JOHNS HOPKINS

UNIVERSITY

Predictive Analytics for

Tracking and Prognosis of
Disease Activity

Suchi Saria
Assistant Professor
Computer Science, Applied Math & Stats and
Health Policy and Management
Institute for Computational Medicine

with Kirill Dyagilev (CS), Peter Schulam (CS), Katie Henry (CS), David
Hager (Critical Care), Peter Pronovost (Anesthesiology), Fredrick Wigley
(Rheumatology), Daniel Robinson (Applied Math)

GORDON AND BETTY

Google  MOORE

FOUNDATION




Predictive Analytics

Example applications of predictive analytics

 Who is most likely to get re-admitted?

* Predict readiness for discharge

* Acute adverse event detection

* Prognosticating the course of disease in multi-morbid conditions

Example applications of predictive analytics

 Tailor therapies to the individual

Early intfervention

e Triage

 Resource Management (e.g., bed management, MRI scheduling, staff
scheduling)

Theme: Methods for assessing the current and future health
of an individual based on electronic health data.



Novel learning algorithms

* Current methods are highly suscepftible to provider practice patterns.
* Inferventional Confounds (ICs)

 New ranking based learning algorithm that avoids bias due to ICs.

o Application in the context of adverse event detection.

Extension to Practice-Cost Sensitive Learning

* Incorporate cost-of-practice into developing predictive models

Quick overview of other work

 Models for personalized prognosis in Complex, Chronic Conditions
 Smart phone based iliness severity monitoring



Potentially Preventable Complications (PPC)
to Increased cost, length of stay, and mortal

PPCs add an estimated $88 billion to annual inpatient
hospital costs nationally

J. S. Hughes et al., Health Care Financing Review, vol. 27, pp. 63-82, 2006
R. L. Fuller, et al., Health Care Financing Review, vol. 30, pp. 17-32, 2009




Sepsis: Our Target Application

High mortality and morbidity

Septicemia is the 11™ leading cause of death in the US

 Over /750,000 cases of severe sepsis or septic shock annually and rising

* Mortality of septic shock estimated between 30-60%

e Patients with sepsis have increased hospital stays and long-term morbidities

High financial cost
* $15.4 billion dollars spent nationally

Mortality and length of stay decreased with timely treatment [Kumar et al.
2011]

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580-637, 2013
D. C. Angus et al., Critical Care Medicine, vol. 29, no. 7, 2001.

G. Kumar et al., Chest, vol. 140, no. 5, pp. 1223-1231, 2011.
HCUP Facts and Figures: Statistics on Hospital-based Care in the United States, 2009.
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APACHE: measuring in-hospital severity

[7 bins]
1"1.0 < Heart rate < 139 bpm +2 points
140 < Heart rate > 179 bpm +3 points
Heart rate > 180 bpm +4 points

[5 bins]
55 < Age < 64 bpm +3 points
65 < Age < 74 bpm +5 points
Age >=75 bpm +6 points

Severity is a measure of total damage of the disease on the body [Medsger, 2003]
Also interpreted as the counterfactual risk of decline or adverse events (e.g., mortality)

Medsger et al., Clinical and Experimental Rheumatology, 2003

Knaus et al, Critical Care Medicine, Vol. 13, Issue 10, 1985



Predictive Model for Downstream Adverse Event

Automatically learn patterns that distinguish
patients with AE from those without

VS

J T e s |

patients with patients without
Adverse Event Adverse Event

Counfounding medical interventions — Paxton et al, 2013



Pneumonia Severity Index: Risk of Mortality

- |dentify candidate risk factors
- Learn score and relative weights by regressing against

observed mortality

Demographics

Physical exam /
vital signs |

Laboratory /
imaging

*Age * Neoplasia +30 * Mental confusion +20 = Arterial pH +30
(1 point per year) | | .| jver disease +20 | | =Respiratory rate +20 = | = BUN +20
Male Yr « CHF +10 « SBP +20 * Sodium +20
Female Yr -10 » Cerebrovascular | | = Temperature +15 * Glucose +10
* Nursing home disease +10 * Tachycardia +15 * Hematocrit +10
residency +10 » Renal disease +10 » Pleural effusion +10
\ J \ / k / \kOxygenatlon +10 j

