Decision Analysis: an Overview

Liam Rose, PhD January 2022

Today

- Why to use decision analysis
- Overview of different types of decision analysis
 - CEA, CBA, CCA, BIA
 - Introduce concepts used in upcoming HERC lectures

HERC Cost Effectiveness Analysis Series

Date	Title
1/19/22	An Overview of Decision Analysis
1/26/22	Recommendations for the Conduct of Cost-Effectiveness Analysis from the Second Panel on Cost-Effectiveness in Health and Medicine
2/2/22	Medical Decision Making and Decision Analysis
2/9/22 2/23/22 3/2/22 3/9/22 3/23/22	Estimating the cost of an Intervention VA Costs: HERC versus MCA VA Pharmacy Costs Estimating Transition Probabilities for a Model Sensitivity Analyses for Decision Models
3/30/22	Intro to Effectiveness, Patient Preferences, and Utilities
4/6/22 4/13/22	CEA Alongside a Clinical Trial Budget Impact Analysis

Don't forget to submit your questions throughout!

What is decision analysis?

- A broad definition for making tough decisions
- Ever write down a pro and con list? Like that but with numbers!
- Bring in all available information, even if it is best guesses about relative unknowns

Why engage in decision analysis?

- Trying to solve a problem
- Have a number of interventions to choose from
- No clear answer on which is best
 - With one clearly superior option, decision analysis may be unneeded or trivial
- Inefficiencies and limited resources
 - Cannot simply try every intervention
 - Example: Should I take a new job? Should I buy a new car? Should we expand the ICU? Costly to reverse course!

Why engage in decision analysis?

- Not all "pros" and "cons" are equal:
 - Don't want to just count up the pros and cons
 - Consequences of each pro/con
 - Probability of each pro/con
 - Variation in probability
- Weigh the pros and cons of each intervention to make an informed decision
 - Logical
 - Transparent
 - Quantitative

Pros and cons

Option A:

- 80% probability of cure
- 2% probability of serious adverse event

Option B:

- 90% probability of cure
- 5% probability of serious adverse event

Option C:

- 98% probability of cure
- 1% probability of treatment-related death
- 1% probability of minor adverse event

Opportunity costs

- Choosing one option means forgoing another
 - Due to funding/resources/profit motive
 - Due to mutual exclusivity

Examples:

- Should we hire more staff or engage in more contracting? (limited resources)
- Operative or nonoperative management for condition X? (mutually exclusive)

Recap, Why to use Decision Analysis

- Allocation of limited resources
- Each intervention has pros and cons
- Each intervention is different:
 - Condition/population
 - Cost
 - Health outcome

Advantages of Decision Analysis

Evaluates each intervention using the same measure(s)

- Compare results using the same metric:
 - Costs
 - Cost per Life Year Saved
 - Cost per Quality-Adjusted Life Year (QALY)

Decision Analysis can be applied to...

- Drugs
- Procedures
- Health programs
- Screening
- Vaccines
- Reimbursement decisions
- Etc.

Types of decision analysis

Types of decision analysis

- Cost-effectiveness analysis (CEA)
- Cost-benefit analysis (CBA)
- Cost-consequence analysis (CCA)
- Budget impact analysis (BIA)

Decision Analyses are comparative

CEA, CBA, CCA, and BIA evaluate one option in relation to another

- That other option can be:
 - standard of care
 - "do nothing"
 - another active intervention

Cost-Effectiveness Analysis (CEA)

Ratio of Costs to Health effects

- Health effects can be anything
 - Life-years, cancer cases, number of infections, etc.
- Costs
 - What implementation would cost over a time frame

CEA and ICERs

- Cost-Effectiveness Analyses compare the impact of <u>2 or more</u> interventions
- Result is an Incremental Cost-Effectiveness Ratio (ICER):

$$ICER = \frac{Cost_B - Cost_A}{Health \ Effect_B - Health \ Effect_A}$$

Cost-Utility Analysis

A particular form of cost-effectiveness analysis

Health Effect is a Quality-Adjusted Life Year (QALY)
 QALY is derived from Utility

CEA versus CUA

Both compare 2 or more interventions

Method	Cost-Effectiveness Analysis	Cost-Utility Analysis
Outcome	Δ Cost / Δ Health Effect	Δ Cost / Δ QALY

QALYs and Utilities

- QALY = # of years of life * Utility of life
- Example:
 - # of years of life lived = 5
 - Utility = 0.8
 - QALY = 5 * 0.8 = 4.0
- An (imperfect) method of standardizing the value of life across health states and preferences

Utilities

- Preference for health
 - Not just a measure of health!
- Combine:
 - Health state a person is in
 - Valuation of health state

