# Impact of Repeated Exposure to Low-level Blast on Health and Performance in Military Personnel: A Holistic Approach

Oshin Vartanian, Ph.D. Ann Nakashima, P.Eng. Shawn Rhind, Ph.D. Catherine Tenn, Ph.D.





#### **Overview**

- History and early aims of DRDC's blast research program,
- Review two sets of completed CAF studies,
  - 1. CANSOFCOM breachers (2011-2015),
  - 2. CFSME breachers (2015-2018).
- Current ongoing research with CSOR (2018-present),
  - Cross-sectional comparison of breachers and snipers vs. controls,
  - Longitudinal health monitoring study.
- Overall conclusions and future directions.

**CAF** = Canadian Armed Forces

**CANSOFCOM** = Canadian Special Operations Forces Command

**CSOR** = Canadian Special Operations Regiment

**CFSME** = Canadian Forces School of Military Engineering

**DRDC** = Defence Research and Development Canada



#### History and early aims of DRDC's blast research program

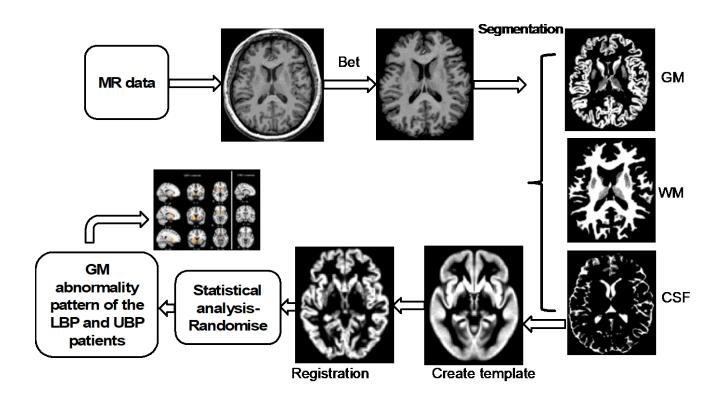
- In 2011 DRDC researchers were asked to investigate the impact of repeated exposure to low-level blast among CANSOFCOM breachers.
- *Mature* CANSOFCOM breachers were exhibiting symptoms consistent with reports of blast-induced mild TBI:
  - Memory impairments,
  - Sleep disturbance,
  - Irritability and impairments in mood,
  - Headache.
- Research aim: Establish a set of measures that exhibit sensitivity to the effects of repeated exposure to low-level blast among CANSOFCOM breachers in the context of annual breaching training exercises (i.e., 4 years).
  - Control group: Non-breacher sex- and age-matched CAF controls.



# CANSOFCOM breachers (2011-2015): Study design

| Baseline                                        | Post-training                                                                             |       |
|-------------------------------------------------|-------------------------------------------------------------------------------------------|-------|
| <ul><li>Background health</li><li>MRI</li></ul> | <ul><li>Neurocognitive testing</li><li>Balance + ataxia</li><li>Postural tremor</li></ul> | - MRI |
| × × · · · · · · · · · · · · · · · · · ·         | balance task                                                                              |       |
|                                                 |                                                                                           |       |

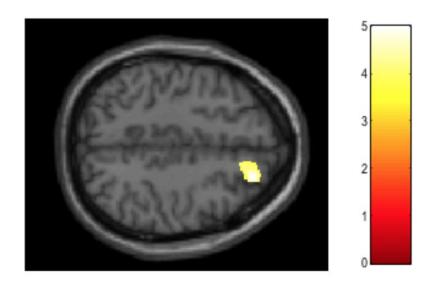
*n* (16 [Year 1], 20 [Year 2], 20 [Year 3], 14 [Year 4]




#### **CANSOFCOM** breachers (2011-2015): Neuropsychological results

- Rivermead Post Concussion Symptoms Questionnaire:
  - 1. RPQ3 (early symptoms: headache, dizziness, nausea/vomiting),
  - 2. RPQ13 (late symptoms: sleep disturbance, fatigue, restlessness),
  - 3. Cognitive symptoms,
  - 4. Emotional symptoms.
- RAND SF-36:
  - Physical functioning,
  - 2. Role limitation due to physical health,
  - 3. Social functioning,
  - 4. Energy/fatigue,
  - 5. General health.
- Short Musculoskeletal Function Questionnaire
  - Dysfunction Index: Perceptions of functional musculoskeletal performance.