Risk class Mortality (%) Recommended site of care
(Points)

1 (<50) | 0.1 F Outpatient
(s1-70) | 0.6 ~ Outpatient
m(71-90) | 2.8 | Outpatient or brief inpatient

IV (91-130) I 8.2 Inpatient
V (>130) I 29.2 ! Inpatient

Fine et al., N Engl J Med 336 (4): 243-250, 1997




Learns Risk Estimates Sensitive to

Provider Practice Pattern

- Simple example (Flu)
« Measure temperature
- Measure WBC

- Increase in temperature or WBC increases risk of death

TreatmentProbability -+ 0.00

Probability
of dying

I I |
102 104 106 108
Temperature (F)



Learns Risk Estimates Sensitive to

Provider Practice Pattern

Key idea #1:

- Consider a unit where patients get treated as temperature
increases above say, 102 degrees

- Therefore, fewer deaths due to rising temperature

- As fewer individuals experience death, the algorithm no
longer associates rise in temperature with risk.

Bias due to interventional Confounds

C. Paxton, A. Niculescu-Mizil, S. Saria. Developing Predictive Algorithms Using
Electronic Medical Records: Challenges and Pitfalls. American Medical Informatics

Association, 2013. pdf


https://dl.dropboxusercontent.com/u/20167181/developing-predictive-models-amia-final.pdf

Bias Due to Interventional Confounds

- Model flu severity; temperature is observed

- Example: Synthetic-Pneumonia
- If flu, temperature increases unless medicated

- When medicated, temperature returns to normal
- At 108 deg F, subject dies

- Consider hospitals with different practice patterns:
P(med | temperature)

p=0.3 p=0.3 p=0.3

No antibiotics: 6 6'_—6—6
p=0.2
p=1 p=1 p=1 p=1 p=1
With antibiotics: 6 ‘ ‘ ‘ 6

Treatment practice:
(1) no antibioticsfor T < 102 deg F;
(2) administer antibiotics with probability p forT = 102 deg F

Medsger et al., Clinical and Experimental Rheumatology, 2003



Bias Due to Interventional Confounds

- Model flu severity; temperature is observed

- Example: Synthetic-Pneumonia
- If flu, temperature increases unless medicated
- When medicated, temperature returns to normal

. Learned risk score is sensitive to practice patterns
103 deg F may be considered severe or benign based on practice
patterns => violates construct validity [Medsger, 2003]
. May worsen outcomes if used as decision aid
L

0.75 -

>0.50 -

Probability
of dying

0.25 -

0.00= | | | | I !
98 100 102 104 106 108
Temperature (F)

See e.g. for bias due to interventional confounds in Paxton et al., American Medical Informatics

Association, 2011
Medsger et al., Clinical and Experimental Rheumatology, 2003




Probabilistic State Estimation Approaches

Treat the severity state as latent and develop a causal model
estimate state given the observed measurements.

fluid bolus fluid bolus
500 m| 1200 ml
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Robins et al., Epidemiology, Vol. 11, No. 5, 2000
Mould. Clinical Pharmacology & Therapeutics 92(1):125-131. 2012
S Saria et al., 2010. Integration of Early Physiological Responses Predicts Later lliness Severity in

Preterm Infants. Science Translational Medicine, September 2010. Vol. 2, Issue 48
S. Saria et al., 2010. Learning individual and population level traits from clinical temporal data. In Neural
Information Processing Systems (NIPS), Predictive Models in Personalized Medicine workshop. 2010.




