variables To Fix 
Collinearity
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