

Longitudinal Changes of White Matter Microstructure following Traumatic Brain Injury in U.S. Military Service Members

Ping-Hong Yeh

National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA

DISCLAIMER

The views expressed are those of the authors and do not reflect the official policy of the Uniformed Services University, Department of Army/Navy/Air Force, Department of Defense, or U.S. Government. The identification of specific products, scientific instrumentation, or organizations is considered an integral part of the scientific endeavor and does not constitute endorsement or implied endorsement on the part of the authors, DoD, or any component agency. Additionally, the authors have no conflicts of interest to report.

SCOPES

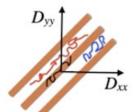
- 1. Basics of diffusion tensor imaging (DTI)
- 2. Discuss the findings of "longitudinal changes of white matter microstructure following traumatic brain injury in U.S. military service members"; Brain Communications 2022; 4(3): fcac132. doi: 10.1093/braincomms/fcac132
- 3. Multimodal approach—neuroimaging, neuropsychological function, blood-based biomarkers, non-Gaussian water diffusion imaging.
- 4. Subject-specific analysis
- 5. Future directions

Background - DTI

1. Diffusion Tensor Imaging (DTI) in each voxel:

B value for gradient *j* (known)

Unit vector representing the direction of gradient (known)

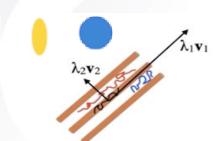

 $S_j = S_0 \exp(-b_j x_j^T D x_j)$

3x3 Diffusion Tensor (unknown)

Signal measured after applying a diffusion gradient j with direction x_i and b-value b_i Signal measured after applying a diffusion x_i and x_i are signal measured after applying a diffusion x_i and x_i a

Signal measured with no diffusion gradient applied

 $\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$

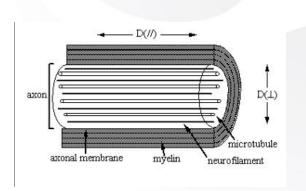


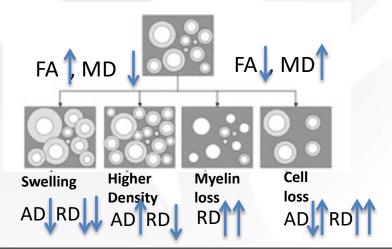
Q: How easily it diffuse? Directional preference? - anisotropic

2. DTI Eigenspectrum:

- Once D is estimated, apparent diffusion coefficient (ADC) along the scanner's coordinate system.
- Diagonalize D to get ADC along a local coordinate system in each voxel, determined by the anatomy

$$\mathbf{D} = \begin{bmatrix} \mathbf{v_1} | \mathbf{v_2} | \mathbf{v_3} \end{bmatrix}^\mathrm{T} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} \mathbf{v_1} | \mathbf{v_2} | \mathbf{v_3} \end{bmatrix}$$
eigenvectors - $\mathbf{v_1}$ =direction of max diffusivity




Background - DTI

DTI metrics

- Fractional Anisotropy (FA) = Variance across eigenvalues in [0,1], a summary measure of microstructural integrity
- Mean Diffusivity (MD) = eigenvalues mean
- Axial Diffusivity (AD, parallel ADC) = The main eigenvalue
- Radial Diffusivity (RD, perpendicular ADC) = The mean of two small eigenvalue.
- **Biological interpretations** different scenarios can have same effects on DTI metrics.

Background - DTI

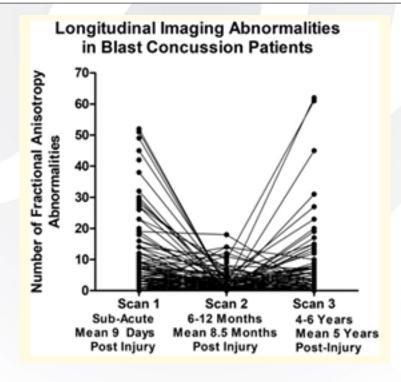
DTI
 metrics
 alterations
 following
 TBI