Alternate source of supervision?

septic shock
onset
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Medsger et al., Clinical and Experimental Rheumatology, 2003

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580-637, 2013



Alternate source of supervision?

septic shock
onset
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Medsger et al., Clinical and Experimental Rheumatology, 2003

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580-637, 2013



Sepsis: Our Target Application

SIRS Sepsis Severe Sepsis Septic Shock

e Systemic e SIRS with e Sepsis with e Sepsis with
Inflammatory suspected organ persistent
Response infection dysfunction hypotension
Syndrome

Clinical Comparisons:

- Comparing the counterfactual risk of decline for two patient
states

- If left untreated, risk of immediate decline in subject w/ septic
shock > risk of immediate decline in subject w/ SIRS

Medsger et al., Clinical and Experimental Rheumatology, 2003

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580-637, 2013



Sepsis: Our Target Application

SIRS Sepsis

e Systemic e SIRS with
Inflammatory suspected
Response infection
Syndrome

Severe Sepsis Septic Shock
e Sepsis with e Sepsis with

organ persistent
dysfunction hypotension

Guideline
- Coarse severity levels of sepsis

- Recognize instances of each stage using data in the electronic
health record

- Combine natural language process of text notes with criteria using vital
signs and laboratory test results

- e.g., Septic Shock: If suspicion of infection AND two of the following
(anomolous temp, RR, HR, WBC) AND one of the following (BP > 90 Hgmm
despite fluids > 500 ml OR lactates >= 4)

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580-637, 2013




Learning from Clinical Comparison Pairs

e Learn a function that maps measurements
to severity s.t.
e Concordant with experts ranking of severity

e The underlying score is temporally smooth —> satisfies clinical
expectations of how quickly the disease evolves.
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Learning from Clinical Comparison Pairs

« Max-margin formulation
1. Maximize margin between pairs

V(<al,t? > <altI1>)e0:  gy(al) — gu(zd) > pPi)(20)
Il,(pai)a(Qaj) > O
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Learning from Clinical Comparison Pairs

« Max-margin formulation
1. Maximize margin between pairs
V(<al,t? > <altI1>)e0:  gy(al) — gu(zd) > pPi)(20)
Il:(p’i)’(q’j) > O
2. Smooth trajectories

g(xf+1)—g(wf)] 2
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L-DSS: Linear Disease Severity Score

- Convex, twice-differentiable.
- Optimized using the Newton-Raphson algorithm

min o [
w 2 =
Aord T
L-DSS . +10 > Lp(1 = w” (xj = 7))
Objective (<xP,t?>,<x3,t1>)e0
£, i BATT
~ Asmooth Z w (xz'+1 il xz')
! P 4P
5 (<P Al > <%y 0 3)es L biva %

Joachims. Knowledge Discovery and Data Mining, 2003

Chapelle and Keerthi. Information Retrieval, 2010
Chapelle. Neural Computation, 2007




Dataset and Population

MIMIC Il Clinical Database

* Electronic health records (EHR) collected from intensive care units as
the Beth Israel Deaconess Medical Center from 2001 to 2008

Study population

* 16,232 adult patients included (age 2 15 years)
* 60% Training set

e 40% Test set

A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a hew research resource for complex
physiologic sig- nals,” Circulation, vol. 101, no. 23, pp. e215-e220, 2000 (June 13).

R. Dellinger et al. “Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock,”
Critical Care Medicine, vol. 41, no. 2, pp. 580-637, 2013.



Selection of 1,5 and A¢poen

min [l
w £ =

/\ord 1. (1 T, p 4

L-DSS . + |O| Z: h( — W (xi . x]))

ObjCCtiVC . (<Xf,tf>,<x;’,t;1>)e()
7 i 2
+ /\smooth Z w (XiJ g = xf )

5] . . —
(g 7> <X it i >)ES i+1 i

Identify A,r-q by setting A0t tO zerO.

0.8-

Ordering
Accuracy 0.7-

0.6-

Choice of Asmooth

* > o

1e+05
Asmooth

1e+02

1e+08

As

1ei11

. /ﬁ - maximal smoothness with the same ordering accuracy as Asmooth = 0.
. ,13 - optimizer of early detection performance (will be elaborated on later).



