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Introduction

◮ Researchers increasingly have access to detailed, large data with unit identifiers

◮ The units (e.g., physicians, hospitals) may matter for outcomes of interest

◮ Developments in computing power allow analysis accounting for units

◮ A recent body of work on empirical Bayes (EB) methods provides tools for analyzing

unit-specific parameters when observations per unit are finite

Note: this cyberseminar borrows heavily from Gu (2022) and Walters (2022)
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Poll

How familiar are you with empirical Bayes methods?

1. I have used empirical Bayes methods in my work

2. I have some understanding of empirical Bayes methods but have not used them in my

work

3. I have only heard of the term empirical Bayes

4. I have not heard of the term empirical Bayes
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Basic Setup

◮ Patients i, assigned to one of J physicians
◮ Assignment function j (i); Nj =

∑

i 1 (j (i) = j) is count of patients assigned to j

◮ Yi (j) is the outcome (e.g., spending) for patient i when assigned to physician
j ∈ {1, . . . , J}

◮ Simple additive model of potential outcomes:

Yi (j) = βj + εi

◮ βj is the value-added of physician j

◮ βj − βj′ represents a treatment effect of being assigned to physician j instead of j ′

◮ εi represents other patient characteristics. Normalize E [εi ] = 0.
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Object of Interest

◮ The object of interest in this model is a unit-specific parameter βj or the set

{βj}j∈{1,...,J}

◮ Contrast this with models for other empirical questions, e.g.,

Yi = βDi + αj(i) + εi

◮ Object of interest may be the effect β of a treatment Di

◮ αj would be a nuisance parameter

◮ When interested in {βj} , important to ask how large is J and how many
j∈{1,...,J}

observations for each j

◮ Fundamental issue in empirical Bayes: finite sample of observations for each j
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Relevant Research and Policy Questions

◮ Questions

◮ What is the value-added for a particular physician, e.g., β1?

◮ What does the distribution of {βj} ,...,
look like? Are there outliers?

j∈{1 J}

◮ Which physicians can we classify as being high performers, e.g., the top 10%?

◮ With infinite observations for each physician, these questions would be trivial

◮ In practice, we have finite observations, sometimes very few, for each physician

◮ Empirical Bayes methods can provide tools to answering these questions
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Value-Added Model Regression

◮ Recall the value-added model:

Yi (j) = βj + εi

◮ Assume that patients are randomly assigned to physicians

◮ Then can estimate value-added in an OLS regression:

Yi = βj(i) + εi

◮ By random assignment, εi ⊥⊥ βj(i) (can relax this with more complicated causal models)
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Fixed Effects and Random Effects

◮ Two statistical assumptions about β1, . . . , βJ :

◮ Fixed effects: β1, . . . , βJ are treated as unknown parameters

◮ Random effects: β1, . . . , βJ are treated as random variables with distribution G (i.e.,

βj ∼i.i.d. G)

◮ Two corresponding estimators:

◮ Fixed effect estimator:
1

β̂FE
j (Y) =

Nj

∑

1 (j (i) = j)Yi

i

Uses only data corresponding to j (i) = j .

◮ Empirical Bayes estimator with linear shrinkage (assume E [βj ] = 0):

β̂EB
j (Y) = λ (Y) β̂FE

j (Y)

λ (Y) uses all data.
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Objective of Effect Estimation

◮ If we are only interested in one parameter (e.g., β1), then we may have a loss function

as
( ) ( )2

L ˆ ˆβ1, β1 (Y) = β1 − β1 (Y)

I.e., our objective is to min
[

imize th
]

e expected difference between β1 and β̂1. In this

case, ˆ ˆβ∗
1 = βFE

1 (Y), as E β̂FE
1 (Y) = β1.

