

Robotic-Assisted Surgery for Esophageal Cancer: Analysis of Short & Long-Term Outcomes

Presenters: Paul Shekelle, MD, PhD, Michael Mederos, MD, and Mark Girgis, MD

Co-authors: Michael de Virgilio, BS; Rivfka Shenoy, MD, MS; Linda Ye, MD; Selene S. Mak, PhD, MPH; Meron Begashaw, MPH; Marika S. Booth, MS; and Melinda Maggard-Gibbons, MD

April 27, 2021

VA Evidence Synthesis Program overview

- Established in 2007
- Provides tailored, timely, and accurate evidence syntheses of VA-relevant, Veteran-focused healthcare topics. These reports help:
 - Develop clinical policies informed by evidence;
 - Implement effective services and support VA clinical practice guidelines and performance measures; and
 - Set the direction for future research to address gaps in clinical knowledge.
- Four ESP Centers across the US:
 - Directors are VA clinicians, recognized leaders in the field of evidence synthesis, and have close ties to the AHRQ Evidence-based Practice Center Program and Cochrane Collaboration
- ESP Coordinating Center in Portland:
 - Manages national program operations and interfaces with stakeholders
 - Produces rapid products to inform more urgent policy and program decisions

To ensure responsiveness to the needs of decision-makers, the program is governed by a Steering Committee comprised of health system leadership and researchers.

The program solicits nominations for review topics several times a year via the program website.

Evidence Synthesis Program

ESP Center locations

Acknowledgements

The review team developed the report's scope, study questions, and methodology in consultation with the Operational Partners, ESP Coordinating Center, and technical expert panel (TEP). The authors gratefully acknowledge Roberta Shanman, Jon Bergman, and the following individuals for their contributions:

Operational Partners

Mark Wilson, MD National Director of Surgery Department of Veterans Affairs William Gunnar, MD Former National Director of Surgery Department of Veterans Affairs

Technical Expert Panel (TEP)

Rajeev Dhupar, MD, MBA University of Pittsburgh Medical Center Department of Veterans Affairs Pittsburgh, PA

Nir Hoftman, MD David Geffen School of Medicine at UCLA Los Angeles, CA James Maloney, MD University of Wisconsin Department of Veterans Affairs Madison, WI

Daniel Wiener, MD Harvard University Department of Veterans Affairs Boston, MA

U.S. Department of Veterans Affairs

terans Health Administration ofth Services Research & Development Service

This report is based on research conducted by the Evidence Synthesis Program (ESP) Center located at the **West Los Angeles VA Medical Center, Los Angeles, CA**, funded by the Department of Veterans Affairs, Veterans Health Administration, Health Services Research and Development. The findings and conclusions in this document are those of the author(s) who are responsible for its contents; the findings and conclusions do not necessarily represent the views of the Department of Veterans Affairs or the United States government. Therefore, no statement in this article should be construed as an official position of the Department of Veterans Affairs. No investigators have any affiliations or financial involvement (*e.g.*, employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties) that conflict with material presented in the report.

Robotic-Assisted Surgery for Esophageal Cancer: Analysis of Short & Long-Term Outcomes

March 2021

Full-length report available on ESP website: <u>http://www.hsrd.research.va.gov/publications/esp/reports.cfm</u>

U.S. Department of Veterans Affairs

Background

Esophageal Cancer Awareness Month

- Esophageal cancer makes up **1%** of all cancer diagnoses in the U.S.
- About 19,260 patients will be diagnosed in 2021
- About **15,530** esophageal cancer-related deaths
- 20% 5-year survival

U.S. Department of Veterans Affairs

- Nine-fold increase in robotassisted minimally invasive esophagectomy (RAMIE) from 2009-2016
- Open esophagectomy and thoraco-laparoscopic esophagectomy are the most common approaches. It is unclear how RAMIE compares to these other techniques.

Seto (2017); Ann Gastroenterol Surg

FDA warning 2019

FDA U.S. FOOD & DRUG

Home / Medical Devices / Medical Device Safety / Safety Communications
/ Caution When Using Robotically-Assisted Surgical Devices in Women's Health including Mastectomy and Other Cancer-Related Surgeries: FDA Safety Communication

Caution When Using Robotically-Assisted Surgical Devices in Women's Health including Mastectomy and Other Cancer-Related Surgeries: FDA Safety Communication

- Benefits and risks are not established, and long-term clinical and oncologic outcomes are questioned
- Robotic platform requires economic investment and unclear whether improvements in outcomes outweigh costs (cost-effectiveness questions remain).