Numerical Analyses

1.Ranking performance: does the proposed score order for severity
more accurately than existing scores?

2. How sensitive is the score to more granular changes in severity
beyond coarse grading for the stages of sepsis?

1.Sensitive to impending adverse events: Leading unto an adverse
event (e.g., septic shock), does the score reflect increase in
severity?

ePredictive performance: Measure prediction performance of the
resulting score.

2.Sensitive to therapy: Following a therapy (e.g., fluid bolus), does
the score reflect decrease in severity?



Learned DSS for Aq,,p0th = As

0.6-
N 4-
) 04
0 Stage
Y none
> SIRS
:5.; severe sepsis
o septic shock
R0.2

0.0-

0 5 10 15
Value of DSS

E.g., Septic Shock among DSS > 2 is 20 fimes more frequent than in the
“general population” of all data points



Task 1: Does DSS rank patient states with

known severity ordering correctly”?

Metric: fraction of correctly ordered pairs on held out data

Establish construct validity (Medsger 2003): consistent with
clinical expectations

Predictor S Fraction of correctly ordered pairs
L-DSS As 0.88+0.01
Proposed
Scores L-DSS 22 0.84+0.01
Routine APACHE I - 0.68+0.01
Clinical 28
Scores Worst SOFA 0.63+0.01
Total SOFA = 0.63+0.01




Numerical Analyses

1.Ranking performance: does the proposed score order for severity
more accurately than existing scores?

2. How sensitive is the score to more granular changes in severity
beyond coarse grading for the stages of sepsis?

1.Sensitive to impending adverse events: Leading unto an adverse
event (e.g., septic shock), does the score reflect increase in
severity?

ePredictive performance: Measure prediction performance of the
resulting score.

2.Sensitive to therapy: Following a therapy (e.g., fluid bolus), does
the score reflect decrease in severity?



Task 2: Sensitive to changes in severity

leading up to adverse events
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Task 2: Sensitive to changes in severity

leading up to adverse events

Density of Delta 1
o o o

P s
0.0- £

0 1
Value of Delta 1

A1 = 5p_¢ — S6_12



Task 2: Sensitive to changes in severity

leading up to adverse events

~06
2 ®
8 \ 218—16‘
5.4 g
7 L 1e-24-
o)
0o

0.2 1e-32-

//
A — 1e-40 -

et 0 { 2
Value of Delta 1

A1 = 5p_¢ — S6_12

: 1823 simcem=
) L 1e-08-

10 30 100 1000
#Samples

Fractionof Ay >0

Predictor # samples
Proposed L-DSS ; <1e-32 587
Scores L-DSS As <1e-34 587

0.71+0.037
0.70+0.036




Numerical Analyses

1.Ranking performance: does the proposed score order for severity
more accurately than existing scores?

2. How sensitive is the score to more granular changes in severity
beyond coarse grading for the stages of sepsis?

1.Sensitive to impending adverse events: Leading unto an adverse
event (e.g., septic shock), does the score reflect increase in
severity?

ePredictive performance: Measure prediction performance of the
resulting score.

2.Sensitive to therapy: Following a therapy (e.g., fluid bolus), does
the score reflect decrease in severity?



Early Detection of Septic Shock

Develop an alert to identify those at risk for septic shock

Raw DSS itself
Raw DSS + 7 derived features — average and trend related features over a window

1.00-

0.75

y

0.50-

Sensitivit

0.25- / y 4
0.00-

0.25 0.50 0.75

System

- APACHE Il

~L-DSS LambdaS1

- L-DSS LambdaS1 + Derived
-~ L-DSS LambdaS2 :

- taoss LambdaS2 + Derived
- Total SOFA

~ Worst SOFA

1-Specificity
Predictor Asmooth Mean AUC for ED  95% Cl
L-DSS A} 0.836 0.824-0.849
| L-DSS A3 0.853 0.841-0.865
DSS-based predictor :
L-DSS + Derived Al 0.856 0.844-0.868
L-DSS + Derived A2 0.857 0.844-0.868
APACHE II . 0.620 0.600-0.641
State-of-the-art clinical |yt SOFA i 0.601 0.581-0.621
Total SOFA - 0.477 0.453-0.500
Logistic Regression (LR) - 0.864 0.852-0.875




