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Predictive Analytics 

Example applications of predictive analytics 
•  Who is most likely to get re-admitted? 
•  Predict readiness for discharge 
•  Acute adverse event detection 
•  Prognosticating the course of disease in multi-morbid conditions 

Example applications of predictive analytics 
•  Tailor therapies to the individual 
•  Early intervention 
•  Triage 
•  Resource Management (e.g., bed management, MRI scheduling, staff 

scheduling) 
•  ….  

Theme: Methods for assessing the current and future health 
of an individual based on electronic health data. 



         
   

          
       

     

      

       
     

Outline 

Novel learning algorithms 

• Current methods are highly susceptible to provider practice patterns.
 
• Interventional Confounds (ICs) 
• New ranking based learning algorithm that avoids bias due to ICs. 
• Application in the context of adverse event detection. 

Extension to Practice-Cost Sensitive Learning 

• Incorporate cost-of-practice into developing predictive models 

Quick overview of other work   
• Models for personalized prognosis in Complex, Chronic Conditions 
• Smart phone based illness severity monitoring 



            
             

   
  

 

   

 

  

  
 

      

Potentially Preventable Complications (PPC) lead 
to increased cost, length of stay, and mortality 

PPCs add an estimated $88 billion to annual inpatient
 
hospital costs nationally
 

J. S. Hughes et al., Health Care Financing Review, vol. 27, pp. 63-82, 2006  
R. L. Fuller, et al., Health Care Financing Review, vol. 30, pp. 17-32, 2009 

Acute lung edema 
and respiratory 

failure 

5.2 times higher
mortality rate 

2.0 times longer
mean LOS 

2.3 times higher 
mean cost 

Renal failure with 
dialysis 

5.1 times higher
mortality rate 

2.5 times longer
mean LOS 

2.9 times higher 
mean cost 

Septicemia & 
severe infection 

3.9 times higher
mortality rate 

2.4 times longer
mean LOS 

2.7 times higher 
mean cost 



              
            

 
            

 
          

         
    

         

 

    

Sepsis: Our Target Application 

High mortality and morbidity 
Septicemia is the 11th leading cause of death in the US 
• Over 750,000 cases of severe sepsis or septic shock annually and rising 
• Mortality of septic shock estimated between 30-60% 
• Patients with sepsis have increased hospital stays and long-term morbidities
 

  
High financial cost 
• $15.4 billion dollars spent nationally  

Mortality and length of stay decreased with timely treatment [Kumar et al. 
2011] 

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580–637, 2013 
D. C. Angus et al., Critical Care Medicine, vol. 29, no. 7, 2001. 
G. Kumar et al., Chest, vol. 140, no. 5, pp. 1223–1231, 2011. 
HCUP Facts and Figures: Statistics on Hospital-based Care in the United States, 2009. 
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APACHE: measuring in-hospital severity 
[7 bins]  
 … 

 110 < Heart rate < 139 bpm  
 140 < Heart rate > 179 bpm  
        Heart rate > 180 bpm  

[5 bins]  
 … 
 
55 < Age < 64 bpm
 
65 < Age < 74 bpm
 

Age >=75 bpm 

+2 points  

+3 points

+4 points
 

+3 points 
 
+5 points 
 
+6 points
 

Severity is a measure of total damage of the disease on the body [Medsger, 2003]

Also interpreted as the counterfactual risk of decline or adverse events (e.g., mortality)
 

Medsger et al., Clinical and Experimental Rheumatology, 2003 
Knaus et al, Critical Care Medicine, Vol. 13, Issue 10, 1985 



   

  
 

  
 

     

Predictive Model f or Downstream Adverse Event 

Automatically learn patterns that distinguish 

patients with AE from those without
 

vs
 

Counfounding medical interventions — Paxton et al, 2013 

patients with patients without
 
Adverse Event Adverse Event
 



  

       
 

      

Pneumonia Severity Index: Risk of Mortality 
•	 Identify candidate risk factors 
•	 Learn score and relative weights by regressing against 

observed mortality 

Fine et al., N Engl J Med 336 (4): 243–250, 1997 



   

Learns Risk Estimates Sensitive to 
Provider Practice Pattern 

  

• Simple example (Flu) 
• Measure temperature 
• Measure WBC 

• Increase in temperature or WBC increases risk of death 




         
     

      

        
       

          
         
    

    

Learns Risk Estimates Sensitive to 
Provider Practice Pattern 

Key idea #1: 

•	 Consider a unit where patients get treated as temperature 
increases above say, 102 degrees 

•	 Therefore, fewer deaths due to rising temperature 

•	 As fewer individuals experience death, the algorithm no 
longer associates rise in temperature with risk. 

