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Overview

+ Evidence linking online social networks and smoking
cessation

+ Methodological challenges
<« Aims of our project
« Social computing methods

« Early findings (illustrative)



Online Social Network = ?

Table 1. Examples of Open and Intentionally Designed Online
Social Networks

Types of Online Networks Examples

Open social networks Facebook, Twitter, Google+
Intentionally designed social The Healthy Lifestyle Network, QuitNet,
networks PatientsLikeMe, BecomeAnEX

Centola D. Social media and the science of health behavior. Circulation. 2013; 127(21):2135-44. PMID: 23716382.

Cobb NK, Graham AL, Byron MJ, Niaura RS, Abrams DB, et al. Online social networks and smoking cessation: a
scientific research agenda. J Med Internet Res. 2011; 13(4):e119. PMID: 22182518



Reach of Online Social Networks for Cessation

+ Social media and Web 2.0 applications nhow common in
web-based smoking cessation programs

— Quitlines in 29 U.S. states

— Commercial programs

= e @\ QUITLOGIK

#'ous

REF: http://map.naquitline.org/reports/web/

Quitline



http://map.naquitline.org/reports/web

Online Social Networks & Abstinence

Smoking outcomes at 3 months

« 7-day abstinence: OR=3.24, 95% CIl 1.76-5.93

« Continuous abstinence for 2+ months: OR=4.03, 95% CIl 2.10-7.72
« Baseline motivation not significant in model

Table 2. Median (interquartile range) of QuitNet utilization among quitters and smokers

Quitters (n=67) Smokers (n=156)
Number of logins 9 (1-42) 2 (1- 5)
Average session length in minutes 2 (7-20) 14 5 (8-23)
Total number of minutes online 103 (33-339) 3 (17-82. 5)
Total number of pages viewed 128 (31-366) 34 (17-87)
Percentage posting at least one time in public forums 19.4 45
Percentage with at least one buddy 19.4 9.6
Percentage who sent Qmail to at least one person 254 9.0
Percentage who received Qmail from at least one person 41.8 20.5"

Note. Between-group differences were analyzed using Wilcoxon W test for continuous data (median) and chi-square (proportions).
*p<.05; **p<.01; **p<.001.

REF: Cobb NK, Graham AL, Bock BC, Papandonatos G, Abrams DB. Initial evaluation of a real-world
Internet smoking cessation system. Nicotine Tob Res. 2005. 7(2): 207-16. PMID: 16036277
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Online Social Networks & Abstinence

Table 3. Association between website usage and quit behavior over time using generalized estimating equations (GEE).

Fegression models Quit attempts 7-Day abstinence 30-Day abstinence
OR (93% CI) P OR(95% CI) P OF. (95% CI) P
Model 1 ?
Visits to the website? 1.09(0.94-1.28) 26 2.04(1.75-2.39) =001 1.73(1.47-2.05) <001
Model 2 ?
Visits to the website? 1.10 (0.88-1.38) 39 1.55(1.26-1.91) =001 1.36(1.08-1.70) 008

Use of Community feature
1 vs 0 times 0.79 (0.53-1.17) : 1.74 (1.13-2.67) : 1.37 (0.81-2.30)
=2 vs 0 times 1.06 (0.62-1.83) . 222 (1.34-3.69) : 242 (1.35-434)

* All models adjusted for demographics. nicotine dependence. baseline quit attempts. peer smoking, household smoking. motivation to quit. positive
and negative social support, health status, advice to quit from a health care provider, use of at least one cessation aide, baseline depression. baseline
percerved stress. having a partner who smokes, and frequency of use of the Internet. Model 1 includes all covariates plus visits to the website. Model
2 includes all covariates, visits to the website, and use of specific BecomeAnEX org features.

b Fepresented as the log of total visits to the BecomeAnEX org website over the study peniod.

REF: Richardson A, Graham AL, Cobb N, Xiao H, Mushro A, Abrams D, Vallone D. Engagement promotes
abstinence in a weh-based cessation intervention: cohort study. JMIR. 2013. 15(1):e14. PMCID: PMC3636070.
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board entry as compared to those who did not contribute {Germany, 2011).
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Causality and Mechanisms Unclear

<+ Engagement in online social networks for cessation appears
to be associated with abstinence

< Causality?

<+ May be misguided to randomize people to “form interpersonal
relationships”




Social Dynamics of Substance Use in Online
Social Networks for Smoking Cessation

RO1CA192345-01

GOAL: To understand social network dynamics and the
social processes that occur within online social networks

for cessation.