# CANSOFCOM breachers (2011-2015): MRI VBM analysis





# CANSOFCOM breachers (2011-2015): MRI VBM results

Superior frontal gyrus Brodmann Area (BA) 8



Vartanian et al. (2021)



#### **CANSOFCOM** breachers (2011-2015): Conclusions

- Chronic (long-term) exposure to blast is associated with alterations in:
  - Neuropsychological functioning,
  - Brain structure (grey matter volume).
- No changes were detected on any measure as a function of acute exposure to blast—either pre-post training or in the field.



#### **CFSME** breachers (2015-2018)

- In 2015 DRDC researchers were asked to investigate the impact of repeated exposure to low-level blast among CFSME breachers.
- As was the case with mature CANSOFCOM operators, mature CFSME breachers were exhibiting symptoms consistent with reports of blast-induced mild TBI:
  - Memory impairments,
  - Sleep disturbance,
  - Irritability and impairments in mood,
  - Headache.
- The emphasis was on the effects of chronic (long-term) exposure to blast.



## **CFSME** breaching environment (2015-2018)



A naturalistic study using B3 gauges demonstrated that approximately 12% of blast events exceeded the 3 psi safety threshold in the CAF *Tactical Breaching Manual* (Vartanian et al., 2015).



# CFSME breachers (2015-2018): Study design

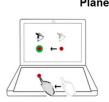
Breachers and range staff (n = 19)

Sex- and age-matched CAF controls (n = 19)

- Background health
- Neurocognitive testing
- Balance + ataxia
- Postural tremor
- Hearing
- Blood
- Visuomotor integration

















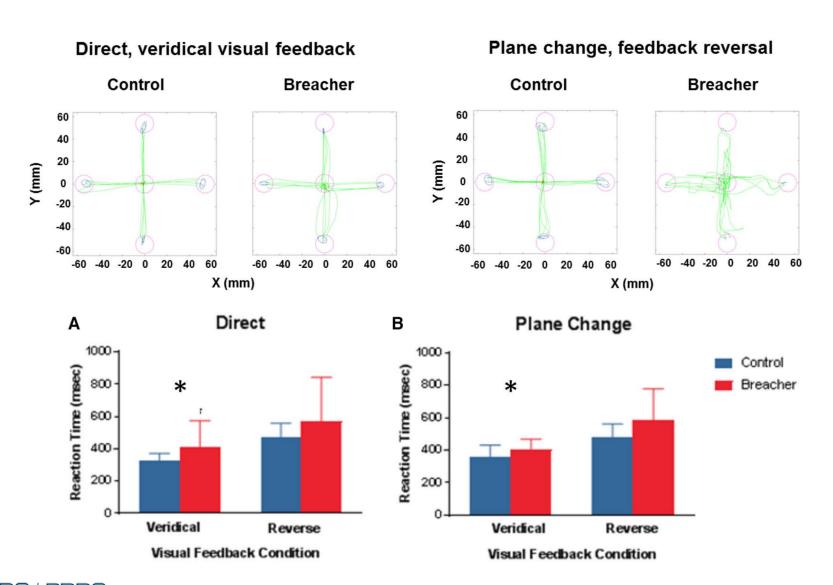



Nakashima et al. (2021), Vartanian et al. (2020)



