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Research Design 



Health Services Research 
 Many questions in health services research aim to 

establish causality 
– Does the adoption of electronic medical records reduce 

health care costs or improve quality of care? 
– Did the transition to Patient Aligned Care Teams 

(PACT) improve quality of care and health outcomes? 
– What effect will the Affordable Care Act (ACA) have on 

the demand for VHA services? 
 Ideally studied through randomized controlled trials 
 When can regression analysis of observational data 

answer these questions? 
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Poll: Familiarity with Regressions 

 How would you describe your familiarity 
with regression analysis? 
– Regression is my middle name. 
– I’ve run a few regressions and get the gist of 

how they work. 
– I took a statistics class many years ago. 
– What is a regression? 
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Objectives 
 Provide a conceptual framework for research 

design 
 Review the linear regression model 
 Define exogeneity and endogeneity 
 Discuss three forms of endogeneity  

– Omitted variable bias 
– Sample selection 
– Simultaneous causality 

4 



Research Question 

 Start with a research question: 
– What is the effect of 𝑋𝑋 on 𝑌𝑌? 

 For example: 
– What effect does education have on health? 
 
 

5 



Linear Regression Model 
𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝑒𝑒𝑖𝑖 

 
 𝑌𝑌: outcome variable of interest 
 𝑋𝑋1: explanatory variable of interest 
 𝑋𝑋2: control variable 
 𝑒𝑒: error term 

– 𝑒𝑒 is the difference between the observed and predicted values of Y 
– 𝑒𝑒 contains all other factors besides 𝑋𝑋1 and 𝑋𝑋2 that determine the value of 𝑌𝑌 

 𝛽𝛽1: the change in 𝑌𝑌 associated with a unit change in 𝑋𝑋1, holding 
constant 𝑋𝑋2 

– 𝛽̂𝛽1 is our estimate of 𝛽𝛽1 
 

 Model specifies all meaningful determinants of 𝑌𝑌 
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Linear Regression Model (2) 
 In our example: 

 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑖𝑖 
 

– ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: dependent variable 
– 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: independent variable 
– 𝑒𝑒: error term 

 𝑒𝑒 contains all other factors besides education that determine health 
– 𝛽𝛽1: the change in health associated with an increase in education 

 
 When does 𝛽̂𝛽1 estimate the causal effect of education 

on health? 
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Exogeneity 
 Assumption: 𝐸𝐸 𝑒𝑒𝑖𝑖 𝑋𝑋𝑖𝑖 = 0  

– Conditional mean of 𝑒𝑒𝑖𝑖 given 𝑋𝑋𝑖𝑖 is zero  
 Conditional mean independence 

– 𝑋𝑋 is “exogenous” 
 

 Knowing 𝑋𝑋𝑖𝑖 does not help us predict 𝑒𝑒𝑖𝑖 
– 𝑒𝑒𝑖𝑖 is the difference between the observed and predicted values of 𝑌𝑌𝑖𝑖 
– 𝑒𝑒𝑖𝑖 contains other factors besides 𝑋𝑋𝑖𝑖 that determine the value of 𝑌𝑌𝑖𝑖 
– Information other than 𝑋𝑋𝑖𝑖 does not tell us anything more about 𝑌𝑌𝑖𝑖 

 
 Implies that 𝑋𝑋𝑖𝑖 and 𝑒𝑒𝑖𝑖 cannot be correlated 
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Exogeneity (2) 
 In the context of a randomized controlled trial: 
 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑒𝑒𝑖𝑖 
 

– 𝑒𝑒𝑖𝑖 can include things like age, gender, pre-existing conditions, 
income, education, etc. 