Cell type or compartment	TBI-related alterations	Tissue environment	Expected diffusion changes	
Neurons	œll loss necrosis and apoptosis	atrophy, cavitation, unmasking	decreased diffusivity and anisotropy, increased anisotropy	
	axonal injury	axon morphology changes including beading and varicosities	reduction in anisotropy and reduction in diffusion, especially in the axial direction	
	neural plasticity sprouting, arborization	increased number of coherent processes and new collaterals	increased anisotropy and/or changed orientation	
Oligodendrocytes	demyelination direct damage, chronic pathology	degenerating or lost	decreased anisotropy	
	myelination repair remyelination	regenerating	normalized anisotropy	
Astrocytes	Hypertrophy	increased number or thickness of glial processes, possibly organized or directional	increased or decreased anisotropy, decreased diffusivity	

	proliferation glial scaring	increased cellularity dense glia, increased organization	decreased diffusivity decreased diffusivity, increased anisotropy
Microglia	phagocytosis	amoeboid stage microglia	increased diffusivity
	neural repair and support	rod-microglia	possible increased anisotropy
Intracellular space	cytotoxic edema	cell swelling	decreased diffusivity

Hutchinson E.B. et al JNR 2017

Longitudinal DTI following TBI

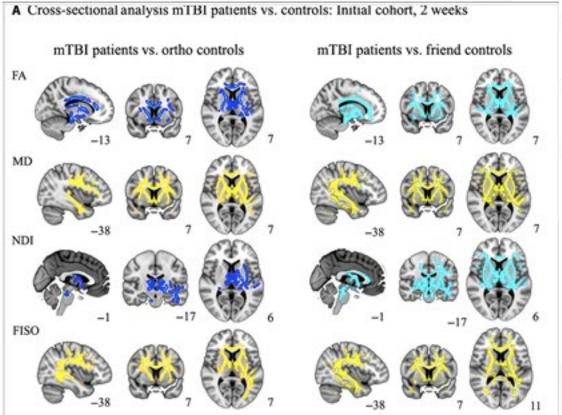

doi:10.1093/braincomms/fcz031

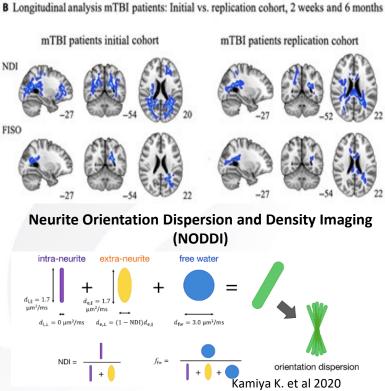
BRAIN COMMUNICATIONS 2019: Page 1 of 13

BRAIN COMMUNICATIONS

Longitudinal neuroimaging following combat concussion: sub-acute, I year and 5 years post-injury

Christine L. Mac Donald, ¹ Jason Barber, ¹ Jalal Andre, ² Chris Panks, ¹ Kody Zalewski ¹ and Nancy Temkin ^{1,3}


Longitudinal DTI following TBI

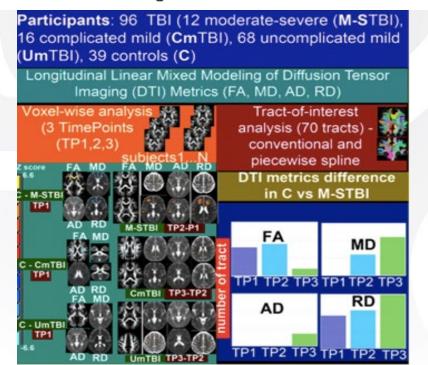

SCIENCE ADVANCES | RESEARCH ARTICLE

NEUROSCIENCE

The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study

E. M. Palacios¹, J. P. Owen², E. L. Yuh^{1,3}, M. B. Wang¹, M. J. Vassar^{3,4}, A. R. Ferguson^{3,4,5}, R. Diaz-Arrastia⁶, J. T. Giacino^{7,8}, D. O. Okonkwo⁹, C. S. Robertson¹⁰, M. B. Stein^{11,12}, N. Temkin¹³, S. Jain¹², M. McCrea¹⁴, C. L. MacDonald¹³, H. S. Levin¹⁵, G. T. Manley^{3,4}, P. Mukherjee^{1,3,16*}, TRACK-TBI investigators[†]