- Conventionally range from 0-1
 - 0 = death
 - 1.0 = perfect health

Utility Calculations

Variable	Jane's health (0-1)	Jane's valuation (sum to 1)		Joe's Health (0-1)	Joe's valuation (sum to 1)	
ADL	0.8	0.15	0.12	0.8	0.50	0.40
Exercise	0.2	0.40	0.08	0.2	0.10	0.02
Mental Clarity	0.4	0.40	0.16	0.4	0.25	0.10
Emotional well-being	0.9	0.05	0.045	0.9	0.15	0.135
Total		1.0	0.405		1.0	0.655

Utility → QALY

- Jane's utility is 0.405 Joe's utility is 0.655
 - Jane lives for 10 years
 - 0.405 * 10 = 4.05 QALYs
 - Jane lives for 12 years
 - 0.405 * 12 = 4.86 QALYs

- Joe lives for 10 years
 - 0.655 * 10 = 6.55 QALYs
- Joe lives for 5 years
 - 0.655 * 5 = 3.275 QALYs

Advantages of Utilities/QALYs

Incorporate morbidity and mortality into a single measure

- Allows for comparison across disparate strategies
 - Newborn screening versus prostate cancer treatment
 - Early childhood education versus community health centers
 - Programs/interventions being considered may otherwise have very different outcome goals

Disadvantages of Utilities/QALYs

- Eliciting preferences is very hard
 - Time varying
 - Context dependent
 - Information asymmetry
 - Future uncertainty

 Assumptions can be made clear, but it does not make them stable or correct

ICERs in a CUA, Example

$$ICER = Cost_B - Cost_A$$

$$QALY_B - QALY_A$$

	Program A	Program B
Intervention	Mobile text messaging for medication adherence	Diabetes care coordinator
Cost	\$40,000	\$150,000
QALYs	25	35

ICER =
$$\frac{\$150,000 - \$40,000}{35 - 25}$$
 $\frac{\$110,000}{10}$ $\frac{\$11,000}{\text{Cost-Effective}}$

Cost saving

■ Cost-effective ≠ cost-saving!!

Cost-Saving	Cost-Effective
· 1	Costs more, provides proportionally more health
	Costs less, provides proportionally less health

Cost-Effective

Cost-Effective:

 Program B costs more than Program A, but Program B provides proportionally more health benefit than Program A

Proportional?

- ICER is < Willingness to Pay Threshold
- This could be what society is willing to pay, the government, the insurance company, etc.

Willingness to Pay (WTP)

- U.S. –\$50,000/QALY often used
 - Willing to pay up to \$50,000 for one <u>additional</u>
 QALY

- Arbitrary, heavily criticized
 - Not an empirically-derived threshold

Thresholds for WTP

- Panel on Cost-Effectiveness in Health and Medicine does not endorse any WTP threshold
- Recommend to compare your results to a range of thresholds

- NICE (U.K.) does not have an explicit threshold for reimbursement
 - Recommended results are presented using WTP of £20,000 and £30,000

Cost-Benefit Analysis

Cost-Benefit Analysis

- Costs and Effects are expressed entirely in dollar terms
 - Convert health effect → cost

Net social benefit =

Incremental Benefit (cost) – Incremental costs

If Net social benefit is positive, then program is worthwhile

Assigning a dollar value to life

- Willingness to Pay (WTP)
 - Examine revealed WTP or elicit WTP
 - Framing effects, loss aversion, age-related effects, varying levels of disposable income, risky behavior
- Human Capital Approach
 - Use projected future earnings to value a life
 - Commonly used in disability cases

Cost-Benefit Analysis in Healthcare/Medicine

Very rarely used:

- Discomfort of assigning a dollar value to life
- Very hard to encapsulate all costs even in small interventions
 - Patient time, transportation, informal caregiving, etc
- Problems with evaluating quality of life and converting to dollar amounts

Cost Consequence Analysis

Cost-Consequence Analysis

 Compare the costs and consequences (health outcomes) of multiple interventions

 Different from CEA and cost-benefit analysis because each cost and consequence is listed separately

Table I. Example of a cost-consequence tabulation			
Cost components	Drug A	Drug B	
	units costs	units costs	

Direct medical care use/costs

Drug A/B

Other drugs

Physician visits

Hospital stays

Home care

Other medical care (e.g. dialysis)

Direct nonmedical care use/costs

Transportation

Crutches and other equipment

Paid caregiver time

Indirect resource use/costs

Time missed from work for patient

Time missed from work for unpaid caregiver

Time missed from other activities for patient

Time missed from other activities for unpaid caregiver

Total direct and indirect costs

Symptom impact

Patient distress days

Patient disability days

Quality-of-life impact

Quality-adjusted life-years decrement

Quality-of-life profile measure scores

Masukopf et al.

