vinci-031022


If Andrew:	Yes. Yes, thank you. Thank you, Rob. I am Andrew Redd. Today I’m talking about profiling and optimizing our code. If you didn’t see the announcement, this is geared towards intermediate…R users. And it’s kind one of those things that takes people from an intermediate user to an advanced user. What we will talk about is specifically the tools that are available in Rstudio and Profvis, a package that is I believe maintained by Rstudio. But it integrates with Rstudio really nicely to get to use all the tools really nicely. This presentation isn’t exactly a what to do to optimize your code as much as it is, how to find that answer. So with the Vinci office hours where we try to show you how to find the answer yourself, this is more of a how to find the answer rather than here is the answer of things that you should be doing to optimize your code. 

That being said, what is profiling? And this is the good kind of profiling. In software engineering, profiling is a form of dynamic program analysis that measures for example, the space memory or time complexity of a program. The usage of particular instructions or the frequency and duration of function calls. Most commonly profiling information serves to aid program optimization and more specifically, performance engineering. What does that mean? It means that we are going to take a snapshot of what our code is doing every 10 milliseconds. And then we collect data from that. We aggregate that data together and we get a picture of how much time did the program spend doing the different operations. So how much did it spend on reading data in? How much time did it spend on filtering data? How much time did it take to add new variables to a data, or something like that. When we see that, we can look in and say, okay. It’s spending too much time in this area. We think that we can do that more efficiently. 

And also, when memory profiling is turned on it says, okay. How much memory is it grabbing? How much memory is it freeing up? A lot of those memory operations are very expensive in terms of time. So that’s what you would want to look at when you have…. Memory optimization is also good for performance optimization and vice versa. For those of you who are regular R users on Vinci, you know that the Vinci R servers have a tremendous load being put on them. We try to get more…I believe we are trying to get more hardware capacity, but when asked how much hardware do we need? The answer is always, as much as you can give us. We can always use more hardware. That said, we are in a competing environment for resources. 

Optimizing your code will not only help your code run faster, but it will also minimize the effects that it gives to other individuals who are also using the same shared resources. So this is a really a timely and important topic. It’s one of the few things. When someone learns a new language, one of the most important things that people can learn is how to debug that language. And this is kind of part of debugging. It’s more about optimization. The code may be working right, but it’s not working well. And so this is the getting the code working really, really well. 

So how do we do profiling in R? It has a lot of built-in tools. The Rprof function is the base R function for profiling. It measures every .02 seconds which can be modified and when you use the built-in tools it will be modified. It will measure the memory usage if it’s specified. By default, it does not measure the memory. It measures the total spent, the time spent in each of the different function calls, and the function that you’re in and what called that function. So it’s referred to as the call stack. So function A, calls function B, calls function C. You’ll see that it is in that that order. A, B, C. It writes this to an output file and then in the olden days, you’d have to read that back in, process it, and summarize it. There was a function for that summary Rprof. This is all historical background. You don’t need to worry about this because you’ll rarely ever need to call these functions directly. We have much better tools now. 

A couple caveats. Time. The time that is measured is slightly different between Windows and UNIX like systems. So if you’re on a Linux system, it’s going to measure differently than it measures in Windows and that’s just differences in the operating system. Keep in mind that Vinci is a Windows-based system, and so the time will be like the total time not specifically the time that is in that program when there’s there sharing time between programs. Lazy evaluation. R is a lazy evaluation program. It does not evaluate things such as arguments to a function. It does not evaluate that argument until it absolutely has to. That can make some debugging a little bit odd because you have to know where it’s evaluated, not just that it’s evaluated. It can appear that a function is being called from another function when it actually was called as an argument to that function. It’s just a caveat that the code may not be where it’s exactly saying…the profiling is saying that it is. Hopefully you don’t have to worry about that. We’re not going to go over any examples. This will be a very example heavy presentation. 

So profiling in Rstudio. Now I wish we could do this interactively because I think it would be better, but we are stuck with what we are stuck with. In Rstudio, there is a profiling menu dedicated solely to the purpose of profiling. We’ll go through what each of these does. The start/stop profiling gives you a lot of control. You can say start this and then run some stuff and then stop it. It’s good. It’s not my favorite. If it’s your style, more power to you. I prefer to profile selected lines. You profile the selected lines and then you’re not mixing in anything else, and you can focus in on, these are the lines of code that I am trying to optimize. So in my opinion this is the best option. You don’t have to use it. You can do the start and stop profiling however you want. 