Bias due to interventional Confounds 
C. Paxton, A. Niculescu-Mizil, S. Saria. Developing Predictive Algorithms Using
Electronic Medical Records: Challenges and Pitfalls. American Medical Informatics 
Association, 2013. pdf 

https://dl.dropboxusercontent.com/u/20167181/developing-predictive-models-amia-final.pdf


 

    
 

 
     

   

 

 

Bias Due to Interventional Confounds 

Medsger et al., Clinical and Experimental Rheumatology, 2003 

•	 Model flu severity; temperature is observed 

•	 Example: Synthetic-Pneumonia 
•	 If flu, temperature increases unless medicated 
•	 When medicated, temperature returns to normal 
•	 At 108 deg F, subject dies 

•	 Consider hospitals with different practice patterns:   
P(med | temperature) 

No antibiotics: 

With antibiotics: 



 

    
 

 
     

   

     
 

Bias Due to Interventional Confounds 

• At 108 deg F, subject dies 

• Consider hospitals with different practice patterns:   
P(med | temperature) 

Medsger et al., Clinical and Experimental Rheumatology, 2003 

See e.g. for bias due to interventional confounds in Paxton et al., American Medical Informatics 
Association, 2011 

• Model flu severity; temperature is observed 

• Example: Synthetic-Pneumonia 
• If flu, temperature increases unless medicated
 
• When medicated, temperature returns to normal 



       
    

         
  

         
 

Probabilistic State Estimation Approaches 

Robins et al., Epidemiology, Vol. 11, No. 5, 2000 
Mould. Clinical Pharmacology & Therapeutics 92(1):125–131. 2012 
S Saria et al., 2010. Integration of Early Physiological Responses Predicts Later Illness Severity in 
Preterm Infants. Science Translational Medicine, September 2010. Vol. 2, Issue 48 
S. Saria et al., 2010. Learning individual and population level traits from clinical temporal data. In Neural 
Information Processing Systems (NIPS), Predictive Models in Personalized Medicine workshop. 2010. 

antibiotic pressors 

Treat the severity state as latent and develop a causal model
estimate state given the observed measurements. 

fluid bolus  fluid bolus 
 
500 ml 1200 ml
 



Clinical Comparisons:

              

  

      

 

  

Alternate source of supervision?   

onset 

interventions 

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580–637, 2013 
Medsger et al., Clinical and Experimental Rheumatology, 2003 

directly? 

septic shock
 

Instead: get severity 
annotation 



              
      

 

Alternate source of supervision?   

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580–637, 2013 
Medsger et al., Clinical and Experimental Rheumatology, 2003 

septic shock
 
onset 

interventions 

compare 
severity 


annotations
 

Instead: 



 
 

 

 
 

  
  
 

  
  

              

  

      
 

         

      

SIRS 
• Systemic 

Inflammatory 
Response 
Syndrome 

Sepsis 
• SIRS with 

suspected 
infection 

Severe Sepsis 
• Sepsis with 

organ 
dysfunction 

Septic Shock 
• Sepsis with 

persistent 
hypotension 

Sepsis: Our Target Application 

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580–637, 2013 
Medsger et al., Clinical and Experimental Rheumatology, 2003 

Clinical Comparisons: 

•	 Comparing the counterfactual risk of decline for two patient 
states 

•	 If left untreated, risk of immediate decline in subject w/ septic 
shock > risk of immediate decline in subject w/ SIRS 



 
 

 

 
 

  
  
 

  
  

              

 
 

         
 

          
     
           

             
        

SIRS 
• Systemic 

Inflammatory 
Response 
Syndrome 

Sepsis 
• SIRS with 

suspected 
infection 

Severe Sepsis 
• Sepsis with 

organ 
dysfunction 

Septic Shock 
• Sepsis with 

persistent 
hypotension 

Sepsis: Our Target Application 

  

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580–637, 2013 

Guideline 
•	 Coarse severity levels of sepsis 
•	 Recognize instances of each stage using data in the electronic 

health record 
•	 Combine natural language process of text notes with criteria using vital 

signs and laboratory test results 
•	 e.g., Septic Shock: If suspicion of infection AND two of the following 

(anomolous temp, RR, HR, WBC) AND one of the following (BP > 90 Hgmm 
despite fluids > 500 ml OR lactates >= 4) 



 

 

     

        
      

Learning from Clinical Comparison Pairs 
• Learn a function that maps measurements 
to severity s.t. 

