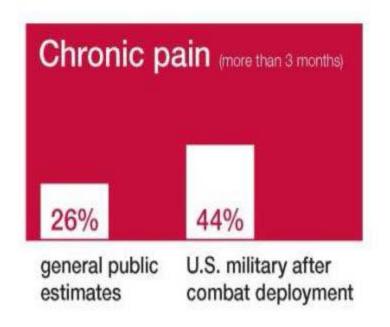
THE COST-EFFECTIVENESS OF COMPLEMENTARY AND ALTERNATIVE TREATMENTS TO REDUCE PAIN

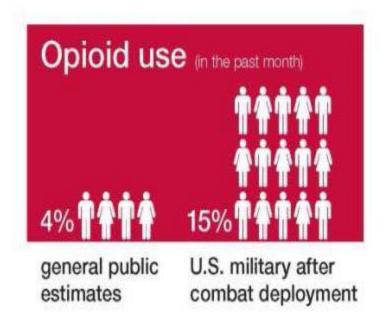
WORK IN PROGRESS

PI: Stephanie L. Taylor, PhD, GLA VA

Co-PI: Patricia M. Herman, ND, PhD, RAND

Acknowledgements


Additional Team Members:


- o Co-PI: Karl Lorenz, MD, Palo Alto VA, Stanford
- Qing Zeng, PhD, George Washington U. (formerly Palo Alto VA) (Natural Language Processing Team Lead)
- Craig Morioka, PhD, Greater Los Angeles VA
- Wei Yu, PhD, Palo Alto VA (Cost And Utilization Data Lead)
- Nell Marshall, PhD, Palo Alto VA
- Anita Yuan, PhD, Greater Los Angeles VA
- Karen Chu, MS, Greater Los Angeles VA

• Musculoskeletal Disorder Study Cohort:

- Bob Kerns, MD; Cynthia Brandt, MD; Joe Goulet, PhD Yale and VA
 Connecticut
- Funding: HSR&D Merit from 2014 NIH/VA/DOD Joint RFA

 Chronic pain and opioid use are prevalent among Veterans.

Toblin et al, 2011

- In the OEF/OIF/OND* Veteran population,
 - 62% have musculoskeletal disorders, most of which are accompanied by pain.
 - 58% have mental health conditions. Comorbid conditions include:
 - Anxiety
 - Depression
 - PTSD

- Sleep Disturbance
- Substance Abuse
- Traumatic Brain Injury (TBI)
- There is a need to identify cost-effective nonpharmacological approaches to addressing pain and comorbid mental health conditions.

*Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn

- Some complementary and integrative health (CIH/CAM) approaches have some evidence for treating pain or comorbid mental health conditions and are being offered widely at the VA.
 - CIH/CAM = acupuncture, yoga, meditation, etc.
 - 2015 VA HAIG reports CIH offered broadly (facility level data).
 - Very little information on system-wide use by individuals.
 - CIH also not well-documented in medical records.

This study leverages the VA's existing databases to measure:

- the extent of CIH use in the population of OEF/OIF/OND* Veterans with musculoskeletal pain
- its impact on pain and opioid use
- its total cost
- its cost-effectiveness

Research Questions/Specific Aims

- Determine resource use involved & "cost" of CIH services to VA
 - Big challenge is identifying CIH use
- 2. Determine cost-effectiveness of CIH for pain
 - Main analysis
- 3. Determine cost-effectiveness of CIH for co-morbid pain mental health conditions
 - Analysis of subset with both pain & 1+ MH
- 4. Interpret results and integrate findings into recommendations with Advisory Board help

Design and Methodology

- Cohort: Mostly OIF/OEF/OND veterans with chronic musculoskeletal disorder pain
 - Using the VA healthcare system during 2010-2013
- Chronic musculoskeletal disorder pain = either:
 - 2 or more MSD ICD9 codes "likely to represent chronic pain" (from Tian et al*) separated by 30-365 days
 OR
 - 2 or more MSD ICD9 codes within 90 days and with 2 or more pain scores ≥4 at 2+ visits within 90 days

Design and Methodology- Defining Pain

- Examples of "likely to represent chronic pain"*:
 - Psychogenic pain
 - Central pain syndrome
 - Joint pain
 - Anklosing spondylitis
 - Arthritis of the spine
 - Myelopathy
 - Schmorl's nodes
 - Disc degeneration
 - Postlaminectomy syndrome
 - Calcification of cartilage/disc

- Spinal stenosis
- ○Cervicalgia
- oLumbago
- ∘ Fibrositis
- oFibromyalgia
- OMyelopathy
- ○Coccydynia
- Neuralgia
- oFaciitis
- oPain in Limb
- Backache

^{*}From Tian et al, J Am Med Inform Assoc. 2013; 20:e275-e280.