Longitudinal DTI following TBI


https://doi.org/10.1093/braincomms/fcac132

BRAIN COMMUNICATIONS 2022: Page 1 of 15

BRAIN COMMUNICATIONS

Longitudinal changes of white matter microstructure following traumatic brain injury in U.S. military service members

@Ping-Hong Yeh, Sara. M. Lippa, Tracey A. Brickell, 1,2,4,5,6 John Ollinger, Louis M. French 1,2,4 and Rael T. Lange 1,2,3,5,6

143 participants selected from initial 351 participants

Study Design

Interview, injury history taking, initial structural MRI assessment

excluding 37 TBI with unsatisfactory MRI data, 7 equivocal mild TBI, 1 control

96 TBI (12 Moderate-Severe TBI, 16 Complicated Mild TBI, 68 Uncomplicated Mild TBI),

39 non-TBI Controls (31 injured controls, 8 non-injured controls)

MRI data preprocessing

Automated 70 white matter bundles segmentation (TractSeg)

DTI metrics mapping and averaging

Tract-of-interest analysis by linear mixed-effect modeling using SAS package PROC MIXED

TP1, TP2, TP3

TP1, TP2, TP3, TP4, TP5

Group analysis
with effects
from multiple
sessions at
individual subject
level, random
effects of
individual
intercept, and
covariates of
gender and age

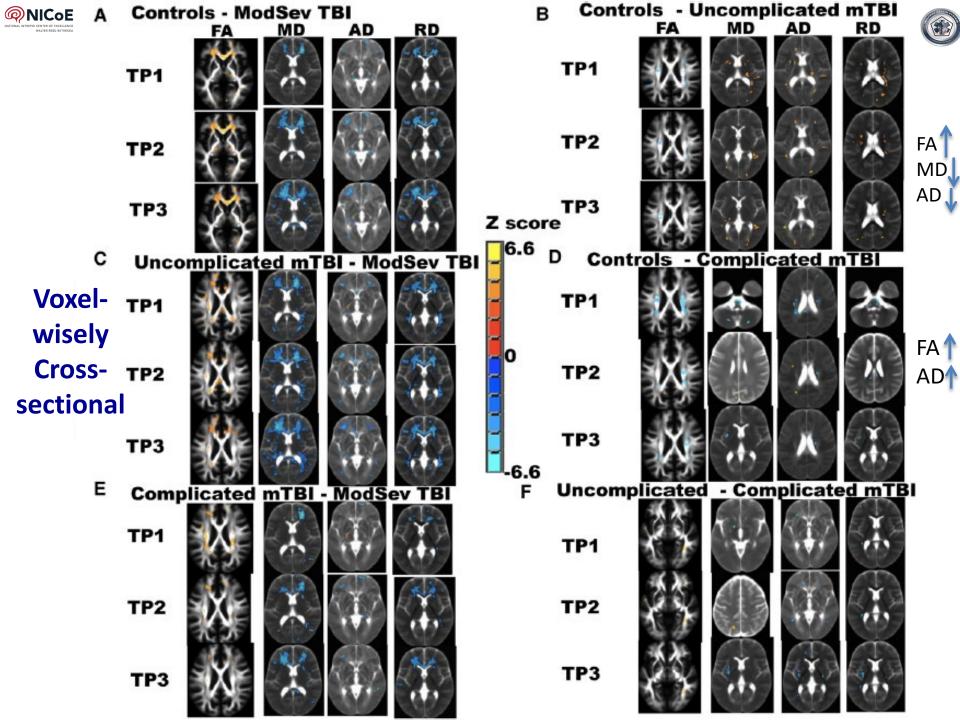
Piecewise linear splines
with knot at 700 days
since injury by
modeling group effect
and time since injury
effect, random effects of
individual intercept,
repeated scans effect
with covariates of gender
and age

