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Overview
 







Causal effects and randomized controlled 
trials 
Natural experiments 
Difference-in-differences estimator 
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Poll: Natural Experiments
 

 Which of the following best describes your 
familiarity with natural experiments? 
– I am very familiar with the concept of natural 

experiments. 
– I have a working understanding of what natural 

experiments are. 
– I am new to the concept of natural experiments. 
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Poll: Difference-in-Differences 
 Which of the following best describes 

your familiarity with difference-in­
differences? 
– I am very familiar with difference-in­

differences. 
– I have a working knowledge of difference-

in-differences. 
– I am new to difference-in-differences. 
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Objectives
 





Provide an overview of natural 
experiments 
– Motivation, definition, examples 
Provide an overview of the difference-in­
differences estimator 
– Motivation, definition, example,
 

assumptions, limitations
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Causal Effects
 




Many questions in health services research aim
to estimate causal effects 
– Does the adoption of electronic medical records 

reduce health care costs or improve quality of care? 
– Did the transition to Patient Aligned Care Teams 

(PACT) improve quality of care and health 
outcomes? 

– What effect will the Affordable Care Act (ACA)
have on the demand for VHA services? 

Ideally studied through randomized controlled 
trials (RCTs) 
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RCTs: Estimating Causal Effects
 


 

What  is the effect of treatment  on outcomes?  

 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑖𝑖 + 𝑜𝑜𝑖𝑖
  
– 𝑜𝑜𝑖𝑖  includes  other factors that affect the outcome  (e.g., 

age, gender, pre-existing  conditions, income, 
education, etc.)  

 In a RCT, treatment is randomly assigned:  
– Treatment  is exogenous  
 𝐸𝐸 𝑜𝑜𝑖𝑖 𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑖𝑖 = 0  
 𝑜𝑜  and treatment  are uncorrelated  

–  𝛽̂𝛽1= average  effect  of treatment  
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Idealized Experiment
 

 To estimate the causal effect of treatment, 
randomly assign treatment 
– Not always feasible, ethical, or practical 
– Useful as a conceptual benchmark for
 

observational studies
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Natural Experiments
 

 External circumstances produce what appears 
to be randomization 
– Legal institutions, geography, timing of 

policies or programs, natural randomness in 
weather, birthdates, or other factors that are 
unrelated to the casual effect of interest 

 Variation in individual circumstances make it
 
appear as if treatment is randomly assigned
 
– Exogenous variation in treatment 
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Example (1)
 
 What are the returns to physician human capital? 

– Doyle, Ewer, and Wagner (2010) 
– Setting: 






VA hospital with affiliations with two medical schools 
Residency programs vary substantially in terms of their
rankings 
Clinical teams from the two programs operate independently 
Patients are assigned to clinical teams based on the last digit
of their SSN (odd/even) 

– “As if” randomization of patients to clinical teams 
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Example (2)
 
 Does increasing Medicaid payments for primary care

increase primary care visits and reduce hospital and 
emergency department use? 
–	 Gruber, Adams, and Newhouse (1997) 
–	 Setting: 




In 1986, Tennessee increased its payments for primary care 
services 
The neighboring state Georgia had a similar Medicaid
reimbursement system and there were no other changes in the 
structure of payment incentives in either state during the 
study period 

– Exogenous increase in Medicaid payments for primary 
care 
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Example (3)
 
 Does more intensive treatment of acute myocardial


infarction (AMI) in the elderly reduce mortality?
 
– McClellan, McNeil, and Newhouse (1994) 
– Setting: 




Patients who live closer to hospitals that have the capacity to
perform more intensive treatments are more likely receive 
those treatments 
The distance a patient lives from a given hospital should be
independent of his health status 

– Distance affects the probability of intensive treatment of 
AMI 
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“As if” Randomization
 




If the  “as if”  randomization fails  to produce 
random  ass

̂
ignment  of treatment,  then the OLS 

estimator, 𝛽𝛽1, is b iased  
Evaluating the validity of the  “as if” 
randomization assumption:  
– Check for  differences between the treatment and 

control groups  
 Finding no observable differences is  not  sufficient  

– Use  contextual knowledge and judgement to assess 
whether  “as if”  randomization assumption is 
reasonable  
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Types of Natural Experiments
 
 Two types of natural experiments: 

– Variation in individual circumstances cause
 
treatment to be as if randomly assigned
 






Examples 1 and 2 
Can use OLS to estimate the causal effect 

– Variation in individual circumstances only partially 
determines treatment 

Example 3 
Use instrumental variables regression to estimate the 
causal effect 

– More on this in the Instrumental Variables Regression lecture
on April 22 
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Estimating Causal Effects
 

 One option is to compare pre- and post-
treatment outcomes in the treatment group: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 + 𝑜𝑜𝑖𝑖 