Then open profile. You have the option to save a profile and then open it back up to look at it again or to share with someone. For example, to share with the Vinci helpdesk. If you ask a question to the Vinci helpdesk and say, I need help optimizing this code. Since I do not have access to your code and do not have access to your data, there is a very high likelihood that I will ask for a profile to be run on your code that I can look at. This has been very helpful in getting code optimized. That is something that the Vinci helpdesk, specifically me as the R expert on Vinci helpdesk will help you with is to optimize code so that it runs within the memory constraints that we have. That it can run within a reasonable amount of time. And even if code is well written, there’s almost always something we can do to make it run faster. 

So we’ll talk a little bit more about saving those profiles. Let me get to a few slides down. There is profiling help. It just opens up the Rstudio Prof’s website. If you do that inside of Vinci, you won’t go anywhere because it requires external internet access. So inside of Vinci, that is a pointless command. But going over it for completeness. Okay, let’s do an example. We’re going to start with something that we know to be a terrible idea in R, that’s growing a vector. I am doing this specifically because we know it’s bad. If you haven’t heard that growing a vector in R is bad, it’s really bad. It’s one of the worst things you can do to kill your performance because it will regularly have to grab a new amount of memory to put that vector into as it grows. It’ll grow, it’ll exceed its memory capacity. You’ll have to grab another vector. And so it’s really, really bad. 

So we’re going to take 10,000 iterations and just add a…we’re going to add to it each time the mean of 100 random normals with a standard deviation of a hundred. This is an example of something that we would do to illustrate the variation of the mean from random normal. A simple statistics kind of example, but we’re doing it in a way that is really poor performance. So this is a profile that comes out. You would highlight this…let me go back a slide. In Rstudio, you would have this in a source file. You’d highlight those codes from the X arrow numeric all the way down to the standard deviation of X and then you would put that profile selected lines. It will run. You’ll get this out. It’ll bring up a new tab with the profile. So let’s take a look at the different components of this. First, I want to make note of the save icon, which is all anachronistic of the floppy disk. But I don’t know any better save icon than the floppy disk. When you save that, it’ll bring up a save dialog. You can name it anything. 

Typically, it does not automatically add an extension. It’s good to add an extension like, Rprof or vis as the extension. But you don’t have to add a…you don’t even have to add an extension to the file. Just save it as a file. You can send it to…then you can download that file because there should not be any PHI in a profile file unless there is hardcoded PHI in the source code because it does contain source code in the…it contains copy of the source code for the functions that are called. Then we get what is called a flame graph. The top panel of flame graph gives the source code that was run and for complicated profiles, it will have a file, the function names, and the lines of function in that code. And it has done a summarization and says how much time is spent on each line of code. 

Here as we expect, the most time is spent on this aggregating a vector. A hundred and 20 milliseconds. The whole thing took a140 milliseconds. On the bottom panel we have the call stack over time. Profvis always be the bottom because that’s what Rstudio wraps the call in. It’ll wrap it in a Profvis call. And then we can it’s okay, Profvis R norm, C mean, back to C, back to R norm, mean C. And sometimes the function calls are so short, that it doesn’t capture every function call, which a profiling is okay, because if it’s not spending a lot of time in that function call, we don’t care about it. It’s not important. It will give information on the very bottom that says sample interval, how often it’s sampling. And this is by default the ten milliseconds. I don’t think you can change that in Rstudio. If you wanted a different time interval, that’s one of the cases where we actually need to call Rprof or Profvis directly to specify what the interval you want is. And then the total time that the evaluation took is on the lower right-hand side. So 140 milliseconds. We’ll be looking at this number repeatedly over the examples as we go through. 

Okay, next to the flame graph there is a data tab. This is a different sort of aggregation that gives…breaks down basically how it was called and by function what was spent…what time was spent in each. Now if you’ll notice, this is from the second example not from the first one because the data was uninformative for the first example. But yeah, it shows that we are going through a replicase which calls S apply, which calls L apply, which calls a function which is our GLM fit function, and then so on. This will make more sense when you see the second example. But this is just to show you this is what the data tab looks like. It’s the same thing. Memory and time spent on the two sites. 

Okay, so looking back at the example one, we see that the C call is the particularly problematic call. We can fix that with a preallocated vector. This is the correct thing to do if you’re using a four loop is to say, here’s what I’m going to put all the results, and then for each one, put the result in that vector. This is what it goes to optimize. So now that we’ve preallocated that vector, we’ve cut it from 120 milliseconds down to 60 milliseconds. That’s how much time was wasted. Fifty percent of the time was wasted in growing that vector, which is why it’s something you really don’t want to do in R. But we knew that it was something we weren’t supposed to do, so that was to show this is how we’re doing it. This is the amount of time that we’re spending. 