1) What is the <u>clinical effectiveness</u> of robotic-assisted esophagectomy compared to open or thoracoscopic/laparoscopic esophagectomy for cancer?

2) What is the <u>cost-effectiveness</u> of robotic-assisted esophagectomy compared to open or thoracoscopic/laparoscopic esophagectomy for cancer?

Selection of Studies

Veterans Health Administration Health Services Research & Development Service

1) What is the <u>clinical effectiveness</u> of robotic-assisted esophagectomy compared to open or thoracoscopic/laparoscopic esophagectomy for cancer?

2) What is the <u>cost-effectiveness</u> of robotic-assisted esophagectomy compared to open or thoracoscopic/laparoscopic esophagectomy for cancer?

Outcomes of Interest

Intra-operative

- Operative time
- Estimated blood loss (EBL)
- Lymph node harvest

Short-term

- Anastomotic leak
- Recurrent laryngeal nerve (RLN) palsy
- Pulmonary complications
- Total complications
- Length of stay**
- 90-day mortality

Long-term

- Recurrence
- Cancer-free survival

Evidence Synthesis Program

Intraoperative Outcomes – Operative Time ESP

RAMIE vs. VAMIE

 RAMIE associated with longer operative time

RAMIE vs. OE

 RAMIE associated with longer operative time

Non-matched observational study

U.S. Department of Veterans Affairs

Intraoperative Outcomes – EBL

RAMIE vs. VAMIE RAMIE vs. OE 400 EBL (mL) Favors RAMIE Favors VAMIE/Open 200 0 -200 -400 Espinota. Marcado. 2019 Moloyana.2019 Van der Sluis 2019 Den9.2018 .Nercado. 2019 Natione.2019 T894805,2019 Inang. 2019 Gorg. 2020 Meredith.2019 Washington, 2010 Jeon 9.2016 100.2010 Gon9:2020 Meredith. 2019 05343.2018 Salkala 2019 14e.2020 Chen 2019 HH8.2018 13r9.2019 Polt.2017* CH80.2017 Patt. 2016 RCT

RAMIE vs. VAMIE

No difference in EBL

RAMIE vs. OE

RAMIE associated with • less EBL

U.S. Department of Veterans Affairs

/eterans Health Administratio Health Services Research & Development Service

Matched observational study

Intraoperative Outcomes – LN Harvest

RAMIE vs. VAMIE

 RAMIE associated with larger lymph node harvest

Evidence Synthesis Program

RAMIE vs. OE

 RAMIE associated with larger lymph node harvest

🕨 😑 🛛 RCT

- Matched observational study
- Non-matched observational study

Short-term Outcomes

RAMIE vs. OE

RAMIE vs. VAMIE

 No difference in anastomotic leak or RLN palsy

RAMIE vs. OE

No difference in • anastomotic leak or RLN palsy

RCT

- Matched observational study
- Non-matched observational study

Short-term Outcomes cont.

RAMIE vs. VAMIE

 No difference in pulmonary or total complications

RAMIE vs. OE

 RAMIE associated with fewer pulmonary and total complications

RCT

- Matched observational study
- Non-matched observational study

Short-term Outcomes cont.

RAMIE vs. VAMIE

RAMIE vs. OE

RAMIE vs. VAMIE

• No difference in LOS

RAMIE vs. OE

 RAMIE <u>may</u> be associated with shorter LOS

Non-matched observational study

Short-term Outcomes cont.

RAMIE vs. VAMIE

RAMIE vs. VAMIE

RAMIE vs. OE

• No difference in mortality

RAMIE vs. OE

• No difference in mortality

🛛 😑 🛛 RCT

- Matched observational study
- Non-matched observational study

Long-term Outcomes - Recurrence

RAMIE vs. VAMIE or OE

 No difference in cancer recurrence

U.S. Department of Veterans Affairs eterans Health Administration

Long-term Outcomes – Cancer-free survival

RAMIE vs. VAMIE

 RAMIE <u>may</u> be associated with longer cancer-free survival

RAMIE vs. OE

 No difference in cancerfree survival

- 🕨 😑 🛛 RCT

Matched observational study

Non-matched observational study

Evidence Synthesis Program

Summary

	RAMIE vs. VAMIE	RAMIE vs. Open
Operative Time**	1	1
Lymph Node Harvest	1	1
EBL	=	\checkmark
Anastomotic Leak	=	=
RLN Palsy	=	=
Pulmonary Complications	=	\checkmark
Total Complications	=	\checkmark
Length of Stay	=	\checkmark
Mortality (90-day)	=	=
Recurrence	=	=
Cancer-free survival	<u>^(?)</u>	=

**Significant heterogeneity across studies, suggesting differences in the measurement of this outcome

1) What is the <u>clinical effectiveness</u> of robotic-assisted esophagectomy compared to open or thoracoscopic/laparoscopic esophagectomy for cancer?