◮ If we are interested in multiple parameters (e.g., β1, . . . , βJ), then we may have a loss
function as

J
( )1 ∑

L ˆβj , βj (Y)
J

j=1

The expectation of this is known as compound risk, and minimizing it is a
compound decision problem

◮ Note: both of these are frequentist objectives
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Theory

◮ Linear shrinkage estimator ˆ ˆβEB
j (Y) = λ (Y) βFE

j (Y) (under E [βj ] = 0, can be relaxed)

produces lower compound risk than the fixed-effect estimator for any J ≥ 3 (James
and Stein 1961)

[ ]

◮ Shrinkage estimator is biased for any individual βj (i.e., E β̂EB
j (Y) = βj ) in return for

better average performance over j ∈ {1, . . . , J}.

◮ Therefore, use empirical Bayes shrinkage when interested in performance of
estimator over many units

◮ Empirical Bayes estimator uses all data:

◮ “Borrowing strength from the ensemble” (Efron and Morris 1973; Morris 1983)

◮ “Learning from the experience of others” (Efron 2012)

6
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Philosophy of Random Effects

◮ Recall random effects definition: random variables with distribution G

◮ How do we think about the distribution G?

◮ Literal view: observed units are random draws from a larger population of units; may

be unsatisfying depending on the context (e.g., units are VA hospitals)
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Philosophy of Random Effects

◮ Pragmatic view: even with a fixed number of units (e.g., VA hospitals), empirical

Bayes allows provides useful insights

◮ {βj}
J imply a (discrete) distribution G even with a fixed set of j ; continuous modeling of G
j=1

can be viewed as a useful approximation

◮ What is the best set of predictions of {βj}
J

given the data? Other important
j=1

policy-relevant questions can be illuminated by G

◮ Distinction between random effects vs. fixed effects here is not about correlation with

covariates but about focus on {βj}
J

j=1
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Implementing Empirical Bayes

◮ Shrinkage depends on the distribution G, which is unknown

◮ Empirical Bayes involves plugging in estimates of G from the data Y (recall the simple

linear shrinkage λ (Y))

◮ Parametric and non-parametric methods for approximating G



17/45

Parametric Normal-Normal Model
{( )}J

J
◮ Consider set of estimates of {βj} and corresponding standard errors: β̂j , sjj=1

j=1

◮ Assume normal-normal hierarchical model:

( )

β ∼ 2
j N µ, σ

∣

ˆ ∣βj ∣ βj , s
2

( )

j ∼ N βj , s
2
j

∣

( )

( )

◮ G = N µ, σ2 ∣

is a mixing distribution; β̂j ∣ sj ∼ F = 2
j N µ, σ + s2

j (Fj is a mixture

distribution)

{( )}J
◮ Deconvolution: estimating G from β̂j , sj

j=1

◮ In parametric normal-normal model, this reduces to estimating hyperparameters µ and σ2
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Estimating Normal Hyperparameters

◮ Common approach:

J
1 ∑

µ̂ = β̂j
J

j=1

J [ ]

∑

( )

σ2 1 2

ˆ = β̂j − µ̂ − s2

J j

j=1

◮ Subtract out s2
j to account for sampling error in β̂j relative to βj
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Shrinkage and Posterior Means
( )

◮ Posterior mean of βj , given known hyperparameters and β̂j , sj :

( ) ( )

[ ] σ2 s2

ˆβ∗ = E βj |βj , s ˆ j
j j = βj + µ

σ2 + s2 σ2 + s2
j j

2
◮ Shrinkage factor λ = σ

2 ∈ [0, 1] reflects signal-to-noise ratio
σ +sj

◮ Linear regression interpretation: λ is coefficient in linear regression of βj on β̂j ⇒ in

class of linear functions, β∗
j minimizes MSE for even non-normal G

( )

◮ Empirical Bayes posterior mean plugs in estimated hyperparameters µ̂, σ̂2 :

(

(

2
)

)

s2

β̂∗ σ̂
= β̂

j
j j + µ

σ̂2 + sj σ̂2 + sj
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Incorporating Unit Covariates