 

 Because treatment is randomly assigned, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑒𝑒 
are independent 
– This implies 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is exogenous 

 

 In observational studies, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is not randomly 
assigned 
– The best we can hope for is that 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is as if randomly 

assigned 
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Exogeneity (3) 
 In our example: 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑖𝑖 
 In order for 𝛽̂𝛽1 to estimate the causal effect of 

education on health, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 must be exogenous 
– All factors other than education do not tell us anything 

more about health 

 In the context of a randomized controlled trial, 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is exogenous 
– Is the same true in the context of observational studies? 
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Endogeneity 
 Violation of the exogeneity assumption  

– 𝑋𝑋 is endogenous 
– Always true when 𝑋𝑋𝑖𝑖 is correlated with 𝑒𝑒𝑖𝑖 

 𝛽̂𝛽1 is biased 
– 𝛽̂𝛽1 is unbiased if the expected value of 𝛽̂𝛽1 is equal to 

the true value of 𝛽𝛽1 
 𝛽̂𝛽1 will not estimate a causal effect of 𝑋𝑋 on 𝑌𝑌 

– 𝛽̂𝛽1 is a measure of the correlation between 𝑋𝑋 and 𝑌𝑌 
– Correlation does not imply causation 
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Forms of Endogeneity 

 Omitted variable bias 
 Sample selection 
 Simultaneous causality 
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Omitted Variable Bias 
 Arises when: 

– A variable omitted from the regression model 
is a determinant of the dependent variable, 𝑌𝑌 

– The omitted variable is correlated with the 
regressor, 𝑋𝑋 

 Leads 𝛽̂𝛽1 to be biased 
– 𝛽̂𝛽1 also captures the correlation between the 

omitted variable and the dependent variable 
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Omitted Variable Bias (2) 
 Regression model: 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝑒𝑒𝑖𝑖 
 Say another factor, 𝑊𝑊𝑖𝑖, determines 𝑌𝑌𝑖𝑖 

– 𝑊𝑊𝑖𝑖 is included in the error term, 𝑒𝑒𝑖𝑖 
 If 𝑋𝑋𝑖𝑖 and 𝑊𝑊𝑖𝑖 are correlated 

– 𝑋𝑋𝑖𝑖 and 𝑒𝑒𝑖𝑖 are correlated 
 𝑋𝑋𝑖𝑖 is endogenous 

–  𝛽̂𝛽1 is biased 
 𝛽̂𝛽1 also captures the correlation between 𝑊𝑊𝑖𝑖 and 𝑌𝑌𝑖𝑖 
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Omitted Variable Bias: Example 
 In our example: 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑖𝑖 
 Two questions: 

– Besides education, do any other factors 
determine health? 

– Are those factors correlated with education? 
 Consider two factors: income and social 

networks 

15 



Omitted Variable Bias: Example (2) 
 Income 

– Individuals with higher incomes may be more able to 
afford goods and services that promote good health 

– Individuals with higher levels of education tend to have 
higher incomes 

 Social networks 
– Individuals with greater social networks may be more 

able to obtain better health care  
– Individuals with higher levels of education are more 

likely to have social networks that facilitate access to 
better health care 
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Omitted Variable Bias: Solutions 
 Multiple linear regression 

– Include all relevant factors in the regression model 
so that we have conditional mean independence 

– Often not possible to include all omitted variables 
in the regression 

 Randomized controlled trial 
 Natural experiment 

– More on this in the Natural Experiments and 
Difference-in-Differences lecture on April 8 
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Omitted Variable Bias: Solutions (2) 

 Utilize panel data (same observational unit observed 
at different points in time) 
– Fixed effects regression: control for unobserved omitted 

variables that do not change over time  
– For more information: Stock and Watson, Chapter 10 

 Instrumental variables regression 
– Utilize an instrumental variable that is correlated with 

the independent variable of interest but is uncorrelated 
with the omitted variables 

– More on this in the Instrumental Variables Regression 
lecture on April 22 
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Sample Selection 

 Arises when: 
– A selection process influences the 

availability of data 
– The selection process is related to the 

dependent variable, 𝑌𝑌, beyond depending on 
𝑋𝑋 

 Leads 𝛽̂𝛽1 to be biased 
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Sample Selection (2) 