» hone computational methods applied in other fields

» Inform intervention design
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Figure 1. Conceptual Model of how Og al Networks Influence Smoking Behavior (adapted
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Figure 1. Conceptual Model of how Online Social Networks Influence Smoking Behavior (adapted
from Berkman, 2000)
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Engagement Promotes Abstinence in a Web-based Cessation

Intervention: Cohort Study

Amanda Richardson'”, MS, PhD: Amanda L Graham®*, PhD; Nathan Cobb™*, MD: Haijun Xiao', MS; Aaron Mushro”,

MS. MBA: David Abrams”**, PhD: Donna Vallone!*. MPH. PhD

Abstract

Background: Web-based smoking cessation interventions can have a public heal
promoting cessation and can reach large numbers of smokers in a cost-efficient man
been realized. It is still unclear how such interventions promote cessation. who benef
impact.

Objective: To examine the effectiveness of a highly promoted Web-based smo
behavior over time. identify the most effective features, and understand who is most lit
and weighted analyses to estimate the impact in the broader pool of registered site 1

Methods: A sample of 1033 new adult registrants was recruited from a Web-basec
automated study management system. Abstinence was assessed by self-report thro
with telephone follow-up for nonrespondents) at 1, 3. and 6 months. Software track
estimating equations (GEE) were used to examine predictors of website utilization a1
unweighted and weighted data.

Results: The 7-day point prevalence abstinence rates at 6 months ranged fro:
intent-to-treat samples, respectively. Predictors of abstinence in unweighted analyse
well as accessing specific interactive or engaging features. In weighted analyses. only
Motivation to quit was a key predictor of website ufilization. whereas negative |
increasing visits or accessing engaging features.

N=1033 BecomeAnEX members
Cohort study (2011)

Follow-up 1, 3, 6 months

Response rates: 69.4% (1mo),
60.3% (3mo), and 53.9% (6mo),

Conclusions: Engagement is critical to promoting smoking cessation. The next generation of Web-based smoking cessation
inferventions needs to maximize the initial engagement of all new visitors and work to retain those smokers who proceed to

register on the site.

() Med Internet Res 2013:15(1):e714) d0i:10.2196/jmir.2277
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STUDY PROTOCOL Open Access

Improving adherence to web-based cessation
programs: a randomized controlled trial study
protocol

Amanda L Graham'?, Sarah Cha’, George D Papandonatos®, Nathan K Cobb'**, Aaron Mushro®, Ye Fang',
Raymond S Niaura ™ and David B Abrams "

-

Abstract

N=5292 BecomeAnEX members
RCT, 2x2 design (2012 — present)

Methods/Design: This study compares the efficacy of a smoking cessatior
with free NRT and a social network (SN) protocol designed to integrate pa
Using a 2 (SN, no SM) x 2 (NRT, no NRT) randomized, controlled factorial d
3 months, and 9 months, this study will recruit N = 4,000 new members o
randomize therm to: 1) WEB, 2) WEB + SN, 3) WEB + NRT, or 4) WEB + SN

interventions will outperform WEB and that WEB + SN + NRT will outperfo FOHOW'Up 3, 9 months

point prevalence abstinence at 9 months. Exploratory analyses will examin

mediators and moderators of outcome. Response rateS (OngOIng)
Trial registration: ClinicalTrials.gov 10: ISRCTMN45127327 - 61 3% (3m0) 54 1 % (gmo)

Keywords: Smoking cessation, Internet, Adherence, Social networks, Nicot




Primary Aim 1

Examine social network dynamics, sentiment
dynamics, and social support as predictors of 3-month
abstinence in the N=5,292 sample, and validate results
In the N=1,033 sample.

H1 (social network analyses): Greater exposure to abstinence norms
via former smokers (i.e., centrality in more heterogeneous networks)

predicts abstinence.

H2 (text analytics): Greater exposure to social support predicts
abstinence.

H3 (sentiment analyses). Greater exposure to positive sentiment for
proven quit methods (e.g., NRT) predicts higher abstinence rates,
whereas greater exposure to positive sentiment about unproven
methods (e.g., unassisted) predicts lower abstinence rates.



Primary Aim 2

Examine social network dynamics related to tobacco
and alcohol use.