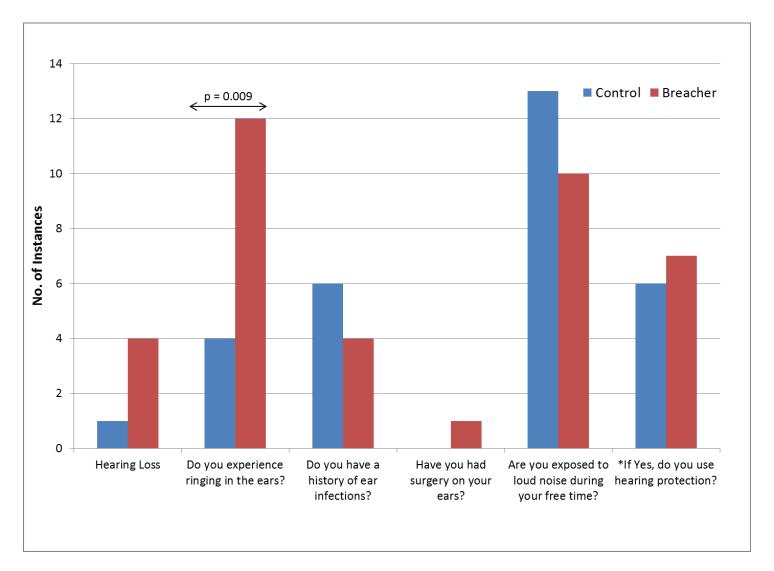
# CFSME breachers (2015-2018): Prior head injury

| Variables               | Breachers/range staff (n = 19) | CAF controls<br>(n = 19) | Mean difference<br>(95% CI)        | Bootstrap ratio | Р      |
|-------------------------|--------------------------------|--------------------------|------------------------------------|-----------------|--------|
| Concussion              | 8 (44.4)                       | 5 (26.3)                 | 21 (-5.3-47.4)                     | 1.5             | 0.088  |
| Physical impact to head | 9 (47.4)                       | 11 (57.9)                | -10.4 (-36.8-15.8)                 | 0.7             | 0.402  |
| MVA                     | 14 (73.7)                      | 9 (47.4)                 | 2.6 (-5.3-52.6)                    | 1.7             | 0.066  |
| Fallen as child         | 8 (42.1)                       | 6 (31.6)                 | 10.4 (-10.5-31.6)                  | 1               | 0.206  |
| Physical fight          | 13 (68.4)                      | 15 (78.9)                | <b>-10.6</b> ( <b>-31.6-15.8</b> ) | 0.9             | 0.258  |
| Blast exposure          | 19 (100)                       | 2 (10.5)                 | 89.2 (73.7–100)                    | 12.5            | <0.001 |




## CFSME breachers (2015-2018): Neuropsychological results

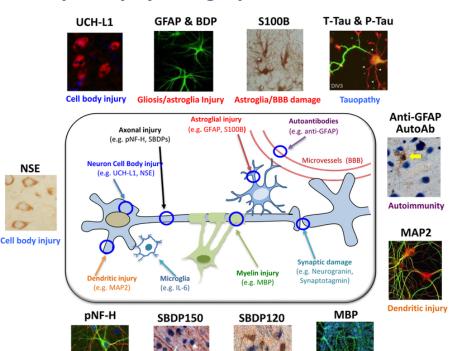
- Rivermead Post Concussion Symptoms Questionnaire:
  - 1. RPQ3 (early symptoms: headache, dizziness, nausea/vomiting),
  - 2. RPQ13 (late symptoms: sleep disturbance, fatigue, restlessness),
  - 3. Cognitive symptoms,
  - 4. Emotional symptoms,
  - 5. Somatic symptoms.
- RAND SF-36:
  - Energy/fatigue.
- Short Musculoskeletal Function Questionnaire
  - Dysfunction Index: Perceptions of functional musculoskeletal performance.