 Form of omitted variable bias 
– The selection process is captured by the 

error term 
– Induces correlation between the regressor, 
𝑋𝑋, and the error term, 𝑒𝑒 
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Sample Selection: Examples 
 Want to evaluate the effect of a new tobacco 

cessation program (offered to all patients) on quitting 
– 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑒𝑒𝑖𝑖 
– Problem: Individuals who participate in the program 

may be more likely to quit to begin with 
 

 Want to evaluate the effect of a new primary care 
model (rolled out for some patients at a facility) on 
patient satisfaction 
– 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 + 𝑒𝑒𝑖𝑖 
– Problem: Patients who don’t like the new program stop 

coming to the facility and receive their care elsewhere 
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Sample Selection: Solutions 
 Randomized controlled trial 
 Natural experiment 

– More on this in the Natural Experiments and Difference-
in-Differences lecture on April 8 

 Sample selection and treatment effect models 
– For more information:  
 Greene, 2000 Chapter 20 
 Wooldridge, 2010, Chapter 17 

 Instrumental variables regression 
– More on this in the Instrumental Variables Regression 

lecture on April 22 
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Simultaneous Causality 

 Arises when: 
– There is a causal link from X to Y 
– There is also a causal link from Y to X 

 Also called simultaneous equations bias 
 Leads 𝛽̂𝛽1 to be biased 

– Reverse causality leads 𝛽̂𝛽1 to pick up both 
effects 
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Simultaneous Causality: Example 

 We want to estimate the effect of primary care 
visits on health 
 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖 + 𝑒𝑒𝑖𝑖 
 

 If a person’s health also affects the likelihood of 
making a primary care visit: 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝜀𝜀𝑖𝑖 
 

 Both equations are necessary to understand the 
relationship between primary care visits and 
health 
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Simultaneous Causality: Example (2) 

 We now have two simultaneous equations: 
 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 + 𝑒𝑒𝑖𝑖 (1) 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝜀𝜀𝑖𝑖 (2) 

 

 Suppose a positive error 𝑒𝑒𝑖𝑖 leads to a higher value of ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 (better health) 
 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖 + 𝑒𝑒𝑖𝑖 (1) 
 

 If 𝛾𝛾1 < 0, then a higher value of ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 leads to a lower value of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖  
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝜀𝜀𝑖𝑖 (2) 
 

 Therefore, a positive error 𝑒𝑒𝑖𝑖 leads to a lower value of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 
– 𝑒𝑒𝑖𝑖 ↑ → 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 ↓ 
– 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖 and 𝑒𝑒𝑖𝑖  are correlated 
– 𝛽̂𝛽1 is biased 
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Simultaneous Causality: Solutions 

 Randomized controlled trial where the reverse 
causality channel is eliminated 

 Natural experiment 
– More on this in the Natural Experiments and 

Difference-in-Differences lecture on April 8 
 Instrumental variables regression 

– Utilize an instrumental variable that is correlated 
with 𝑋𝑋 but is uncorrelated with the error term (does 
not otherwise determine 𝑌𝑌) 

– More on this in the Instrumental Variables 
Regression lecture on April 22 
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Summary 
 Good research design requires an understanding of how the 

dependent variable is determined 
 Need to ask: is the explanatory variable of interest exogenous?  

– Are there omitted variables? 
– Is there sample selection? 
– Is there simultaneous causality? 

 Exogeneity is necessary for the estimation of a causal treatment 
effect 

 Understanding sources of endogeneity can: 
– Help us understand what our regression estimates actually estimate and 

the limitations of our analyses 
– Can point us to appropriate methods to use to answer our research 

question 
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Resources 

 Stock and Watson, Introduction to 
Econometrics, 3rd edition (2011) 

 Green, Econometric Analysis, 7th edition 
(2012)  

 Wooldridge, Econometric Analysis of 
Cross Section and Panel Data, 2nd edition 
(2010) 
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