= ൜1, 𝑜𝑜 ≥ 𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜 𝑑𝑑𝑡𝑡𝑜𝑜𝑜𝑜 𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 0, 𝑜𝑜 < 𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜 𝑑𝑑𝑡𝑡𝑜𝑜𝑜𝑜 
– Issue: if other factors that affect the outcome or 

treatment changed during the study period, our
estimate of the treatment effect, 𝛽̂𝛽1, will be 
biased 
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Estimating Causal Effects (2)
 
 Another option is  to compare the  post-

treatment outcomes between treatment  and  
control groups:  
 

 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑖𝑖 + 𝑜𝑜𝑖𝑖  
1, 𝑖𝑖  𝑖𝑖𝑡𝑡  𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜  𝑔𝑔𝑡𝑡𝑜𝑜𝑜𝑜𝑝𝑝         𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑖𝑖 = ൜   0, 𝑖𝑖  𝑡𝑡𝑜𝑜𝑜𝑜  𝑖𝑖𝑡𝑡  𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜  𝑔𝑔𝑡𝑡𝑜𝑜𝑜𝑜𝑝𝑝 

 

– Issue: if  there are differences  between the two 
groups,  our estimate of the treatment  effect,  𝛽̂𝛽1,
will  be biased  
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Difference-in-Differences
 
Estimator
 

 Compare the change in the pre- and post-treatment

outcomes across treatment and control groups:
 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡 
= 𝛽𝛽0 + 𝛽𝛽1𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑖𝑖 + 𝛽𝛽2𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 
+ 𝛽𝛽3𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑖𝑖 × 𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 + 𝑜𝑜𝑖𝑖𝑡𝑡 

 𝛽̂𝛽3: average change in outcome for those in the
treatment group, minus the average change in 
outcome for those in the control group 
– Average treatment effect in the population studied
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Difference-in-Differences 
𝑦𝑦𝑖𝑖𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑜𝑜𝑡𝑡𝑖𝑖 + 𝛽𝛽2𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 + 𝛽𝛽3𝑜𝑜𝑡𝑡𝑖𝑖 ∙ 𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 + 𝑜𝑜𝑖𝑖𝑡𝑡 

 𝑜𝑜𝑡𝑡𝑖𝑖 = 0 , 𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 = 0 = 𝛽𝛽0𝐸𝐸 𝑦𝑦𝑖𝑖𝑡𝑡 d0 

 𝑜𝑜𝑡𝑡𝑖𝑖 = 0 , 𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 = 1 = 𝛽𝛽0 + 𝛽𝛽2𝐸𝐸 𝑦𝑦𝑖𝑖𝑡𝑡 
 𝑜𝑜𝑡𝑡𝑖𝑖 = 1 , 𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 = 0 = 𝛽𝛽0 + 𝛽𝛽1𝐸𝐸 𝑦𝑦𝑖𝑖𝑡𝑡 d1 
 𝑜𝑜𝑡𝑡𝑖𝑖 = 1 , 𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡 = 1 = 𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽2 + 𝛽𝛽3𝐸𝐸 𝑦𝑦𝑖𝑖𝑡𝑡 

𝑑𝑑0 = 𝛽𝛽2
 

𝑑𝑑1 = 𝛽𝛽2 + 𝛽𝛽3
 

𝑑𝑑𝑑𝑑 = 𝑑𝑑1 − 𝑑𝑑0 = (𝛽𝛽2+𝛽𝛽3) − 𝛽𝛽2 = 𝛽𝛽3
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D-D Example 
 Does increasing Medicaid payments for 

primary care increase primary care visits and 
reduce hospital and emergency department 
use? 
– Gruber, Adams, and Newhouse (1997) 
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D-D Example (2)
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Difference-in-Differences
 
Outcome 

A 
B 

D 

E 
C	 

Average outcome for: 
• A: control group, pre 

β3 
• B: control group, post 
• C: tx group, pre 
• D: tx group, post 
•	 E: tx group, post 

(absent treatment) 

t1	 t2 Time 

Assumption: Common trends in the absence of treatment
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Common Trends
 

 Assumption: Trends in the outcome 
would be the same in both treatment and 
control groups in the absence of treatment 
– Difference-in-differences estimates the 


deviation (due to treatment) from the 

common trend
 

 Check pre-treatment trends 
– Data and contextual knowledge 
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Limitations
 

 Limitations of estimating causal effects in 
natural experiments: 
– Generalizability of results to contexts other 

than the one studied may be limited 
– Mechanism for the treatment effect is often 

unknown 
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Additional Considerations
 

 When using repeated cross-sectional or 
panel data, estimated standard errors must 
account for serial correlation 
– For more details, see: Bertrand, Duflo, and 

Mullainathan (2004) 
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Summary
 
 Natural experiments are situations where external

circumstances produce what appears to be
randomization 
–	 As if treatment is randomly assigned 

 Difference-in-differences is one method of estimating 
the causal treatment effect in natural experiments 
– In order to estimate the causal effect of treatment need: 



Exogenous (as if random) variation in treatment 
Common underlying trends 

– Difference-in-differences estimates the average

treatment effect
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