Okay, we can take it even a step farther by skipping the four loop. If you’re not new to R, you have probably been told several times don’t use the four loop. It’s a bad idea. If you’re using the four loop, you’re probably doing something that not really in the R style. Yes, R has a four loop, but especially in modern days with the per package and all the functional programming stuff that has been implemented through that and through the tidyverse. If you’re using four loop, you have to really justify using the four loop. So what we’ve done here is taken it to a matrix of random normals and then we’re doing one call to R norm getting all of our random normal, forming it into a matrix, and then continuing column needs. This does the same thing that we did previously just in a more R style of programming. 

Oh, the results we’ve got in this format doing it this way, it takes a from 120 milliseconds to 30 milliseconds, which is really too short for profiling to really measure anything. Keep in mind that the interval for measuring this ten milliseconds. So it’s got maybe three data points in and you can’t really make much sense out of three data points. But we’ve gone from something that was really inefficient to something that is very efficient. Okay, let’s take a look at something more complex. This is much more realistic. This is a much more real scenario. The example is inspired a by recent request to the Vinci helpdesk. We want to bootstrap a data set 500 plus times. We won’t actually do all 500 times here. We’re fitting a generalized linear model, so a logistic regression model. I think the one that came into the helpdesk was a bit more complicated than a simple logistic regression model. But it was still the same kind of…we wanted to do bootstrapping on a big data set. 

So I have simulated a one million row data set with both continuous variables and categorical variables. The structure of the data is not important. What’s important is being able to identify the problems and the inefficiencies that are coming through. So here’s our initial attempt at making those bootstraps happen. Here you can see the Profvis, double colon Profvis. That’s wrapped around by Rstudio automatically. We are creating an index variable I, from a sample. Just the number of rows of data. We want to pull out the same number of rows as the data but want to do it with replace equal true. That’s a simple bootstrap. We created bootstrap to data from the original…from our example data and then we fit a GLM model. If you’re not familiar with this format, it’s fit Y with all of the remaining variables in the model. It’s just a shorthand. In a real example, you’d have a much more complicated formula or something like that. Let’s look at the profile. 

This is a bit more. So going through down the flame graph line by line. Replications. We spend all our time in the replicate call, which makes sense because we’re not doing anything but replicate. Most of our time is spent in the GLM call, but we do spend a significant amount of time in sampling R data frames. So we’re creating our new bootstrap data. The larger R data gets, the more complicated that call will be because think about what we’re doing here. We are creating a new data set of a million rows based off of the old one. And then he could see in the flame graph there’s lots of spikes of where it’s going through. Let’s zoom it in. This is one of those spikes. You can see we’re calling replicate, which calls S apply, which calls L apply, which calls this function. And then we get actual interesting stuff. GLM sample, table DF. In this, it looks like there at least in this section, it looks like the table DF is taking as much or more time…the sampling call is taking as much or more time than the GLM. 

But let’s focus on this portion here. The GLM fit, but we’re also spending a bunch of time in as factor. As factor is called implicitly…it’s called from when you convert a formula into a model matrix. So let’s fix that as factor. We do that by converting the data instead of sampling on a data framework, we’re going to sample on a model matrix. So the first thing we’re going to do is create our original model matrix, provide the formula that we’re using, and then the data and it will create the appropriate model matrix. Then instead of sampling the data set down, we are creating both the bootstrap model matrix and the bootstrap response. And then instead of calling GLM, we are calling directly the GLM fit with the model matrix and the bootstrap Y. So a little bit different, but it’s a big improvement. We cut out quite a bit there. We’re still getting of a lot of time spent in indexing, and we want all of our time spent in that GLM fit. That’s where we want all of our time to go. 

So let’s fix the indexing. We can do that with replacing the sample…instead of creating a new matrix, we are just going to send in waits and say, okay. Drop this one, double up this one, three times this one. And by doing that, it will implicitly do the rewaiting without having to create a new model matrix or anything. So we’ve got one matrix that’s getting reused over and over and over again and we’re only creating new waits. That multinomial is how we create those. As a random multinomial with random waits. Okay, there is a question in the Q&A. I have opened and run Rstudio and tried to profile a code. I don’t see how I see the profile. I don’t see a new tab anywhere. I’m not sure what’s going on. It might be that the code is to reveal for the profiling and so the profiling kind of fails. Oh, okay. So if it’s not substantial enough for example when we optimized our first example to the point where it really…there was no point in optimizing it, there were problems when you actually try to profile that code. 