## CFSME breachers (2015-2018): Visuomotor integration



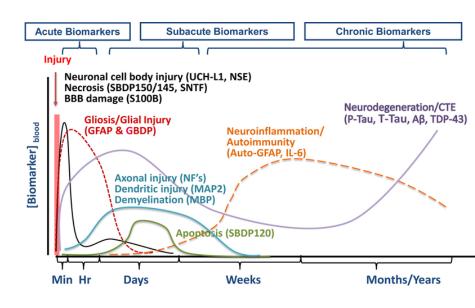



# CFSME breachers (2015-2018): Hearing loss and tinnitus





# **CFSME** breachers (2015-2018): Neuroproteomic Biomarkers


# Major brain biomarkers linked to different pathophysiologic processes in TBI.



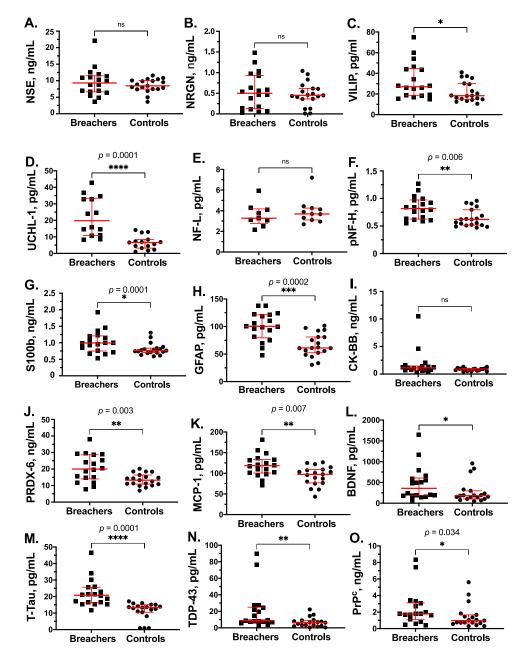
Wang, K.K. et al. Expert Rev Mol Diagn 18, 165-180; 2018.

Demyelination

# A continuum of protein biomarkers in tracking different phases of TBI.



#### **ImmunoAssay Platforms**



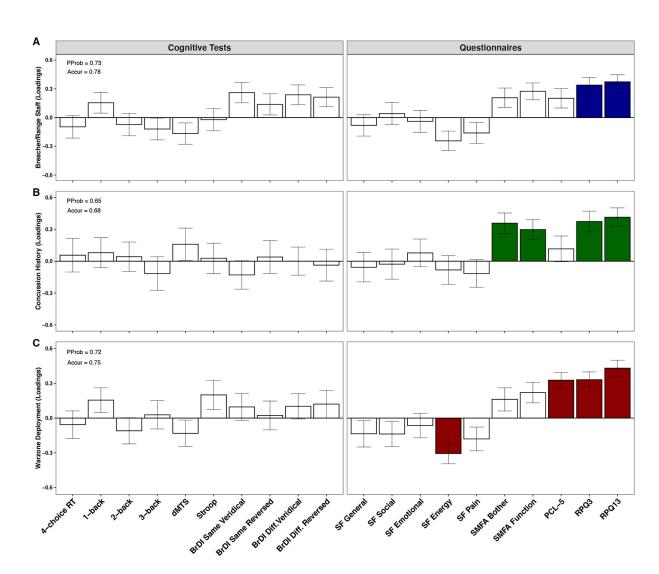



**Axonal injury** 

#### **CFSME** breachers (2015-2018): Neurological Biomarker Profiles








# CFSME breachers (2015-2018): Multivariate analysis (PLSDA)

**Breaching** 

Concussion

Warzone deployment





#### **CFSME** breachers (2015-2018): Conclusions

- Exposure to blast is associated with alterations in:
  - Neuropsychological functioning,
  - Visuomotor integration,
  - Hearing,
  - blood biomarkers
- Measurements of blast overpressure collected during courses demonstrated that up to 10% of blast events for range staff and up to 32% of blast events for instructors exceeded 3 psi:
  - Research needed to substantiate current training guidelines.
- The larger context matters:
  - Breaching,
  - Concussion,
  - Warzone deployment.



## **CFSME** breachers (2015-2018): Major outstanding questions

- How can exposure to blast be quantified accurately, and related to clinical outcome measures of interest?
- 2. Are there reliable and valid measures that exhibit sensitivity and specificity to blast effects?
- Is it possible to establish a feasible longitudinal health monitoring program for CAF operators?
  - 1. Canadian Special Operations Regiment (CSOR).



# Research with CSOR (2018-present): Research aims

- Develop an empirical framework for a longitudinal health monitoring program for CANSOFCOM operators—from selection onwards.
- 2. Develop a scientifically valid algorithm for determining when an operator is at an elevated risk of exhibiting blast-induced mild TBI.
- Inform training-related exposure recommendations for operators.