Risk prediction

Targeted Real-time Early Warning

System for Sepsis

shock
onset
identified by l
routine N
screening tool |
: =
Detection {7 o I
threshold e & '
S < ot e "
\ « "
," l; | .\.‘
/ - T g il
“ ‘l ;"' 'r
% | Led 0
""" .o.'T‘/I
I! \ e e s soman o ?"i |
o ! : onset of y
"Q.H‘F - _..__,01 Organ :
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i
. i
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e i T U Ve N T
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3 2 1 0O

o At 85% sensitivity, median of 25.2 hours (IQR: 8.69-93.4) prior to shock onset
e 2/3rd detected prior to any sepsis-related organ dysfunction
o Lower false alarm rate, earlier detection than routine screening protocol.



Pilot @ Hopkins integrated within EPIC

Use SEIPS to develop a deep understanding of workload and
workflow —> Design Specification of the CDS

Development Life Cycle R L. 5L, L L i ¢ D L I U et
o PN
TREWScore CDS Application |/ Implementation Prospective
Hopkins Validation Development : Evaluation
Refinement |
I

Systems Engineering Initiative for s Behavior and
: Activation, No -
Patient Safety (SEIPS) i Go-Live Qutcomes
: ; | Clinical Impact
Approach to Design Requirements | Analyses
I




Numerical Analyses

1.Ranking performance: does the proposed score order for severity
more accurately than existing scores?

2. How sensitive is the score to more granular changes in severity
beyond coarse grading for the stages of sepsis?

1.Sensitive to impending adverse events: Leading unto an adverse
event (e.g., septic shock), does the score reflect increase in
severity?

ePredictive performance: Measure prediction performance of the
resulting score.

2.Measure Responsiveness to therapy: Following a therapy (e.g.,
fluid bolus), does the score reflect decrease in severity?



Responsive to therapy”?

Is DSS responsive to therapy?
- construct validity: consistent with clinical expectations

|dentified individuals in validation set who received bolus as treatment for sepsis (i.e.
were septic, hypotensive (BP < 100), and received fluids of 30*body weight)

| 51 5 | 515
6- I i 6- I i
| | | |
| I | I
4- | 4 I i | |
= e o e
L e T ! label ' AV A label
N 2 I & — D 9+ | L |V L pa——
0N : /v b"Kb, + LambdaS1 0N : l J'\MﬁJ’W ~ LambdaS1
a L/ = ~ LambdaS2 a potd” | ~ LambdaS2
0- | | L " |
:- Y :
| | |
| I I
-2- | | I
: : :
. o : - . , i
-5 0 5 10 15

All solid lines mark interventions



Changes in score post therapy

Pre/Post analysis:
 Comparing the trend of the DSS in the 5 hour period post treatment to the trend in the 5
hour period pre treatment.

« Expectation: good score should exhibit a negative change in the trend: upward trend is
slowed down or even reversed.

a1 | 1e+00- :
i A ] |
43 : / : |
IS _\ | |

& 5 L T | label @ e e e e e R o = . o ok o v .
N 7 = - LambdaS1 |
e i f o) - LambdaS2 :

0- - ~ )
i S S1e-04- !
- i g €>U I
i e | -
-5 0 5 .10 15 Q |
Time since hospitalization (hours) |
I
1e-08- :
I
I
0o- = ' ' ; -
100 75 5.0 25 0.0 25 1 10 21 100
TrendAfter - TrendBefore #Samples

Number Fraction of desirable (negative)
of examples trend changes

Predictor Ptreatment

Scores [-DSS 25 <5e-7 81 0.84+0.08




Learning Severity Scores and Risk Trajectories
from Data

e New framework for estimate disease severity
e C(Clinical comparisons: Ordering of disease severity states
e Avoids bias due to interventional confounds (e.g. Paxton et al., 2013).