◮ May observe different groups of units (e.g., nurse practitioners and physicians) or

characteristics of units (e.g., provider gender, age); can use these for shrinkage

◮ Akin to asking which other units should we learn from (c.f., Efron 2012)

◮ Can model G with mean (and variance) accounting for covariates Xj :

(

βj |Xj ∼ N X′
jγ, σ

2
)

∣ ( )

r

ˆ ∣βj ∣ βj , sj ∼ N β̂j , s
2
j

◮ Estimate γ from regressing β̂j on Xj ; deconvolve residuals r̂ ˆ
j = βj − X′

jγ (with

knowledge of sj ) to estimate σ2
r . For groups (e.g., nurse practitioners and physicians),

could model group-specific σ2 .r(j)

◮ Empirical Bayes posterior mean:

( )

( )

β̂∗ σ̂2 s2
j

j = r β̂j + X′γ
σ̂2

r + sj σ̂2
r s j ˆ+ j
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School Value-Added (Angrist et al. 2017)Posterior Means Pooling Sectors

Chris Walters (UC Berkeley) Empirical Bayes Methods
Source: Walters (2022)
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School Value-Added (Angrist et al. 2017)Posteriors Shrinking Toward Sector Means

Chris Walters (UC Berkeley) Empirical Bayes Methods
Source: Walters (2022)
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EB for Bias Correction

◮ Can use EB framework to improve predictions of parameters when we have multiple

estimates, some possibly biased (Angrist et al. 2017)

◮ Suppose we have a precise but biased OLS estimate for βj , with bias bj :

β̂OLS
j

∣
( )

∣

β β
∣ j , b

2
j , sj,OLS ∼ N j + bj , s

2
j,OLS

◮ Suppose we also have a noisy but (asymptotically) unbiased IV estimate:

β̂
IV

j

∣

∣

β , s2 ∼ N
(

β , s2
)

∣ j j,IV j j,IV

◮ Suppose Hausman test rejects equality of β̂OLS and β̂IV
j . Should we throw away ˆ

j βOLS?j



25/45

EB for Bias Correction

∣

β̂OLS∣
)

j ∣
βj , bj , s

2
(

j,OLS ∼ N β 2
j + bj , sj,OLS

∣

ˆ IV
∣

( )

βj ∣
βj , s

2
j, V ∼ N βj , s

2
I j,IV

(

βj ∼ N µ, σ2
)

{( )}

◮ Use β̂OLS ˆ, βIV , s2 , s2
j j j,OLS j,IV to estimate G (β, b)

[ ]

◮ MSE-minimizing posterior β̂∗
j = E ˆ

Ĝ(β, βj |β
OLS ˆ

b j , βIV
) j

( ) ( )

β̂∗ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
j = λIVβj,IV + λOLS βj,OLS − E [bj ] + 1 − λIV − λOLS µ̂

◮ Performs better than EB using only unbiased estimates, or β̂∗
j,IV = E ˆ

Ĝ(β

[

βj) |βIV
j

]
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Normal Transformations

◮ Efron and Morris (1975): predict hits Hj out of Nj bats of baseball players for the

remainder of the season
Hj ∼ Binom (Nj , pj)

◮ Transform Hi to an approximately normal distribution:

√

H̃j = Nj arcsin (2Hj/Nj − 1) ≈ N (βj , 1) ,
√

βj = Nj arcsin (2pj − 1)

( )

◮ Use realized p̂j = Hj/Nj to calculate β̂j . βj ∼ G = N µ, σ2 . Deconvolve to find G.