• Concordant with experts ranking of severity 
• The underlying score is temporally smooth —> satisfies clinical 

expectations of how quickly the disease evolves. 

20 



  

    

Learning from Clinical Comparison Pairs 
• Max-margin formulation 

1. Maximize margin between pairs 

21 



  

    

Learning from Clinical Comparison Pairs 
• Max-margin formulation 

1. Maximize margin between pairs 

2. Smooth  trajectories 



  

   

      
      
   

L-DSS: Linear Disease Severity Score 

Joachims. Knowledge Discovery and Data Mining, 2003 
Chapelle and Keerthi. Information Retrieval, 2010 
Chapelle. Neural Computation, 2007 

• Convex, twice-differentiable. 
• Optimized using the Newton-Raphson algorithm
 



 

          
 

  

 

 

               
    

               
  

Dataset and Population 

A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex 
physiologic sig- nals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000 (June 13). 
R. Dellinger et al. “Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock,” 
Critical Care Medicine, vol. 41, no. 2, pp. 580–637, 2013. 

MIMIC II Clinical Database 
•  Electronic health records (EHR) collected from intensive care units as

the Beth Israel Deaconess Medical Center from 2001 to 2008 
  
Study population 
•  16,232 adult patients included (age ≥ 15 years) 
•  60% Training set 
•  40% Test set 



 

 

Ordering 
Accuracy 

Identify            �
ord by setting                    to zero. 
    

Choice of  
•    - maximal smoothness with the same or     dering accuracy as                       = 0.  
•    - optimizer of early detection per   formance (will be elaborated on later).       



    

          

Numerical Analyses 

1.Ranking performance: does the proposed score order for severity
more accurately than existing scores? 

2. How sensitive is the score to more granular changes in severity
beyond coarse grading for the stages of sepsis? 

1.Sensitive to impending adverse events: Leading unto an adverse
event (e.g., septic shock), does the score reflect increase in
severity? 

•Predictive performance: Measure prediction performance of the
resulting score. 

2.Sensitive to therapy: Following a therapy (e.g., fluid bolus), does
the score reflect decrease in severity? 



 

           
    

E.g., Septic Shock among DSS > 2 is 20 times more frequent than in the 
“general population” of all data points 



 

       
 

 

 

 

 

Task 1: Does DSS rank patient states with 
known severity ordering correctly? 

•	 

•	 

Type Predictor 

Metric: fraction of correctly ordered pairs on held out data
 

Establish construct validity (Medsger 2003): consistent with 
clinical expectations 

Fraction of correctly ordered pairs 

Proposed 
Scores 

L-DSS 

L-DSS 

0.88±0.01 

0.84±0.01 

Routine 
Clinical 
Scores 

APACHE II 

Worst SOFA 

Total SOFA 

-

-

-

0.68±0.01 

0.63±0.01 

0.63±0.01 

28
 



          

Numerical Analyses 

1.Ranking performance: does the proposed score order for severity
more accurately than existing scores? 

2. How sensitive is the score to more granular changes in severity
beyond coarse grading for the stages of sepsis? 

1.Sensitive to impending adverse events    : Leading unto an adverse
event (e.g., septic shock), does the score reflect increase in
severity? 

•Predictive performance: Measure prediction performance of the
resulting score. 

2.Sensitive to therapy: Following a therapy (e.g., fluid bolus), does
the score reflect decrease in severity? 



  

Task 2: Sensitive to changes in severity 
leading up to adverse events 

Shock  
onset 

0-66-12 



Task 2: Sensitive to changes in severity 
leading up to adverse events 



 

Task 2: Sensitive to changes in severity 
leading up to adverse events 

Type Predictor # samples          Fraction of  

Proposed 
Scores 

L-DSS 

L-DSS 

<1e-32 

<1e-34 

587 

587 
0.71±0.037 
0.70±0.036 



    

          

Numerical Analyses 

1.Ranking performance: does the proposed score order for severity
more accurately than existing scores? 

2. How sensitive is the score to more granular changes in severity
beyond coarse grading for the stages of sepsis? 

1.Sensitive to impending adverse events: Leading unto an adverse
event (e.g., septic shock), does the score reflect increase in
severity? 