e Learned scores follow “construct validity”
e Orders severity states with high accuracy
e Sensitive to changes in severity leading up to adverse events
e Sensitive to changes in severity post therapy

Clinical & Informatics
e High Early Detection performance
e Measure therapy responsiveness

Informatics & ML

 Explore other criteria for generating clinical comparisons
e Active learning with user in a loop

e Tailor to subpopulations and the individual
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Features at a septic shock

SR onset
specific time Lo
N N\« °* Vital signs: heart rate,
WEC N respiratory rate,
Temperature ™| _ » =""en o temperature, Glasgow
. wal B | coma score...
Urine/kg =
over Bhrs |- oe s e ~ft~" -+ -~~| ¢ Laboratory results: BUN,
Arterial pH [ 77 7 T e e T R e e creatinine, WBC,
B hematocrit...
ST 7 7. =Tl < Clinical history:
Risk score ) 1 T feh :
trajectory | [ -, . e 1 1 presence of chronic
B s conditions, age...
36 30 24 18 12 6 0

Hours until septic shock onset



Routinely collected measurements

Test Measurement Routinely Cost (USD) Wa.it time Measurgment
Collected (minutes) time (minutes)
Age, Weight Y 0 0
Temperature Y 0 0
Heart rate ¥ 0 0
g Heart Rhythm Y 0 0
.:‘:é Respiratory rate Y 0 0
T Non-invasive blood Y 0 0
= pressure
(@] Blood oxygen (Sp02) Y >0 0 0
E Fi02 Y 0 0
2 Riker Score Y 0 0
g Glasgow Coma Scale Y 0 0
On dialysis Y 0 0
On pacemaker Y 0 0
Admission Diagnoses Y 0 0

Free but are not accurate.



On-demand measurements

Test Measurement Routinely Cost (USD) Wa'lt time Measurgment
Collected (minutes) time (minutes)
- White blood cell count oD
S —~ CBC
= Red blood cell count OD
2 & S24
Q=
o & Platelets OD
£ 3
§ O Hemoglobin OD S35
Hematocrit OD 29 50 mins 20 mins of
Blood urea nitrogen (BUN) OD S14 nursing time for
< Creatinine OD $14 2 bilood draw
E Glucose OD $11 | BMP
a : CMP
L Sodium oD $30
_,‘: CO2 0D
° Potassium OD
= Calcium OD
Bilirubin OD
PaCO2 0D
Blood Gases | Pa02 OD Blogngas 50 mins 0
pH OD

Others collected on demand with varying types of costs



Cost dependency Graph

- Specialized DAG
* Node shares AND or OR relationship with parents

(Anitiesy  (msertaneriakline ) ((none-t ) ((none-2 ) ((blood-draw )
! | |
Pk (Larerial-bp ) (_non-invasive BP ) (_ekgdead ) (e ) (_ bwp )

s _ -

i i) Conme ) Gomeios) (o) ()

] ! :

( shockindex ) ( 24hr-HR-mean ) ( lactate-tevel ) ("creatinine-level ) ( creatinine-n

Layer |
(Features)

- Tests generate multiple measurements
« AND: Measurements may require more than one test
* OR: More than one test may generate a measurement
- Similarly, features share AND or OR relationship with measurements



Cost dependency Graph

- Specialized DAG
* Node shares AND or OR relationship with parents
ety (emamamine) ( m-l) Cm-z) (mm)
l $24

P (MD(W”)(W)

= o > cip

) (S g D)

m Costs at the activity level
SHNEREEIROGEE Costs at the test level
m Costs at the activity and test level

Layer 2 C _
(Measurements) .