2) What is the <u>cost-effectiveness</u> of robotic-assisted esophagectomy compared to open or thoracoscopic/laparoscopic esophagectomy for cancer?

Cost-Effectiveness

- No studies evaluated cost-effectiveness
- 2 studies included some measure of cost

Source	RAMIE	VAMIE	Open	P-values	Notes
Chen, 2019	Total Expenses: \$25,300 ± 9,000 (USD)	Total Expenses: \$20,800 ± 9,000 (USD)		P=0.009	ICU and total length of stay were longer for RAMIE but did not reach significance
	Expenses/Day: \$1,700 ± 700 (USD)	Expenses/Day: \$1,500 ± 400 (USD)		P=0.028	
Van Der Sluis, 2018	Mean cost: €34,892		Mean cost: €39,463	P=0.07	RAMIE had a shorter length of stay that did not reach significance

- RAMIE is associated with longer operative times and larger LN harvest compared with VAMIE and open esophagectomy
- Short term outcomes are similar between RAMIE and VAMIE
- RAMIE is associated with less EBL, pulmonary complications, and total complications compared with open esophagectomy
- Insufficient data to make conclusions about long-term outcomes and cost-effectiveness

Applicability of Findings to the VA Population

• No studies specific to VA populations.

• Applicability may depend on both similarity of the patients studied to VA and experience of surgical teams using the robot to VA surgical teams.

 Benefits for robotic approach may still be realized despite patient-level differences (VA patients greater burden of comorbidities), which will need to be confirmed in future studies.

Evidence Synthesis Program

Applicability of Findings to the VA Population

• Robotic systems in the VA increased from 43 to 95 from 2014 to 2019

Evidence Synthesis Program

Applicability of Findings to the VA Population

- Evidence Synthesis Program
- Four-fold increase in robot-assisted thoracic surgery at the VA from 2014-2019

Figure A.1. Robotic system utilization for surgical subspecialty procedures by calendar year.

Research Gaps

- Need for randomized/well-designed studies evaluating long-term oncologic outcomes.
- There are several approaches/techniques to performing an esophagectomy, which is difficult to disentangle (e.g., McKeown, Ivor-Lewis, transhiatal).
- Regional variations in surgical practice, operative volume, and esophageal cancer epidemiology (SCC vs. adenocarcinoma).
- There is a need for high quality cost-effectiveness studies as well as a standardized method to assess cost (i.e., analytics, consistent definitions, accounting for upfront capital, staff training, etc.)

Acknowledgements

Our Team

Operational Partners

Technical Expert Panel

Paul Shekelle Melinda Maggard-Gibbons Mark Girgis Michael Mederos Michael de Virgilio Rivfka Shenoy Linda Ye Paul Toste Christopher Childers Selene Mak Meron Begashaw Marika Booth

Mark Wilson William Gunnar

Rajeev Dhupar Nir Hoftman James Maloney Daniel Wiener

If you have further questions, please feel free to contact:

Melinda Gibbons, MD, MSHS

Melinda.Gibbons@va.gov

Mark Girgis, MD

Mark.Girgis@va.gov

Full-length report and cyberseminar available on ESP website:

http://www.hsrd.research.va.gov/publications/esp/

This report is based on research conducted by the West Los Angeles Evidence Synthesis Program (ESP) Center, funded by the Department of Veterans Affairs, Veterans Health Administration, Health Services Research and Development. The findings and conclusions in this document are those of the author(s) who are responsible for its contents; the findings and conclusions do not necessarily represent the views of the Department of Veterans Affairs or the United States government. Therefore, no statement in this article should be construed as an official position of the Department of Veterans Affairs. No investigators have any affiliations or financial involvement (eg, employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties) that conflict with material presented in the report.