Longitudinal whole brain DTI metrics spatial normalization

TP1, TP2, TP3

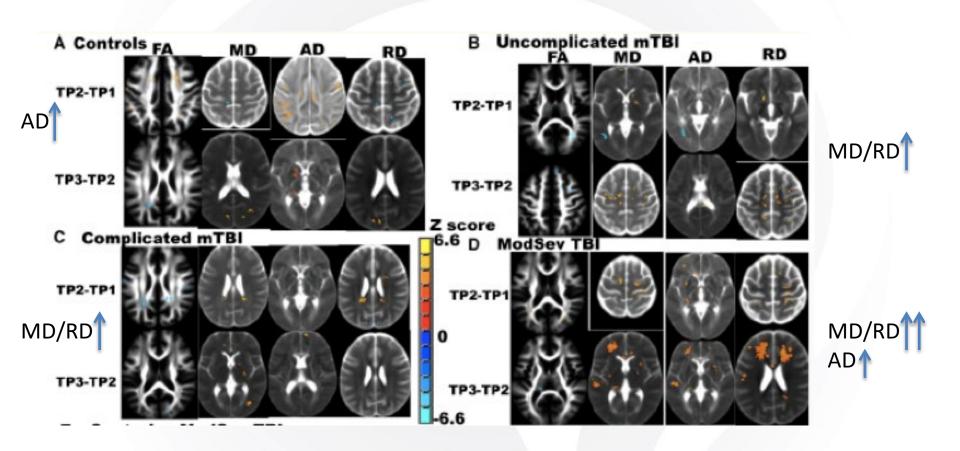
Whole brain voxel-wise analysis by linear mixed-effect modeling using AFNI package 3dLMEr

Group analysis with effects from multiple sessions at individual subject level, random effects of individual intercept, and covariates of gender and age

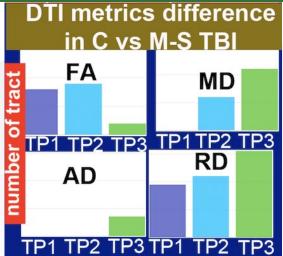


Participants*

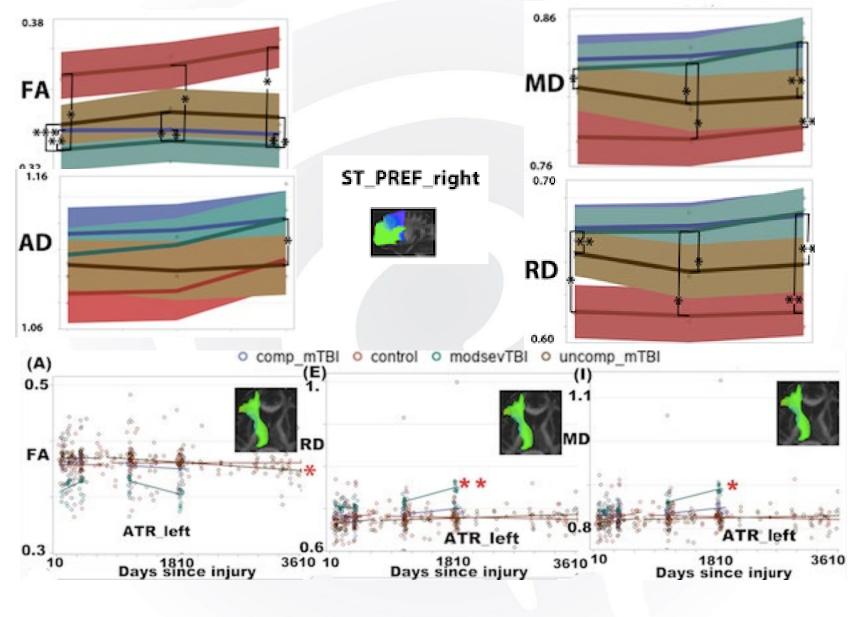
Group\TP	TPI	TP2	TP3	TP4	TP5
Controls (M/F)	28/3	34/4	12/1	4/1	1/0
Age	38.0 <u>+</u> 11.4	40.1 <u>+</u> 10.4	36.5 <u>+</u> 13.4	32.5 <u>+</u> 9.5	31
Days since injury	882.5 ± 1172.6	1137.0 <u>+</u> 1956.4	1273.3 <u>+</u> 1195.0	1250 <u>+</u> 353.3	1851
Uncomplicated mTBI (M/F)	45/2	66/2	14/1	5/0	1/0
`Age	33.5 <u>+</u> 9.5	36.5 ± 9.8	37.9 ± 9.3	39.9 ± 8.4	44
Days since injury	1062 ± 1240.0	1732.8 ± 1316.4	1786.2 ± 399.5	2180.0 ± 1891.0	1823
Complicated mTBI (M/F)	13/2	14/2	6/1	1/1	_
Age	33.7 <u>+</u> 11.1	36.0 ± 11.6	41.7 ± 9.3	47.0 ± 1.4	_
Days since injury	181.4 <u>+</u> 95.7	597.4 <u>+</u> 343.7	1437.1 <u>+</u> 426.8	1840.5 <u>+</u> 426.8	_
ModSev TBI (M/F)	10/1	10/1	7/1	3/1	1/0
Age	29.8 <u>+</u> 8.4	30.8 <u>+</u> 8.9	30.3 <u>+</u> 6.6	32.5 <u>+</u> 9.6	28
Days since injury	278.1 ± 282.2	692.0 ± 514.3	1293.9 ± 526.9	1661.8 ± 376.2	1850