Cost-Consequence Analysis in Decision Making. *Pharamcoeconomics*. 1998. 13 (3): 277-288.

Benefits and Drawbacks of CCA

Advantages

 Draws attention to specific aspects of cost or health outcomes that are most impacted

Disadvantages

- Does not indicate relative importance of various items
- Users may reach different conclusions about which intervention to pursue

Budget-Impact Analysis

Budget Impact Analysis

 Estimate the financial consequences of adopting a new intervention.

- Usually performed in addition to a cost-effectiveness analysis
 - CEA: does the intervention provide good value?
 - BIA: can we afford it?

BIA, example

Drug A has an ICER of \$28,000 per QALY compared with Drug B. It is cost-effective.

Drug B costs \$70,000.

Therefore, Drug A costs \$98,000. There are 10,000 people eligible for Drug A, resulting in a total cost of \$980 million dollars.

BIA tells us

- The true "unit" cost of the intervention
- The number of people affected by the intervention

 An understanding of the total budget required to fund the intervention

CEA versus BIA

	CEA	BIA
Purpose	Does this intervention provide high value?	Can we afford this intervention?

Lecture on BIA on April 13th!

Approaches to Decision Analysis

Methods for decision analysis

Modeling

Measurement alongside a clinical trial

Types and Methods for Decision Analysis

	Measurement alongside a clinical trial	Modeling
Cost-Effectiveness Analysis	X	X
Cost-Benefit Analysis	X	X
Budget Impact Analysis		X

Measurement alongside a trial

"Piggyback" onto an existing RCT

- Collect extra information from patients enrolled in the trial
 - Utilization (use this to assign costs)
 - Utilities
 - (Efficacy and AEs are already being collected)

More on using CEA with an RCT in lecture on April 6th!

Modeling

No real-world experiment exists

- Build a mathematical framework to understand the relationship between inputs and outputs
- Build model structure in software, populate it with inputs (from literature). Run model to derive outputs

- You decide on the boundaries of the analysis
 - Time frame, population, interventions of interest

Modeling versus Measurement

	Measurement	Modeling
Treatments considered	• Only the ones in the RCT (which may include placebo)	• Any of interest – But data also come from RCTs
Advantage	 Design case-report forms Individual-patient data (subgroup analysis) Utilities may be more accurate (treatment and health condition specific) 	 Don't need to wait for a trial to be funded to do your analysis
Disadvantage	 Short time frame – will still have to project beyond the trial Will not provide all of your inputs Utilities come from patient 	 Inputs need to come from similar studies on your population of interest
	perspective, rather than community	

Cost-effectiveness Analysis for Resource Allocation

How is CEA used for decision making?

 Ex-US: Used by NICE (U.K.), PBAC (Australia), CADTH (Canada) for regulatory/market access purposes

 US: Medicare has historically not used costeffectiveness to drive coverage decisions. ACA

Medicare Limits Coverage of \$28,000-A-Year Alzheimer's Drug

Medicare says it will limit coverage of a \$28,000-a-year Alzheimer's drug whose benefits have been widely questioned.

By Associated Press Jan. 11, 2022, at 8:45 p.m.

U.S. Cost-Effectiveness Analysis

- Pharmaceutical companies international markets
- Academia
- Veterans Health Administration

NOT used by FDA or CMS

Summary

- Major types of decision analysis:
 - Budget Impact Analysis
 - Cost-Benefit Analysis
 - Cost-Consequence Analysis
 - Cost-Effectiveness Analysis
 - Cost-Utility Analysis QALYs, a measure of morbidity and mortality
- Operationalize your decision analysis:
 - Measurement alongside a clinical trial, or
 - Modeling
- Cost-effective ≠ cost-saving!

Resources: Decision Analysis and CEA

- Neuman PJ, Saunders GD, Russell LB, Siegel JE, Ganiats TG, eds. Cost-Effectiveness in Health and Medicine. Second Edition. New York: Oxford University Press; 2017.
- Gold MR, Siegel JE, Russell LB, Weinstein MC, eds. Cost-Effectiveness in Health and Medicine. New York: Oxford University Press; 1996.
- Hunink M, Glasziou P, Siegel J, et al. Decision Making in Health and Medicine: Integrating Evidence and Values. Cambridge, UK: Cambridge Press; 2004.
- Muennig P. Designing and Conducting Cost-Effectiveness Analyses in Medicine and Health Care. San Francisco, CA: Jossey-Bass; 2002.

Questions?

liam.rose@va.gov