U.S. Department of Veterans Affairs

leterans Health Administration fealth Services Research & Development Service

Supplemental

Author, year	Surgical Approach	Technique	Abdomen	Chest	Anastomosis
Chao 2017	RAMIE	McKeown	Laparoscopic	Robotic	Circular stapled; cervical
	VAMIE	McKeown	Laparoscopic	VATS	Circular stapled; cervical
Chen 2019	RAMIE	McKeown	NR	Robotic	Circular stapled; cervical
	VAMIE	McKeown	Laparoscopic	VATS	Circular stapled; cervical
Deng 2018	RAMIE	McKeown	Robotic	Robotic	Circular stapled or handsewn; cervical
	VAMIE	McKeown	Laparoscopic	VATS	Circular stapled or handsewn; cervical
Gong 2020	RAMIE	McKeown	Robotic	Robotic	Circular stapled; cervical
	VAMIE	McKeown	Laparoscopic	VATS	Circular stapled; cervical
	Open	McKeown	Laparotomy	Thoracotomy	NR

Author, year	Surgical Approach	Technique	Abdomen	Chest	Anastomosis
He 2018	RAMIE	McKeown	Robotic	Robotic	End to side circular stapled; cervical
	VAMIE	McKeown	Laparoscopic	VATS	End to side circular stapled; cervical
van der Sluis 2019	RAMIE	McKeown	Laparoscopic	Robotic	End to side handsewn; cervical
	Open	McKeown	Laparotomy	Thoracotomy	End to side handsewn; cervical
Yang 2019	RAMIE	McKeown	Robotic	Robotic	Cervical
	VAMIE	McKeown	Laparoscopic	VATS	Cervical
Meredith 2019	RAMIE	Ivor Lewis	NR	NR	NR
	VAMIE	Ivor Lewis	NR	NR	NR
	Open	Ivor Lewis	NR	NR	NR
Motoyama 2019	RAMIE	Ivor Lewis	NR	Robotic	NR
	VAMIE	Ivor Lewis	NR	VATS	NR

Author, year	Surgical Approach	Technique	Abdomen	Chest	Anastomosis
Naffouje 2019	RAMIE	Ivor Lewis	NR	NR	NR
	VAMIE	Ivor Lewis	NR	NR	NR
Rolff 2017	Hybrid	Ivor Lewis	Robotic	Thoracotomy	NR
	Open	Ivor Lewis	Laparotomy	Thoracotomy	NR
Tagkalos 2019	RAMIE	Ivor Lewis	Robotic	Robotic	Circular stapled; intrathoracic
	VAMIE	Ivor Lewis	Laparoscopic	VATS	Circular stapled; intrathoracic
Zhang 2019	RAMIE	Ivor Lewis	Robotic	Robotic	End to end both circular stapled + handsewn; intrathoracic
	VAMIE	Ivor Lewis	Laparoscopic	VATS	End to end circular stapled; intrathoracic
Washington 2019	RAMIE	Transhiatal	Robotic	NA	Cervical
	VAMIE	Transhiatal	Laparoscopic	NA	Cervical

Author, year	Surgical Approach	Technique	Abdomen	Chest	Anastomosis
Espinoza-Mercado 2019	RAMIE	NR	NR	NR	NR
	VAMIE	NR	NR	NR	NR
	Open	NR	NR	NR	NR
Не 2020	RAMIE	McKeown	Robotic	Robotic	
	VAMIE	McKeown	Laparoscopic	VATS	
Jeong 2016	RAMIE	McKeown	Laparotomy	Robotic	Cervical
	Open	Ivor Lewis or McKeown	Laparotomy	Thoracotomy	Cervical or thoracic
Osaka 2018	RAMIE	NR	NR	Robotic	NR
	Open	NR	NR	Thoracotomy	NR
Park 2016	RAMIE	90% McKeown 10% Ivor Lewis	58% robotic 42% open*	Robotic	90% cervical 10% thoracic
	VAMIE	81% McKeown 19% Ivor Lewis	49% laparoscopic 51% open*	Laparoscopic	81% cervical 19% thoracic

Author, year	Surgical Approach	Technique	Abdomen	Chest	Anastomosis
Sarkaria 2019	RAMIE	62/64 Ivor Lewis; 2/64 McKeown	NR	NR	NR
	Open	103/106 open Ivor Lewis; 3/106 thoracoabdominal	NR	NR	NR
Yun 2019	RAMIE	57.1% Ivor Lewis 42.9% McKeown	Robotic or Laparoscopic	Robotic	Circular stapled; cervical
	Open	54.4% Ivor Lewis 45.6% McKeown	Laparotomy	Thoracotomy	Circular stapled; cervical