◮ EB prediction p∗
j (H,N) performs much better than using p̂j alone to predict Hj
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Non-Parametric G

◮ Recent advances estimate more flexible non-parametric G

(

β , s2
)

∼ G
∣

j j

β̂
∣

∣
β , s2

(

∼ N β , s2
)

j j j j j

◮ Simulated example: mixture of three normal distributions (Gu 2022)

Visualize Shrinkage

Consider in DGP 2.
Left: solid (–)PEB, dashed (- -) NPEB, long-dash (- -)MLE 45% line.
Right: upper shows amount of shrinkage under PEB, below shows that of NPEB.
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21 / 54 Jiaying Gu (U of Toronto) Empirical Bayes Methods
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Non-Parametric G Techniques

zj = βj/sj ∼ G
∣

)

ˆ ∣
(

βj ∣β , s2
j ∼ N βj , s

2
j j

◮ Efron (2016): approximate G with flexible splines

◮ Implement with deconvolveR R package (Narashimhan and Efron 2020)

◮ Non-parametric maximum likelihood estimator (NPMLE) (Robbins 1950): approximate

G as discrete distribution with at most K mass points

◮ Implement with REBayes R package (Koenker and Gu 2017)
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Non-Parametric G Illustration: Efron (2016)Deconvolved Distribution of Race Contact Gaps
Figure A12: Deconvolution of firm-level racial discrimination without support restriction
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Source: Kline et al. (2022)
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This figure presents non-parametric estimates of the distribution of firm-specific white-
Black contact rate di erences. The red histogram shows the distribution of estimated firm

tact gaps. Blue line shows estimates of the population contact gap distributions. The
population distributions are estimated by applying the deconvolveR package (Narasimhan and
Efron, 2020) to firm-specific e estimates, then numerically integrating over the empirical
distribution of standard errors to recover the distribution of contact gaps. The penalization
parameter in the deconvolution step is calibrated so that the resulting distribution matches the

responding bias-corrected variance estimate from Table 4.

12

Chris Walters (UC Berkeley) Empirical Bayes Methods
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Non-Parametric G Illustration: NPMLE
a) Race

NPMLE Deconvolution Estimates for RaceFigure E7: NPMLE estimates of marginal distributions of firm-level discrimination
b) Gender
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Notes: This figure presents non-parametric maximum likelihood estimates of the distribution of firm-specific contact gaps estimated using the
approach in Koenker and Gu (2017). Panel (a) presents estimates for white-Black contact rate di erences, where we impose the restriction that all
contact gaps are weakly positive, and panel (b) presents estimates for male-female di erences. Red histograms show the distribution of estimated
firm contact gaps. Blue lines shows estimates of population contact gap distributions. Population distributions are estimated allowing a non-
parametric bivariate distribution for the mixing distribution of contact gaps and standard errors. The figures plot the marginal distribution of
contact gaps. Since the distribution is discrete, the blue lines plot the probability mass function in below, while the histogram reports the share of
sample firms in each bin.
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Chris Walters (UC Berkeley) Empirical Bayes Methods
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Machine Learning

◮ EB methods are closely related to machine learning (ML) with regularized

regressions

◮ Both have many (J) parameters; goal of both to improve predictions with finite

observations per J

◮ Consider normal-normal model with J physicians and N patients per physician:

Yi = βj(i) + ε
(

i

εi ∼ N 0, σ2
)

(

ε
)

βj ∼ N 0, σ2
β

∑

◮ Recall unbiased fixed effect estimator: β̂FE
j = 1

i 1 (j (i) = j)Yi ; using it is akin to
N

overfitting, a problem ML seeks to solve

◮ EB posterior distribution for βj is normal ⇒ posterior mean β∗
j = posterior mode, also

known as maximum a posteriori (MAP)
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Machine Learning

◮ P
(

lugging in
)

normal densities for εij and βj (i.e., G), we can solve for the MAP

β∗
1 , . . . , β

∗
J :

∑

J
∑

N
σ2
∑

J
2(β∗ . , β∗

1 , . . J ) = arg min 1 (j (i) = j) (Yi − βj) + ε β2
2 j

(β1,...,βJ ) σ
j=1 i=1 β j=1

∑

J
∑

N
2

= arg min 1 (j (i) = j) (Yi − βj) + λp (β1, . . . , βJ)
(β1,...,βJ )

j=1 i=1

This is the solution to a regularized regression, with penalty p (·) and tuning
parameter λ = σ2