Design and Methodology- Defining Pain

- ICD9 code groupings for 2nd criterion one of these types of pain + pain scores >=4
 - Back pain
 - Neck pain
 - Joint pain
 - Osteoarthritis
 - Temporomandibular disorder
 - Fibromyalgia

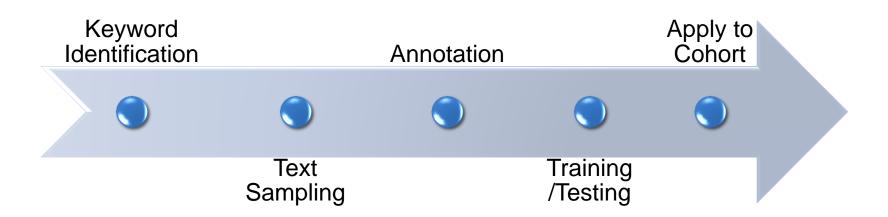
MSD Pain Types – person level

Pain Types	Frequency	Percent*
Back pain	279,306	52%
Joint pain	209,350	39%
Neck pain	89,522	17%
Osteoarthritis	40,850	8%
Fibromyalgia	38,790	7%
Temporomandibular disorder	401	0%
Total Cohort	540,042	100%
Multiple MSD diagnoses	103,934	19%

^{*}Percentages do not add to 100% because 19% of the cohort have multiple MSD diagnoses.

Design and Methodology

- Aim 1: Identifying 8 types CIH use via CPT and CHAR codes and natural language processing (NLP)
- Aims 2 and 3: Cost-effectiveness analysis using double robust methods to create comparable groups
- Aim 4: VA-based Advisory Board to help with inputs, and interpretation and integration of results


How CIH Is Being Identified

CIH Type	NLP	CPT Codes	CHAR Code
Acupuncture	X	X	X
Biofeedback	X	X	X
Guided imagery	X		X
Massage		X	X
Meditation	X		X
Tai Chi	X		X
Yoga	X		X
Hypnosis		X	X
Chiropractic*		X	

^{*} Also identified through provider type codes.

Natural Language Processing (NLP)

- A text mining technology that can search billions of pieces of electronic natural language text –e.g., notes in clinical records
- Uses a search technology that "teaches" machines to find particular words/terms in text and interpret them correctly

Cost-Effectiveness Analysis (CEA)

- Basic CEA is: (Δ Costs) / (Δ Effects)
- Comparison is between vets with chronic MSD pain using CIH and those who do not use CIH
 - Using double robust methods for comparisons
 - Combination of propensity scores and regression
- Effects measured using pain numerical rating scale (NRS) across the year
 - Also, will be measuring opioid use over year
- Costs are VHA healthcare utilization costs
 - VHA perspective
- Sensitivity analyses to test assumptions

Results To Date

- Cohort of mostly OEF/OIF/OND Veterans identified
 - Across both inclusion criteria 540,042 veterans w/chronic musculoskeletal chronic pain
 - 99% of these were identified by ICD9s "likely" for chronic pain
 - 91% of these were identified by ICD9s and ≥4 pain scores
 - So either inclusion criterion alone could have generated most of our cohort
- CIH use from different measures calculated
- Merging with demographic, pain, opioid use and cost data

Frequency of CIH Use in Cohort

CIH Type	% of Cohort
Meditation	16%
Yoga	7%
Acupuncture	6%
Biofeedback	3%
Chiropractic	4%
Guided imagery	4%
Massage	2%
Tai Chi	2%
Hypnosis	0.1%
Any of the above	27%

Demographics – all are number (%) unless indicated

Variable	Total Cohort (n=540,042)	CIH Users (n=129,521)	Control (n=348,157)
Age, mean (SD)	38.9 (8.5)	38.7 <u>(</u> 8.4)	39.0 <u>(</u> 8.5)
Female	95,893 (17.8)	29,078 (22.5)	54,030 (15.5)
Married	250,290 (46.4)	53,675 (41.4)	93,983 (27.0)
Divorced/Separated /Widowed	154,579 (28.6)	41,396 (32.0)	169,252 (48.6)
Single/Never Married	132,843 (24.6)	34,214 (26.4)	82,990 (23.8)
Service connected- ness >=50%	164,345 (30.4)	48,667 (37.6)	93,751 (26.9)