H4: Socially integrated drinkers will exert greater
Influence on sentiment dynamics about alcohol use than

more Isolated drinkers.

H5: Greater exposure to alcohol-related social support
among drinkers predicts higher engagement with the

site.



Exploratory Aim

Explore the correspondence between smoking status
discerned from text analytics and 3-month outcomes to
determine the feasibility of estimating quit rates in
online social networks for cessation.



Computational methods
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Social networks and social media

— —— — — —

35% of U.S. adults have gone online for

medical and health information;

24% also sought information or support from
peers who have the same health condition

Linked )
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weibo.com
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Leverage the big data from social
network/media

Network Structures

Centrality analysis,

Community discovery,
Link prediction, ...
Diffusion,
Temporal Dynamics Influence
)

Network evolution, - Behavior change,

Trajectory analysis,
Behavior adoption, ... Team performance

Text Mining

’4

Content/behavior detection,
Topic modeling,
Sentiment analysis, ...



Social network 101

* A social network consists of nodes and edges
— Nodes represent individuals

— Edges represent relationships
* Friendship, kinship, colleague, ...

* Edges can have directions
— Directed edges: Twitter following, paper citation, ...
— Undirected edges: Facebook friends, collaboration, ...

* Degree centrality
— In undirected networks: total # of neighbors

— In directed networks:
* In-degree: # of incoming edges
* Out-degree: # of outgoing edges
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BecomeAnEX Data

5 years, 676.7k users, 1.5 million posts/messages,
6.2 million page views.
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Social networks in BecomeAnEX
* Nodes:

— Users of BecomeAnEX
* Edges:

— Directed

— Represent the flow of information/support via
several communication channels (blog, comments,
wall posts, group discussions, private message).

o
E N A \
Transform to
-~

network
User B B




Basic statistics of the network

log (# of users)

log (# of users)
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log (outdegree)
Out-degree: how many other users a

user has influenced/supported

Iog (indegree)

In-degree: how many other users
have influenced/supported a user

Values

Metrics

LSCC (the largest strongly

Metrics

58,941 connected component) is
1,466,643 | the largest group of nodes,
25.36% /| in which there is a possible
21.43% path between every pair of
2.51 nodes




Social network vs behavior change
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* How can one’s network centrality and its
temporal trend predict abstinence?

* Preliminary results

— Increases in lurking activities is predictive of
abstinence

— More details or this is enough??




A multi-relational perspective

* The network we analyzed aggregates users’
interactions across 4 ways of communication.

— What if we build 4 subnetworks, each for one way
of communication?

— Each subnetwork has different structures

I o
8 Board Discussion | Message

Num. of nodes w/ degree >0 14,807 23,702 11,882 33,330

Number of edges 649,207 819,531 257,237 55,380

% of reciprocated ties 34.34% 29.14% 4.42% 7.14%
% of nodes in the LSCC 59.53% 24.18% 25.83% 5.75%

f;lgc shortest path length in 5 45 5 30 3.0 5 83



Similarity among subnetworks

e Structural similarity measured by edge overlap

Subnetwork pairs e [-LWVTET)

Blog vs Message Board 0.21
Blog vs Group Discussion 0.04
Message Board vs Group Discussion 0.04
Private Message vs Blog 0.02
Private Message vs Message Board  0.01

Private Message vs Group Discussion 0.01

* Similar results if we examine degree correlations.



Co-evolution of the subnetworks

e After forming the 15 tie in one subnetwork, what are
the chances the two user form ties in the 2" or even
3rd subnetworks?

* Enabled by “When” data

. . | P(forming 2" ties | Top P(forming 3 ties
P(1% tie) Top sequence
| 1Y) sequence | 1Y)

Blog 34.6% 28.7% BL->MB 1.7% BL->GD->MB

M

e 42.4% 13.1% MB->BL 1.0% MB->BL->GD
Board

G

Discussion

Privat

Message




Text mining

e Automated analysis of
large-scale text data

— Does a post contains
informational support?

— Does a post contains
positive sentiment?

e Qur tasks

& —

Manually
Labeled
Posts

Feature Extracti

Model
Selection

—

Text
classification
model

(Post, Pr, Label)




Next Steps & Future Directions

<+ Advance social network
theory

<« Understand network
topology and social
network processes

+ Maximize population
Impact of Internet
cessation interventions

Figure 1. Conceptual Model of how Online Social Networks Influence Smoking Behavior (adapted
from Berkman, 2000)
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