^{*}All subjects enrolled into the study voluntarily agreed to participate and gave written informed consent. This study was approved by the Institutional Review Board of The Walter Reed National Military Medical Center (WRNMMC), Bethesda, Maryland

Voxel-wisely longitudinal



Tract-of-Interest Analysis

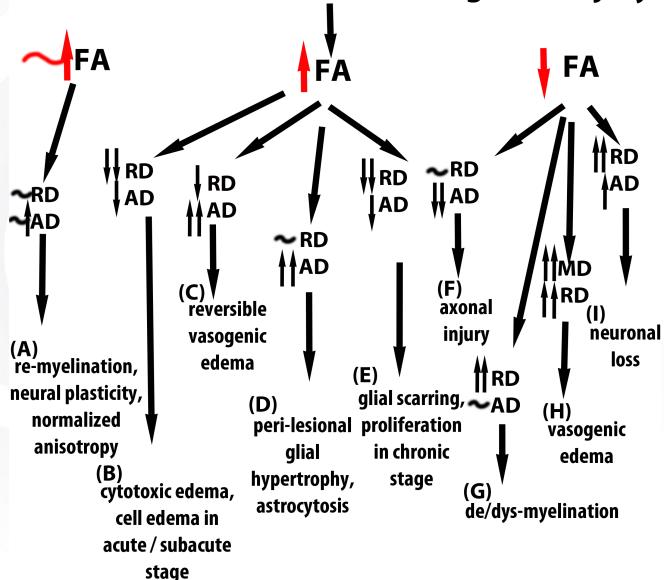

			Cross-sectional	I	Trajectory		
		TPI	TP2	TP3	TP2-TPI	TP3-TP2	
FA	Controls > ModSev TBI	16 tracts	18 tracts	4 tracts	_	_	
	Complicated mTBI > ModSev TBI	10 tracts	5 tracts	3 tracts	_	_	
	Uncomplicated mTBI > ModSev TBI	30 tracts	17 tracts	17 tracts	_	_	
	Controls	_	_	_	I tract (positive)		
MD	ModSev TBI > controls	_	12 tracts	22 tracts		_	
	ModSev TBI > complicated mTBI	_	3 tracts	3 tracts	_	_	
	ModSev TBI > uncomplicated mTBI	7 tracts	19 tracts	30 tracts	_	_	
	ModSev TBI	_	_	_	I tract (positive)	3 tracts (positive)	
AD	ModSev TBI > controls	_	_	7 tracts			
	ModSev TBI > complicated mTBI	_	_	I tract	_	_	
	ModSev TBI > uncomplicated mTBI	_	I tract	II tracts	_	_	
	ModSev TBI	_	_	_	_	I tract (positive)	
RD	ModSev TBI > controls	3 tracts	20 tracts	22 tracts	2 tracts	I tract	
	ModSev TBI > complicated mTBI	4 tracts	5 tracts	7 tracts	_	_	
	ModSev TBI > uncomplicated mTBI	19 tracts	22 tracts	31 tracts	_	_	
	ModSev TBI	_	_	_	I tract (positive)	I tract (positive)	

Tract-of-Interest Analysis

modsevTBI

uncomp_mTBI

comp_mTBI = control


fourgroups

IICoE Possible Biological Alterations

Patterns of DTI metrics following head injury

Blood Biomarkers & DTI following TBI

JOURNAL OF NEUROTRAUMA 36:2190-2199 (July 15, 2019) © Mary Ann Liebert, Inc. DOI: 10.1089/neu.2018.6269