## Research with CSOR (2018-present): Two arms

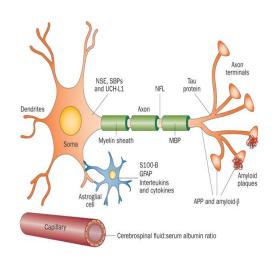
- Cross-sectional study: Assess the effects of blast and/or recoil <u>before</u> and <u>after</u> participation in sniper and breacher training exercises. Data are compared with sex- and age-matched CAF controls with no/minimal exposure.
- Longitudinal health monitoring study: Baseline health and performance testing of SFC (Special Forces Course) candidates at selection, with annual follow-up of successful candidates.







# Research with CSOR (2018-present): Measures


#### 1. Self-report health measures:

- Exposure history,
- · Background health,
- Musculoskeletal function,
- Mental health,
- · Sleep.

#### 2. Neurocognitive testing:

- Choice reaction time,
- Short-term memory,
- Working memory,
- Executive functions.
- 3. Blood and saliva sampling.







#### Research with CSOR (2018-present): Measures (cont.)

#### 4. Hearing:

- Audiometry and hearing in noise (digits test),
- Self-reported tinnitus, hearing difficulties.



#### 5. Balance and ataxia:

- Sharpened Romberg
- · Walking-on-floors-eyes-closed.

#### 6. MRI brain imaging:

- Structural,
- Resting state,
- Task-based (n-back task).







## Research with CSOR (2018-present): field exposure levels

#### Log sheets:

- Number of rounds/blasts, outdoor/indoor,
- Weather conditions,
- Felt recoil,
- Multidimensional fatigue index.

For that **specific** weapon, describe and rate the recoil on the subscales below:

|                                                                                                                     | , |   |   |   |   |   |        |
|---------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--------|
| Semantic Differential Rating Subscale – Select the level on each of the following scales that describes the recoil: |   |   |   |   |   |   |        |
| Weak                                                                                                                | 1 | 2 | 3 | 4 | 5 | 6 | Strong |
| Quiet                                                                                                               | 1 | 2 | 3 | 4 | 5 | 6 | Loud   |
| Short                                                                                                               | 1 | 2 | 3 | 4 | 5 | 6 | Long   |
| Smooth                                                                                                              | 1 | 2 | 3 | 4 | 5 | 6 | Jerky  |
| Soft                                                                                                                | 1 | 2 | 3 | 4 | 5 | 6 | Hard   |

#### Likert Intensity Rating Subscale - Rate the recoil on the following scales:

|              | Slight |   |   |   | Moderate |   |   | Extreme |   |    | NA |
|--------------|--------|---|---|---|----------|---|---|---------|---|----|----|
| Forceful     | 1      | 2 | 3 | 4 | 5        | 6 | 7 | 8       | 9 | 10 |    |
| Noise        | 1      | 2 | 3 | 4 | 5        | 6 | 7 | 8       | 9 | 10 |    |
| Crush        | 1      | 2 | 3 | 4 | 5        | 6 | 7 | 8       | 9 | 10 |    |
| Painful      | 1      | 2 | 3 | 4 | 5        | 6 | 7 | 8       | 9 | 10 |    |
| Duration     | 1      | 2 | 3 | 4 | 5        | 6 | 7 | 8       | 9 | 10 |    |
| Displacement | 1      | 2 | 3 | 4 | 5        | 6 | 7 | 8       | 9 | 10 |    |
| Surprise     | 1      | 2 | 3 | 4 | 5        | 6 | 7 | 8       | 9 | 10 |    |

|     | DRDC mTBI Study – Breacher Course Daily Log                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| ZAP | Date                                                                                                                          |
| - 1 | <u>INSTRUCTIONS</u> : Please list all types of shooting and/or breaching that you completed today, or at the end of each run. |

#### 1. Shooting Range Log

| Weapon/Calibre | Number of<br>Rounds | Location (exterior/interior) |
|----------------|---------------------|------------------------------|
|                |                     |                              |
|                |                     |                              |
|                |                     |                              |