So generally, you want to look at something that takes at least 30 seconds. Remember when you’re optimizing code, your programming time is much more expensive than execution time. If you’re going to spend an hour optimizing code that saves five minutes, that’s not worth it. If you are spending two hours optimizing code that takes something from two weeks to two days to run, that’s worth it. That may be worth it. That would definitely I would say…I would consider that a win. If I spent a couple hours to look at code, get it optimized, and then unload the optimized code on the full data set, you always want to do this optimization with a small subset to find out where the inefficiencies are in the code. Bootstrapping is a perfect example for this to where it’s because you’re doing the same thing over and over and over again. So that internal stuff needs to be very optimized. So that’s my only thought is, if it’s not popping up, it may be something that is just not profileable if that’s a word. 

Okay, once we have done this and converted waits, we come down here and say, okay. We’re still spending a fair bit of time in computing the waits, but we’re definitely spending a lot of time in the GLM fit because we’re not subsampling anything. We’re not creating any new data frame. We’re not doing anything memory wise. All we’re doing is we’re doing the bare minimum that we have to. And notice that we have dramatically improved our sampling…our execution time. Okay, to summarize. What did we do? We took our GLM function and instead of using GLM, which then calls GLM fit, we’re calling GLM fit directly. Instead of working off of data frames and tables, we’re working off of matrices. And instead of resampling the rows, we’re actually throwing waits at it. 

Now in the actual code that was sent to the help desk, there was a whole lot more going on. And one thing that I think was decided, I don’t know what the actual final solution was. But you could create all of your waits ahead of time and just create a big matrix of waits and go through the columns. That’s one possibility. But that’s a little bit more memory intensive to store all the waits rather than just generating them when used. There is a balance that must be struck between the memory usage and the speed. Because sometimes if you can use a little bit more memory, you can make it a lot faster. But generally, the less you use of memory, the faster it will go. R is not the best on its memory management if you haven’t noticed. But the results speak for themselves. We took something that was a basic implementation. We weren’t doing anything stupid or intentionally wrong in the first place. 

Now yes, I know that there is ways that we could’ve of done that more efficiently from the beginning. But it’s something that would be simple that someone would code and not think anything of it. We went from 32,380 milliseconds, so 32 seconds down to 18,440 milliseconds or 18 seconds. That’s 57 percent of the original. So a drop of 43 percent time savings. Memory usage was about the same. That is a different…that can be a difficult…a little bit more difficult to tackle. If I can answer this question in the chat. If using hashes, performance would scale the size. How can profile a subset accurately? That’s a good question. R does use hashes in the background. It does not really use hashes or subsampling, that kind of thing. 

So if you are using a subset of your data to optimize things, keep in mind that that may not scale particularly well. Or it should, but you have to be conscious that you are working on a subset, not on the full data. And you may run into memory limitations or something like that. And so you may have to try alternative strategies to work with that. It may be that your model is just too big to fit reasonably, and you have to go to methods like big GLM big LM or other methods that are designed specifically for large data that can work with things like out of memory or something like that. There are options for dealing with really, really big. One place that hashes are implemented is in environment looking up. So you’re looking up from a key to a value. 

So looking up the value of variables is something that is handled with hashes or can be handled with hashes. It’s not necessarily handled with hashes but depending on how you implement it. But when you’re dealing with it with data frames and stuff, it’s less. There’s not like the built-in kind of indexing and stuff that you would get with SQL Server, which is one of the reasons why I recommend that if you’re doing data management tasks like joining tables, filtering down; it’s best to leave that to the SQL Server. You can look at my previous cyber seminars for some that discuss the working with SQL tables directly from R before you pull it down. That’s all in the dplyr package and DB dplyr and you’ll probably want to use the Vinci package that is specific for Vinci to manager your database connections. 

I hope I answered that question correct. I hope I answered it to your satisfaction. If you would like more information on profiling, if you have specific profiling questions, please email the Vinci helpdesk. If you tag it with R, it will come to me especially if it is an actual R our question. If it is an R server question like the memory is all being used up, I can’t run anything; that won’t go to me. That goes to the actual system admins. But I work I closely with them. Read through the Vinci R Academy. That is still being updated. There are some things that we’re changing around with it because of the new changeover to SharePoint. So that will be changing a little bit. 