ε/σ
2
β

◮ The particular regularized regression is known as ridge regression

◮ In spirit of EB, data are used to choose λ
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Machine Learning

◮ Thus, ML regularization often has EB interpretation

◮ Ridge regression estimates (L2 penalization): posterior means/modes from a model with

normal priors

◮ LASSO regression estimates (L2 penalization): posterior modes from double exponential

(Laplace) priors

◮ May be useful to think about implicit EB prior distribution of parameters (i.e., G)

◮ Some ML approaches will perform better under certain implicit parameter prior

distributions (Abadie and Kasy 2019)
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Multiple Hypothesis Testing
( )

◮ ˆWith G and β̂j , s
2
j , can use EB to make relevant policy assessments that are

compound decision problems, e.g.,

◮ Which doctors are in the top quintile of performance (βj > G−1 (0.8))?

◮ Which VA hospitals are discriminating against Black patients (βj > 0)?

◮ Such problems are “large-scale inference” problems, closely related to

multiple-testing problems (Efron 2012)
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Multiple Hypothesis Testing

◮ Example: Kline et al. (2022) interested in classifying firms as discriminating against

Black applicants (see also Gu and Koenker (2022))

◮ Send random applications with Black-sounding vs. white-sounding names to J firms

J
◮ Estimate

{(

β̂ , s2
j j

)}

for J firms
j=1

◮ Can perform one-tailed t-test: βj = 0 vs. βj > 0. Implies test statistic z ˆ
f = βj/sj and

p-value pj = 1 − Φ(zj).

◮ Decision rule: classify firm as discrimatory if pj ≤ p

◮ How many mistakes do we expect to make (i.e., false discovery rate or FDR) for a given

p? What should we pick for p?
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Multiple Hypothesis Testing

◮ From definition of p-value, p = Pr (pj ≤ p|βj = 0); interested in

FDR = Pr (βj = 0| pj ≤ p)

◮ By Bayes rule,

FDR (p) = Pr (βj = 0| pj ≤ p)

Pr (pj ≤ p|βj = 0) Pr (βj = 0)
=

Pr (pj ≤ p)

pPr (βj = 0)
=

Pr (pj ≤ p)

◮ Pr (pj ≥ p) is a function of the data; Pr (βj = 0) depends on G

◮ Set FDR (p) based on cost of type I (false positives) vs. type II errors (false negatives)
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VA vs. Non-VA Care

◮ Chan et al. (2022): quasi-experimental assignment of ambulances to dually eligible

veterans above age 65

◮ Veterans may receive care at VA or non-VA emergency departments (EDs)

◮ IV approach: ambulances have different propensities to transport veterans to the VA

◮ Condition on zip code: each location is part of a different quasi-experiment (each with its

own VA and non-VA hospitals of interest)

◮ Main finding: VA hospitals reduce mortality by 45% in IV design; robust 21%

reduction in mortality by OLS

◮ How might this result vary across VA stations?
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VA vs. Non-VA Care

Station-specific VA mortality effect (OLS design): all stations reduce mortality
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NP vs. Physician ED Productivity

◮ Chan and Chen (2022): quasi-experimental assignment of ED patients to NPs vs.

physicians

◮ IV approach: availability of NPs and physicians at the time of patient arrival

◮ Main finding: on average, NPs have lower productivity, using more resources but

achieving worse outcomes

◮ What about the productivity distribution within professions?
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NP vs. Physician ED Productivity

Deconvolved distributions of productivity: 38% overlap in productivity
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Conclusion

◮ Empirical Bayes methods provide tools to jointly assess effects across important units

of interests (e.g., physicians, hospitals)

◮ The increasing granularity of data (including at the VA), combined with computational
tools, has led to a rise in recent methods and applications

◮ Compound decision problems and large-scale inference made possible by these
methods are extremely policy-relevant
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