#### 2. Breaching Log

| Calibre/Charge<br>weight | Number of<br>Rounds/Blasts | Location<br>(exterior/interior) | Structure (Door,<br>Window, etc) | Stack Position or<br>Distance From<br>Stack |
|--------------------------|----------------------------|---------------------------------|----------------------------------|---------------------------------------------|
|                          |                            |                                 |                                  |                                             |
|                          |                            |                                 |                                  |                                             |
|                          |                            |                                 |                                  |                                             |
|                          |                            |                                 |                                  |                                             |
|                          |                            |                                 |                                  |                                             |
|                          |                            |                                 |                                  |                                             |
|                          |                            |                                 |                                  |                                             |
|                          |                            |                                 |                                  |                                             |

| 3. Other blast exposures (distraction device, etc) and how many: $\underline{\ }$ |  |
|-----------------------------------------------------------------------------------|--|
|                                                                                   |  |



# Research with CSOR (2018-present): Blast and recoil measures







#### Research with CSOR (2018-present): Interviews with operators

- Select operator interview prompts:
  - Is your occupation physically and mentally demanding? Explain.
  - What health effects have you noticed?
  - What is the impact on your day-to-day life?
  - What training modifications have you made?
  - What do you think will help?
  - What advice would you give to new operators?



## Research with CSOR (2018-present): Current status

- A power analysis determined that the <u>cross-sectional</u> arm of the study requires 50 operators and 50 sex- and age-matched CAF controls:
  - 32 snipers
  - 15 breachers
  - 23 copntrols
- The <u>longitudinal</u> study (SFC students)
  - **2018**: 39 recruits
  - **2019**: 33 recruits
- We expect data collection to be complete by 2022.



#### Biological Aspects of Repetitive Exposure to Low-Level Military Occupational Blast Overpressure



#### **Identify Molecular Biomarkers**

 NeuroProteomic Discovery Panel – ~100 blood-based Neuro-inflammatory proteins tested on new Ella system. TruGenomics Targeted Sequencing -RNAseg + DNA Methylation + miRNA





#### **Assess NeuroInjury Biomarkers**

MSD and SiMO Brain Injury Panel -S100b, NSE, UCH-L1, GFAP, NF-L/H, PRDX-6, BDNF, T-tau, pTau-181, A-beta



Nature Reviews | Neurology

NEED TO OPERATIONALIZE RESEARCH

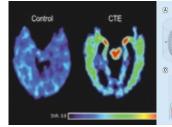


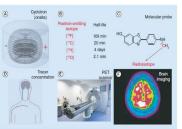
Observational

Cohort

**Studies** 

**Brain Injury** 





#### **Optimization of Health** & Performance

- Pharmacological/non-pharmacological, treatments (e.g., Omega-3 FA, antioxidants, micro/macronutrients).
- Supplementation Study-RCT v. naturalistic.

#### **PET-Tau Imaging Study**

- Clinical investigation in career CANSOFCOM members at CAMH using novel in vivo PET imaging tracers -[18F]-T807 - Flortaucipir to track potential neurodegeneration;
- Examine possible Tau-related pathologies or CTE, as disease mediator and/or treatment target.





#### Overall conclusions and future directions

- There are some psychological and physiological measures that exhibit sensitivity to the effects of repeated exposure to low-level blast in the context of breaching.
  - Potential to develop a machine-learning algorithm for risk assessment.
- Valid and reliable quantification of blast effects is necessary for linking exposure to clinical outcomes.
- Breaching appears to be related to post-concussive symptoms but not mental health outcomes (PCL-5, BSI).
- It is necessary to relate variations in clinical outcome measures to job-specific functional targets.
- Overall, we advocate for a holistic approach that takes into account the larger occupational and operational environment within which blast is experienced for longitudinal health monitoring programs of operators.



Thank you.

**Questions?** 





SCIENCE, TECHNOLOGY AND KNOWLEDGE

FOR CANADA'S DEFENCE AND SECURITY

SCIENCE, TECHNOLOGIE ET SAVOIR
POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