Plan for the Cost-Effectiveness Analyses

- Use 1 year of pain and healthcare utilization data:
 - For CIH users, year begins with first use of CIH
 - For controls, year begins at roughly the same amount of time after individual qualified for the cohort
- Healthcare utilization data from CDW and VA Fee Basis files
 - Cost per healthcare event will come from average cost database
 - Costs reported in total and by outpatient visits, labs and imaging; inpatient care, ER visits, and medications
 - Opioid use tracked specifically

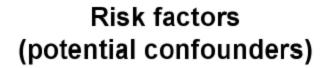
Plan for the Cost-Effectiveness Analyses (CEA) (Cont.)

Primary analysis: Any CIH use identified by codes

- Possible secondary analyses by CIH type dependent on numbers: acupuncture, chiropractic, massage
- Secondary analysis: Any CIH use identified by codes or NLP "Yes"
 - Possible secondary analyses by CIH type dependent on numbers: acupuncture, meditation, yoga
- Sensitivity analysis: Any CIH use identified by codes or NLP "Yes" or NLP "Probably yes"
 - Possible secondary sensitivity analyses by CIH type dependent on numbers: acupuncture, meditation, yoga

All CIH use datasets will be run against a <u>control</u> group that is devoid from any mention of CIH use

Quasi-Experimental Design


- We did not randomly allocate service members to use CIH or not – they chose this care
 - Self-selection bias
- Correct for this by identifying an appropriate control group

 one that is identical to the CIH use group except that
 they did not use CIH
- Several methods available to identify an appropriate control group:
 - Simple matching, propensity scores, regression modeling, double robust estimation

Matching On:

- Age
- Sex
- Race/ethnicity
- Marital status
- Means test (co-payments required or not)
- Service connectedness
- Percent disability
- Physical and psychiatric comorbidities
- Insurance status
- VA facility/station

Double Robust (DR): Conceptual Model

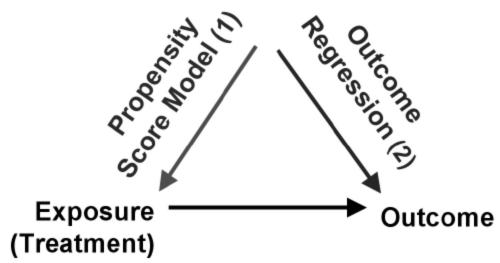


Figure 1. Component models of the DR estimator.

Source: Funk MJ, et al, 2010. Chapter 4. DR estimation of treatment effects. In *Analysis of Observational Data Using SAS*. Faries et al (eds). SAS Institute: Cary, NC. pp. 85-104.

Double Robust Statistical Approach

- Step 1: Model for probability of receiving treatment as a function of covariates (logistic) → weights
- Step 2: Separate regressions for exposed and unexposed individuals' outcomes as a function of covariates and risk factors → 2 sets of predicted outcomes for each individual
- Step 3: Each predicted outcome from these regressions is given a weight (IPW) from the first model to create a set of expected observations that are then compared statistically (e.g. z-test)

Challenges So Far

- Using NLP to identify CIH users and non-users
 - somewhat subjective interpretation of notes
 - Unclear if CIH documented in notes is internal or external to VA
- CIH use codes also have challenges
 - Almost no one using CHAR codes during the 2010-2013 period of interest
 - CPT4 codes very few exist for CIH and they are not always used
- Determining an appropriate start date for controls

Payoff to the VA for this Research

- Estimates of:
 - Overall CIH use multimethod measure
 - Cost of CIH use (VA investment in CIH)
 - Impact of CIH use on healthcare utilization
 - Impact of CIH use on opioid use and pain
- Results could affect the offer and level of funding for CIH use for chronic musculoskeletal pain and:
 - Improve Veterans' health
 - Reduce their use of opioids
 - Allow for more efficient use of VA healthcare resources

Stay Tuned: Next Steps

- This summer preliminary cost effectiveness results
- December 2017 final results
- Collaboration We would be excited to collaborate with others (e.g., apply these cost effective methods to other studies of CIH)