•Predictive performance: Measure prediction performance of the
resulting score. 

2.Sensitive to therapy: Following a therapy (e.g., fluid bolus), does
the score reflect decrease in severity? 



 
  
             

 

 

 

 

Early Detection of Septic Shock 
• 
• 
• 

Type Predictor 

Develop an alert to identify those at risk for septic shock 
Raw DSS itself 
Raw DSS + 7 derived features — average and trend related features over a window
 

Mean AUC for ED 95% CI 

DSS-based predictor 

L-DSS 

L-DSS 

0.836 

0.853 

0.824-0.849 

0.841-0.865 

L-DSS + Derived 

L-DSS + Derived 

0.856 

0.857 

0.844-0.868 

0.844-0.868 

State-of-the-art clinical 
APACHE II 

Worst SOFA 

Total SOFA 

-

-

-

0.620 

0.601 

0.477 

0.600-0.641 

0.581-0.621 

0.453-0.500 

Logistic Regression (LR) - 0.864 0.852-0.875 



 

 

    

  
 

 

 

septic 
shock 

Targeted R eal-time Early Warning  
System for Sepsis 

onset  

Detection 
threshold 

Hours to septic shock 

onset of 
organ 

dysfunction 

identified by 
routine 

screening tool 

R
is

k 
p

re
d

ic
ti

o
n

 

• At  85% sensitivity, median  of 25.2 hours  (IQR: 8.69-93.4) prior to shock      onset  
• 2/3rd detected prior to any sepsis-related organ       dysfunction  
• Lower false   alarm rate, earlier detection     than  routine  screening protocol.
 



      

         
      

Pilot @ Hopkins integrated within EPIC 

Use SEIPS to develop a deep understanding of workload and
workflow —> Design Specification of the CDS 



    

Numerical Analyses 

1.Ranking performance: does the proposed score order for severity
more accurately than existing scores? 

2. How sensitive is the score to more granular changes in severity
beyond coarse grading for the stages of sepsis? 

1.Sensitive to impending adverse events: Leading unto an adverse
event (e.g., septic shock), does the score reflect increase in
severity? 

•Predictive performance: Measure prediction performance of the
resulting score. 

2.Measure Responsiveness to therapy: Following a therapy (e.g.,    
fluid bolus), does the score reflect decrease in severity? 



Responsive to therapy? 
Is DSS responsive   to therapy?   
• construct  validity: consistent   with  clinical expectations   

Identified individuals in validation set who received bolus as treatment for sepsis (i.e. 
were  septic, hypotensive   (BP  <  100), and received fluids of 30*body weight)         

5 5 5 5
 

All solid lines mark interventions
 



         
 

  
              
  

   
 

 

Changes in score post therapy 

Type Predictor 

Pre/Post analysis: 
•  Comparing the trend of the DSS in the 5 hour period post treatment to the trend in the 5 

hour period pre treatment. 

•  Expectation: good score should exhibit a negative change in the trend: upward trend is 
slowed down or even reversed. 

Number 
of examples 

Fraction of desirable (negative) 
trend changes 

Proposed
Scores 

L-DSS 
L-DSS 

<2e-10 
<5e-7 

81 
81 

0.77±0.08 
0.84±0.08 



      

 

      
           

 

      

         

       

 
    

 

 
      

      

     

Learning Severity Scores and Risk Trajectories
 
from Data
 

• New framework for estimate disease severity 
• Clinical comparisons: Ordering of disease severity states 
• Avoids bias due to interventional confounds (e.g. Paxton et al., 2013). 

• Learned scores follow “construct validity” 
• Orders severity states with high accuracy 
• Sensitive to changes in severity leading up to adverse events 
• Sensitive to changes in severity post therapy 

Clinical & Informatics 
• High Early Detection performance 
• Measure therapy responsiveness 

Informatics & ML 
• Explore other criteria for generating clinical comparisons 
• Active learning with user in a loop 
• Tailor to subpopulations and the individual 



  
  

  

  
 

 
 

 

   

  

Risk-Monitoring 

WBC 
Temperature 

Urine/kg 
over 6hrs 

Arterial pH 

Risk score 
trajectory 

septic shock Features at a onset 
specific time 

36 30 24 18 12 6 0
 

Hours until septic shock onset 

•  Vital signs: heart rate, 
respiratory rate, 
temperature, Glasgow 
coma score… 