Also, go look at the Rstudio Profvis documentation. Profiling is really a straightforward tool. It’s not complicated. It just seems to be one of those things that a lot of people don’t ever learn or don’t ever…or aren’t aware of. There’s this menu that has been sitting there and no one knows what it’s for. It's actually really useful to do. So I hope this presentation has given you the direction of where to go on what to find. If you still need help, please email helpdesk. That’s all I had. If there are more questions, I’m happy to answer them. If not, great. Okay, so we did have a couple questions come in. So question, you can use environmental hashes to store large memory efficient data, but creating hash has cost and scale to entry size hash gets slower with size. That’s not a question, that’s just statement of fact. But yes, you can use environment…environments use hashes. If you have dated it, it is amenable to that kind of storage. Generally, that’s not a…I haven’t seen very good examples for when you would use that. It’s more suited for database operations when you’re joining and stuff like that and that infrastructure is not built into R. 

Okay. I’m having non-profiling R questions, so maybe I can ask this off-line. I had sent it to the Vinci helpdesk, but I haven’t seen a response. I’m trying to figure out how to optimize the process by which I have generated a subset in R and then want to pull in a new CDW view based on that subset. Currently I identified a CDW table of interest and then use dplyr to inner join by key set copy equal true and then collect and save my new file. But this seems both slow and therefore not very efficient. Okay, I know that I did respond to this. I very at least put a note on there and it should’ve emailed you. If it did not, I sincerely apologize for that. But it should have. There’s a couple things here. So first a view to make sure that we’re discussing the same thing. First a view is…in SQL terms, a view is a query that is defined…it’s like a stored query where you’re joining a couple tables and that’s a view. It doesn’t actually store the data in most cases, but it will store your joining table A and table B. 

In this specific case, what’s happening when you set that copy equal to true is, if you are having a local table and you have a remote table and you say copy equal true when you do that interjoined, it will take that remote copy table and…remote table and copy it locally before it does the join. If you’re trying to do a joint on something like S patient, of course it’s going to take a long time because it is a huge table. You do not want to copy that all down. What you should do is explicitly copy the table to the Vinci server…to the SQL Server and then do your join. If you are actually interested in creating a view off of that definition, what you can do is use the show SQL or the build SQL. That I would have to look it up, but it will show you the query that you can then use that SQL query to define a view in SQL Server. I don’t think you actually define a view through DB dplyr or DBI or anything like that. So yeah, follow up with me by email if that doesn’t work. 

Okay, check the chat for the PowerPoint slides. There’s a link for downloading those. Did I answer all of the questions? 

Rob:	Andrew, we don’t have any questions that came into chat. Sometimes that happens, but you did get a couple comments. One is the topic of this presentation is exactly what I need. I appreciate it very much. And then somebody else said, _____ [00:42:35]. I thought you wanted to hear that.

Andrew:	Did you say there was another one:

Rob:	Well, there’s a couple. Thank you and somebody else wrote, excellent seminar. Thank you very much. We do have some time if attendees have question. Please do submit them to the Q&A. Here’s one asking you to show us the run with profile. 

Andrew:	Can I show you a run with profile? How to highlight and run specific lines of code? Is that question? I’m not sure if I’m allowed to share my screen here. 

Rob:	You can. You can share your desktop. 

Andrew:	Okay, so let me see if I can share…if I’ve got something pulled up that we can run. It’s not Vinci or VA related. It’s related to the other work I do with our study design and biostatistics center, but I think that that’s a little bit beside the point. So if I wanted to profile a line of code, I would highlight it, profile the selected lines, it will copy that code into the top console window with the Profvis…with it wrapped in a Profvis command, and then it would show me the…this ran really fast because I’ve already ran it once. So it runs a list files, file info, and then it’s running a normalized path because I’m getting some relatives…because I’m dealing with a lot of file. 

Rob:	Can I just interject and let people know that, if there is a way to zoom in. Over on the left is a little set of icons where you can click on the plus inside of magnifying glass to zoom in on what you have shared. 