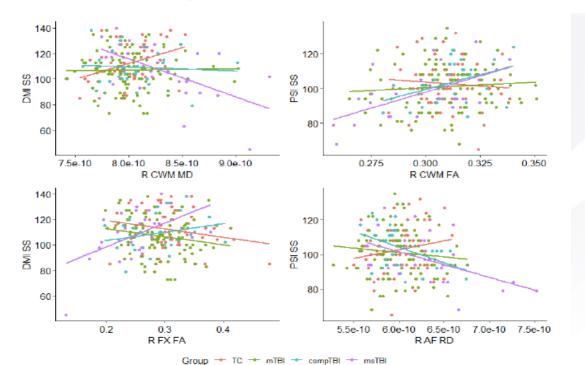
Plasma Tau and Amyloid Are Not Reliably Related to Injury Characteristics, Neuropsychological Performance, or White Matter Integrity in Service Members with a History of Traumatic Brain Injury

Sara. M. Lippa,¹⁻³ Ping-Hong Yeh,² Jessica Gill,⁴ Louis M. French,^{1,2,5} Tracey A. Brickell,^{1-3,5} and Rael T. Lange^{1-3,6}

Correlation b/w Plasma Aβ42 and DTI metrics

	Uncomplicated mild (n=47)				Complicated mild (n=19)			Moderate+ (n=22)				
	FA	MD	RD	AD	FA	MD	RD	AD	FA	MD	RD	AD
WHOLE BRAIN	.048	.059	.014	.117	.172	119	169	009	.390	547ª	502ª	546
F MAJOR	.054	061	077	003	.277	215	254	097	.499a	612^{a}	608^{b}	218
F MINOR	.013	.150	.106	.131	.343	245	316	.005	.173	394	336	424
L ATR	135	.191	.200	.060	.198	.009	083	.150	.077	385	295	363
L CAB	.180	.001	081	.127	.035	126	132	101	.414	362	393	235
L CCG	133	.051	.153	119	.186	160	217	.074	.025	286	199	229
L CST	039	018	.008	043	005	062	019	043	.189	.026	048	.109
L ILF	.120	103	146	.024	.047	101	078	097	.225	432	370	455
L SLFP	.048	.041	002	.066	122	170	075	229	.193	253	238	223
L SLFT	.078	.246	.090	.260	186	067	.085	172	.194	149	170	056
L UNC	.144	083	126	.027	.058	010	014	004	.165	170	165	142
R ATR	037	.192	.164	.146	104	175	092	253	.130	429	390	330
R CAB	.049	.032	.021	.044	.246	042	111	.097	.174	455^{a}	409	428
R CCG	154	.127	.189	050	-236	.107	052	.217	.068	383	253	420
R CST	013	.033	.019	.030	.268	129	257	.084	.161	416	308	431
R ILF	.067	081	101	016	.040	.002	.013	009	.273	657^{b}	537°	729
R SLFP	.025	036	018	043	.065	106	113	042	.249	492^{a}	489 ^a	392
R SLFT	026	023	.022	087	.079	.020	015	.048	.448	573°	576°	412
R UNC	.016	.046	.027	.051	.019	.177	.114	.192	.348	300	314	181

Cognition & DTI following TBI


★ Journal of Neurotrauma > VOL. 0, NO. ja |

White Matter Integrity Relates to Cognition in Service Members and Veterans Following Complicated Mild, Moderate, and Severe TBI, but not Uncomplicated Mild TBI

Dr. Sara M Lippa , Dr. Ping-Hong Yeh, Dr. John M Ollinger, Dr. Tracey A Brickell, Dr. Louis M. French, and Dr. Rael T Lange

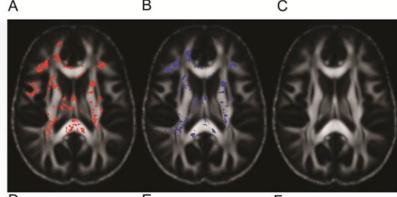
Published Online: 7 Sep 2022 | https://doi.org/10.1089/neu.2022.0276

TBI Subject-Specific Analysis

> Neuroimage. 2016 Feb 1;126:151-63. doi: 10.1016/j.neuroimage.2015.11.046. Epub 2015 Nov 27.