•  Laboratory results: BUN, 
creatinine, WBC, 
hematocrit… 

•  Clinical history: 
presence of chronic 
conditions, age… 



     
42

Routinely collected measurements 

Free but are not accurate.
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On-demand measurements 

Others collected on demand with varying types of costs
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Cost dependency Graph 

AND 

OR Multiple Children 

Multiple Children 

• Specialized DAG 
• Node shares AND or OR relationship with parents 


• Tests generate multiple measurements 
• AND: Measurements may require more than one test 
• OR: More than one test may generate a measurement 
• Similarly, features share AND or OR relationship with measurements 



 

45

   

 

 

  

   

    

Cost dependency Graph 

30 min 

20 min 

$24 

15 min 

$35 

20 min 

Staff-time 

Wait time 

Financial Cost 

• Specialized DAG 
• Node shares AND or OR relationship with parents
 

Costs at the activity level  

Costs at the test level  

Costs at the activity and test level  
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Cost-Sensitive Learning 

Loss Regularizer/ 

• Empirical Risk Minimization 

Penalty 

• Goal: Construct Regularizer given the Cost-Dependency Graph
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Cost-Sensitive Learning 
• Classifier Cascades: 

• Viola and Jones, IJCV 2004; Raykar et al., 2010 

• Incremental Cost-Sensitive Classification: 
• MDPs - Ji and Carin, 2007 
• Weiss, Sapp, Taskar 2013 

• Test-time Budgets: 
• Xu, Kusner, Chen and Weinberger 2013 
• Xu, Weinberger and Chapelle, 2012 

• Structured Sparsity: 
• Group Regularizers (e.g., Bach et al.) 
• Tree and Forest Regularizers: 
• OSCAR (Bundel et al.,) 

Majority of works on cost-sensitive classification assume costs given at the feature level 

Structured sparsity work do not show how to obtain the form of the structured regularizer. 
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Cost dependency Graph 

AND 

ORAND OR 

REMARK 1: Our graph is a multi-layer Boolean Circuit. 

Reminder: Boolean circuits 
• Circuit defined as a finite DAG. 
• Each vertex corresponds to either a basis function or one of the inputs
 
• Example basis functions include AND, OR, NOT functions 
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Cost dependency Graph 

OR 

X1 X2 Xr 

F1 F2 Fm 

Z1 Z2 Zk ZK 

AND 

Nodes on which 
costs are defined  

(e.g., tests) 

r: num nodes in 
the R-th layer of 
the cost graph 

REMARK 1: Our graph is a multi-layer Boolean Circuit. 

REMARK 2: By removing double negations, applying the laws of 
distribution, and using De Morgan’s laws, the r-layer circuit may be reduced 
to a 3-layer boolean circuit in disjunctive normal form   
  
(e.g., B. Pfahringer. Conjunctive normal form. In Encyclopedia of Machine Learning, 
Springer, 2010)  

Features  
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Cost dependency Graph 

OR 

X1 X2 Xr 

F1 F2 Fm 

Z1 Z2 Zk ZK 

AND 

Nodes on which 
costs are defined  

(e.g., tests) 

Features  

Xr  
R

relax

(�~) = � C
k

|| _
j2Sk �j ||1

k=1 

 

C
k Cost associated with the kth input (e.g., test) 

S
k := {j : g

zj (.) depends on the logical values of Xr } 



             
           
           

          

 
          

         
    

         

 
 

    
         

Sepsis: Our Target Condition 

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580–637, 2013  
D. C. Angus et al., Critical Care Medicine, vol. 29, no. 7, 2001. 
G. Kumar et al., Chest, vol. 140, no. 5, pp. 1223–1231, 2011. 
HCUP Facts and Figures: Statistics on Hospital-based Care in the United States, 2009. 

High mortality and morbidity 
Septicemia is the 11th leading cause of death in the US 
• Over 750,000 cases of severe sepsis or septic shock annually and rising 
• Mortality of septic shock estimated between 30-60% 
• Patients with sepsis have increased hospital stays and long-term morbidities 

  
High financial cost 
• $15.4 billion dollars spent nationally 

Mortality and length of stay decreased with timely treatment [Kumar et al. 2011] 
- For every hour that antibiotic treatments were delayed, risk of mortality went 

up by 7.6% 



 
             

 

  
 

               
   

               
  

Dataset and Population 

A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex 
physiologic sig- nals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000 (June 13). 
R. Dellinger et al. “Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock,” 
Critical Care Medicine, vol. 41, no. 2, pp. 580–637, 2013. 