Andrew:	And then on that I could save the profile. Save it as…and you can see that it doesn’t… And then I would usually put the…if I could type. And I will actually say that this is the test profile Rprof is up here, and I can look at the data and drill down of where I’m spending time in it. That was a quick function call. I thought it would take a little bit longer because it has to pull things off of the network. And then you could open a profile. Thought I had some profiles here, but I don’t know where they went to. But I will just open that profile. So if you send it with me… How can we check the memory size in R? Is there a way to make it larger? Okay, that is a really good question. Stop sharing. There is an icon here to keep track of… 

If you can see my mouse, I am hovering over where the memory is shown. It’s a little pie graph that says how much memory is free and how much is used. You can pull up a memory usage report and it will say, used by R objects, used by session, used by system. The total free memory…you can see that R isn’t using very much of this. At least this R session is not being used. Is not using much. I have like six or seven R sessions open. In the Vinci, there is also this pie graph and if that turns red, it means that there are a lot of users using up data, using a lot of memory. Or there is one user using up an awful lot of data. If you click on the memory report and it’s not you, you don’t have much to worry about, but it will give you that allocation error. Because it’s a window system, there is not a cap on the memory usage as much as it’s just a matter of competing resources. So if the memory is all used up, it’s used up and then that’s when it can’t allocate memory. And those are the things. 

And I feel for you. It’s a hardware limitation. We are not putting the constraints on you. We are working on drafting some guidelines of saying, you should stay within these guidelines of how much memory and how much processor to use. It’s just the structure of the shared environment. Know that by profiling and making your code memory and processor efficient, it will help not only you, it will help others. Yeah, yet so if the…for the one who just came in about they missed the presentation, this is being recorded. It will be put up on the archive of the past cyber seminars. And this one specifically will be linked to from the Vinci R Academy page on the Vinci University. If you go from Vinci central. Vinci University R Academy, there is a section of that webpage that has all the past cyber seminars related to R. 

Oh, pointers to parallel computation in R on da Vinci. I figured out ways of doing it, but that might not be the best way. Parallel processing can…it can get you into trouble if you’re monopolizing all of the CPU time and other users need it. With that caveat, parallel programming is entirely another subject. There are lots of presentations on it. With Vinci being a Windows-based environment, we are restricted in that sort of setting. So you’re basically restricted to…I forgot what the name of it is. The multicore. Using the parallel package do parallel. There is also new work coming out from Rstudio with the futures package that is worth looking at that is designed for really flexible parallel performing…parallel computations that is promising. Yeah, it is definitely a subject for another seminar if there is interest in that. The problem is that if everybody’s doing parallel processing on Vinci, we will run out of processing power very quickly. 

How can I query the available resources in my R session in Vinci? It seems that I get info about my desktop or workstation not Vinci. Okay, this actually did just go up yesterday onto the Vinci R Academy R FAQs. You can from Rstudio open up the task manager that would be specific to the server that you are working on. There’s two R servers. App 25 and app 26. If you open up the Task Manager, you can see what the available resources are. You can see what the CPU load and the memory consumption is. You can’t really do anything about it. If there’s not resources, then you don’t have permission to kill other people’s jobs and stuff of course. We don’t want that. But you can kind of see what is available. Okay, did I miss any? I think we’ve got them all Rob. 

Rob:	Yeah, I think so. There are no comments or questions that came into the chat, and I believe you answered all the questions that came into the Q&A. But let’s give people…we have a little bit more time so if you want to just make closing comments, it’s possible you’ll get one or two more while you do that. I don’t think you’re going to, but if you’ve got closing comments to make, now’s the time. 

Andrew:	I keep forgetting the time on my computer is faster than… Somehow my computer time is…so I have two minutes to the hour and it’s really seven minutes to the hour. So I apologize. I had a lot more time than I thought I had. 

Rob:	I have 2:54 PM. It’s perfectly fine.

Andrew:	Okay. Yeah, check the Vinci R Academy. The Vinci helpdesk at vinci@va.gov. The Vinci helpdesk for case specific problems. I can help with whatever. There’s a good chance if it’s optimizing code, I’ll be asking for a profile of the code to be able to look and try and to identify problem areas. Yeah, I don’t think I have a whole lot of other comments. But yeah, it’s not a terribly complicated topic, so I hope that everyone can take this and use it and become much better R programmers for using it. 

Rob:	Thank you Dr. Redd. I wasn’t listening, so I don’t know if you just gave it or not, but is the email address that one would want to send questions to vinci@va.gov? 

Andrew:	Yes.

Rob:	So that’s vinci@va.gov. Thank you for your presentation today and thank you for you work with the VA. Attendees, when I close the webinar momentarily, a separate webpage will pop up with a short survey. Please take a few moments and provide answers to those questions. We do review them and send them to our presenters in the series coordinators and try to make improvements based on your comments. Thanks again everybody, especially you Dr. Redd. Bye now. 

Andrew:	Thank you for having me.
Page 1 of 5