Layer |
(Features)




Cost-Sensitive Learning

- Empirical Risk Minimization

N
1
mlélel%llze f = N Z_: /61 $z, y'L + Ré(IB)
Loss Regularizer/
Penalty

- Goal: Construct Regularizer given the Cost-Dependency Graph

Layer 3
(Tests)

Layer 2
Measurements)

Layer |
(Features)




Cost-Sensitive Learning

» Classifier Cascades:
* Viola and Jones, [JCV 2004; Raykar et al., 2010

e Incremental Cost-Sensitive Classification:
e MDPs - Ji and Carin, 2007
* Welss, Sapp, Taskar 2013

e Test-time Budgetfs:
e XU, Kusner, Chen and Weinberger 2013
e Xu, Weinberger and Chapelle, 2012

e Structured Sparsity:
* Group Regularizers (e.g., Bach et al.)
* Tree and Forest Regularizers:
e OSCAR (Bundel et al.,)

Majority of works on cost-sensitive classification assume costs given at the feature level

Structured sparsity work do not show how to obtain the form of the structured regularizer.



Cost dependency Graph

REMARK 1: Our graph isa multi-layer Boolean Circuit.

Reminder: Boolean circuits

o Circuit defined as a finite DAG.
e Each vertex corresponds to either a basis function or one of the inputs
 Example basis functions include AND, OR, NOT functions

v !

XAY VYV




Cost dependency Graph

REMARK 1: Our graph isa multi-layer Boolean Circuit.

REMARK 2: By removing double negations, applying the laws of
distribution, and using De Morgan’slaws, ther-layer circuit may bereduced

to a 3-layer boolean circuit in digunctive normal form

(e.g., B. Pfahringer. Conjunctive normal form. In Encyclopedia of Machine Learning,
Springer, 2010)

Nodes on which [ X1 j ( X2 ) ° o ( X j r: num nodes in
O r
costs are defined the R-th layer of

(e.g., tests) “//im‘_ N the cost graph

(Zl) Z2 ooo(ijooo(ZK)

eares (51 ) (7)) eee (Fm)




Cost dependency Graph

Rrelax(g) — )‘chH \/jESk 63”00

Cr Cost associated with the kth input (e.g., test)
= {J : g2, (.) depends on the logical values of Xr }

Nodes on which [ X1 j ( X2 jooo ( Xr j
costs are defined

(e.g., tests) Am/ D— \

(mj (ZZ)...(ZK)...(ZK)

N\ = N/

cares (71 ) (72 ) eee (Fm)




Sepsis: Our Target Condition

High mortality and morbidity

Septicemia is the 11™ leading cause of death in the US

 Over /750,000 cases of severe sepsis or septic shock annually and rising

* Mortality of septic shock estimated between 30-60%

e Patients with sepsis have increased hospital stays and long-term morbidities

High financial cost
* $15.4 billion dollars spent nationally

Mortality and length of stay decreased with timely treatment [Kumar et al. 2011]

- For every hour that anftibiofic freatments were delayed, risk of mortality went
up by 7.6%

P. R. Dellinger et al. Critical Care Medicine, vol. 41, no. 2, pp. 580-637, 2013
D. C. Angus et al., Critical Care Medicine, vol. 29, no. 7, 2001.

G. Kumar et al., Chest, vol. 140, no. 5, pp. 1223-1231, 2011.
HCUP Facts and Figures: Statistics on Hospital-based Care in the United States, 2009.




Dataset and Population

7 years worth of data from 4 ICUs in an academic medical center

MIMIC |l Clinical Database

* Electronic health records (EHR) collected from intensive care units as the Beth Israel
Deaconess Medical Center from 2001 to 2008

Study population
* 16,232 adult patients included (age 2 15 years)

* 60% Training set
o 40% Test set

A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a hew research resource for complex
physiologic sig- nals,” Circulation, vol. 101, no. 23, pp. e215-e220, 2000 (June 13).

R. Dellinger et al. “Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock,”
Critical Care Medicine, vol. 41, no. 2, pp. 580-637, 2013.