Tract Orientation and Angular Dispersion Deviation Indicator (TOADDI): A framework for single-subject analysis in diffusion tensor imaging

Cheng Guan Koay ¹, Ping-Hong Yeh ², John M Ollinger ³, M Okan İrfanoğlu ⁴, Carlo Pierpaoli ⁵, Peter J Basser ⁵, Terrence R Oakes ³, Gerard Riedy ⁶


One-to-Many Analysis

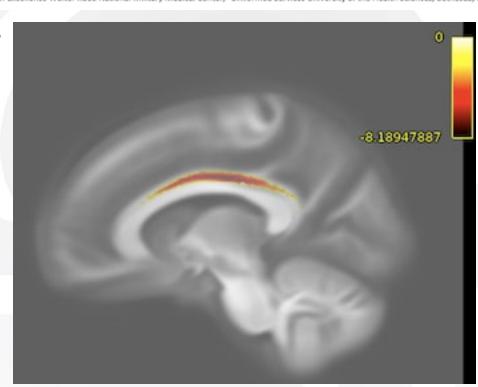
Orientation Deviation

mTBI - II control

A B C

Elliptical Cone of Uncertainty

TBI Subject-Specific Analysis


Detection of White Matter Bundles Anomalies in Service Members with Chronic Mild Traumatic Brain Injury Using a Geodesic Learning Framework

Ping-Hong Yeh¹, J. Cheng Guan Koay¹, Chihwa Song¹, Rujirutana Srikanchana¹, Grant Bonavia^{1,2}, Gerard Riedy^{1,2}, John Ollinger¹

¹National Intrepid Center of Excellence Walter Reed National Military Medical Center, ²Uniformed Services University of the Health Sciences, Bethesda, MD

One-to-Many Analysis

Manifold dimensionality reduction to capture control variability

Presented at 2022 MHSRS

Tract-weighted fiber orientation distribution (TW_FOD) z-score in one mTBI patient, who had lower TW_FOD in the right cingulum bundle.

Conclusion

- 1. Moderate-severe TBI had more spatially extensive white matter changes (lower FA, higher MD) than non-TBI controls and mild TBI over the frontal white matter tracts, and without evidence of recovery.
- 2. Mild TBI had less spatially extensive white matter disruption, mainly over the posterior portion of the brain, and there was no difference of white matter integrity between uncomplicated mild TBI and complicated mild TBI.
- 3. Our results suggest TBI patients have varying trajectories of white matter microstructural changes.

Conclusion

- 4. DTI limitations crossing fibers, many things can lead to FA changes, e.g. axonal injury vs organizational changes.
- 5. Multi-modal approach using multi-variate pattern learning algorithms to characterize multi-system multi-symptom relationship by integrating **non-Gaussian** dMRI, clinical symptoms, neuropsychological testing, blood biomarkers
- 6. Evaluate sensitivity and specificity of TBI subjectspecific analysis

NATIONAL INTREPID CENTER OF EXCELLENCE WALTER REED BETHESDA

ACKNOWLEDGEMENT

FUNDING: This work was prepared under Contract HT0014-19-C-

0004 with Defense Health Agency (DHA), Contracting Office-National Capital Region (CO-NCR) HT0014 and, therefore, is defined as U.S. Government work under Title 17 U.S.C.§101. Portions of this study, e.g. the acquisition methods, hardware, and processing infrastructure, were supported by US Army Medical Research & Development Command (USAMRMC) award no. 13129004

NATIONAL INTREPID CENTER OF EXCELLENCE WALTER REED BETHESDA

ACKNOWLEDGEMENT

- ◆ **DVBIC-TBICOE 15-Year Longitudinal Study Group**: Louis French, Rael Lange, Sara Lippa, Tracey Brickell and research coordinators.
- ◆ Neuroimaging Group: John Ollinger, Grant Bonavia, Gerard Riedy, Cheng Guan Koay, Wei Liu, Chihwa Song, Andy Srikanchana, Adam Cliffton, Joseph Hindinger, Rebecca Sandlain, Bella Salmon and all NICoE staff.
- JHU: Jessica Gill
- **♦** All Participants