7 years worth of data from 4 ICUs in an academic medical center 


MIMIC II Clinical Database 
•  Electronic health records (EHR) collected from intensive care units as the Beth Israel

Deaconess Medical Center from 2001 to 2008 
  
Study population 
•  16,232 adult patients included (age ≥ 15 years) 
•  60% Training set 
•  40% Test set 
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Range of Models Recovered 

• Cheapest model: 
• Sensitivity of 0.61 
• $0 / no additional measurements / no wait time 

• More expensive model 
• Sensitivity of 0.72 
• $168 / 30 mins of nursing time / 50 mins wait time 
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Naive accounting of cost 



 

  

 

  
  

Electronic Health Data 

Discrete
Events:

Laboratory 
Interventions: Medicines, Procedures 

Contin
uous physi

ologic
 

measu
rements 

Progress notes 

Imaging Data 

Administrative 
Claims 

Genomic 
data 

Sensors 
& Devices 



    
    

 

 

Modeling variability across individuals in
 
complex, chronic diseases: Autoimmune diseases
 

Smart and  
Connected  

Health  

http://www.hopkinsarthritis.org/wp-content/uploads/2011/04/image-11.jpg 
http://www.slideshare.net/maushard/skin-manifestations-of-scleroderma-by-dr-lorinda-chung-md 

http://www.hopkinsarthritis.org/wp-content/uploads/2011/04/image-11.jpg
http://www.slideshare.net/maushard/skin-manifestations-of-scleroderma-by-dr-lorinda-chung-md


 Scleroderma not one, but many 
subtypes 



Subtyping from Irregularly, Sampled EHD
• Subtypes — groups of individuals with similar disease 

progression patterns.
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Automated Subtype Discovery from data: Schulam, Wigley, Saria. AAAI 2015



(under review)

Prediction Models for Chronic, Multiphenotyic Diseases 
(e.g., predicting lung function in sclerdoderma)

For each individual, predict their disease course.
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Physiologic Signals: Collected but Dropped 
after 48 hours

Heart Rate

Respiratory Rate

Oxygen Saturation



Computational Markers
Example signatures learned with TSTM are shown below:
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S. Saria, A. Duchi, D. Koller. Learning Deformable Motifs in Continuous Time Series data. International Joint Conference on Artificial 
Intelligence (IJCAI), 2011.
S. Saria, A. Rajani, J. Gould, D. Koller, A. Penn. Integration of Early Physiological Responses Predicts Later Illness Severity in Preterm 
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Science Translational Medicine, 2010

Fully automated: uses routinely collected data available from 
bedside monitors. Less training required to use.

Non-invasive: Only relies on physiology. No need for additional 
lab tests.



HopkinsPD: Automated Home-based Illness Severity 
monitoring 

Voice 
Test

Balance 
Test

Gait Test

Location 
Monitoring

Motor 
Monitoring

Largest database to date: 50K+ hours of data, 
500+ individuals, 20+ countries



Novel learning algorithms 

• Current methods are highly susceptible to provider practice patterns. 
• Interventional Confounds (ICs) 
• New ranking based learning algorithm that avoids bias due to ICs. 
• Application in the context of adverse event detection. 

Extension to Practice-Cost Sensitive Learning 

• Incorporate cost-of-practice into developing predictive models 

Quick overview of other work
• Models for personalized prognosis in Complex, Chronic Conditions 
• Physiologic models for predicting illness severity in infants 
• Smart phone based illness severity monitoring 

Where are the current gaps? 

 

Summary



1.Methods that account for Treatments and Provider Practice Patterns  
1.Factored models over monolithic blackboxes 
2.Measure “regions of reliability” of the model 

2.Methods for systematically integrating heterogeneous data  
1.Static with time-varying markers 
2.Handle different granularities at which data are sampled  
3.Data as they arrive over time

3.Personalize to the context in which they are being used: Practice-cost 
sensitive approaches 

1.When to act based on cost-benefit tradeoff 
2.Multiple models are deployed: utility based measures to alert 

4.Methods for modeling heterogeneous populations 

“Variability is the law of life, and as no two faces are the same, 
so... no two individuals react alike and behave alike under the 

abnormal conditions which we know as disease.”
- William Osler

 

Where are the gaps?



Thank you! 
ssaria AT cs.jhu.edu 
twitter: @suchisaria