Range of Models Recovered

Models M, M M My

Sensitivity at 0.85 specificity 0.61 0.66 0.65 0.72
AUC 82.79 £0.55 | 84.45£0.64 | 84.75 £ 0.55 87.21 £ 0.46

Financial Cost S0 $0 $§72 $168
Caregiver Time 0 minutes 10 minutes 0 minutes 30 minutes
Result Time 0 minutes 10 minutes 50 minutes 50 minutes

Tests Required routine routine, urine | abg, routine | abg, cbe, cmp, het, hemoglobin, routine, urine
Activities Required none urine arterial stick arterial stick, blood draw, urine

- Cheapest model:

 Sensitivity of 0.61
« $0 / no additional measurements / no wait time

« More expensive model

 Sensitivity of 0.72
« $168 / 30 mins of nursing time / 50 mins wait time




Nalve accounting of cost

Cost in dollars ($) versus area-under-the-curve (AUC) tradeoff.
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Flectronic Health Data
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Modeling variability across individuals in
complex, chronic diseases: Autoimmune diseases

N Health

@ _Smart and
. Connected

iver— stomach
" large

woney intestine
small

intestine

Usual Timing of Problems in Patients with SSc

L DIFFUSE
""“"."‘“‘ CUTANEOUS VARIANT
/ \

interstitial lung myocardial involvement \

disease e 8
w
8 keletal th

skeletal myopathy
s /
Q
X / LIMITED
z [ CUTANEOUS VARIANT
¥ Joint contractures
) mbbsmptbg_rl/,’-
nophago::’“:f_",/‘./_,— el
Raynaud’s, digital ischemia..—" Imo hypertension
Limited cutaneous SSc Diffuse cutaneous SSc g Bumonacy hype

e

TIME
http://www.hopkinsarthritis.org/wp-content/upl oads/2011/04/image-11.| pg
http://www.sli deshare.net/maushard/skin-manif estati ons-of -scl eroderma-by-dr-lorinda-chung-md



http://www.hopkinsarthritis.org/wp-content/uploads/2011/04/image-11.jpg
http://www.slideshare.net/maushard/skin-manifestations-of-scleroderma-by-dr-lorinda-chung-md
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Subtyping from Irregularly, Sampled EHD

« Subtypes — groups of individuals with similar disease

progression patterns.

Automated Subtype Discovery from data: Schulam, Wigley, Saria. AAAI 2015
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Prediction Models for Chronic, Multiphenotyic Diseases

(e.g., predicting lung function in sclerdoderma)
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Physiologic Signals: Collected but Dropped

after 48 hours
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Computational Markers

Example signatures learned with TSTM are shown below:
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S. Saria, A. Duchi, D. Koller. Learning Deformable Motifs in Continuous Time Series data. International Joint Conference on Atrtificial

Intelligence (IJCAI), 2011.
S. Saria, A. Rajani, J. Gould, D. Koller, A. Penn. Integration of Early Physiological Responses Predicts Later lliness Severity in Preterm

Infants. Science Translational Medicine, September 2010. Vol. 2, Issue 48.

S. Saria, D. Koller, A. Penn. Learning individual and population level traits from clinical temporal data. In Proc. Neural Information
Processing Systems (NIPS), Predictive Models in Personalized Medicine workshop. 2010.
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HopkinsPD: Automated Home-based Illness Severity
monitoring

Largest database to date: 50K+ hours of data,
500+ individuals, 20+ countries
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Novel learning algorithms

* Current methods are highly suscepftible to provider practice patterns.
* Interventional Confounds (ICs)

 New ranking based learning algorithm that avoids bias due to ICs.

* Application in the context of adverse event detection.

Extension to Practice-Cost Sensitive Learning

* Incorporate cost-of-practice into developing predictive models

Quick overview of other work

* Models for personalized prognosis in Complex, Chronic Conditions
* Physiologic models for predicting illness severity in infants
 Smart phone based iliness severity monitoring

Where are the current gaps?



Where are the gaps?

1.Methods that account for Treatments and Provider Practice Patterns
1.Factored models over monolithic blackboxes
2.Measure “regions of reliability” of the model

2.Methods for systematically integrating heterogeneous data
1.Static with time-varying markers
2 .Handle different granularities at which data are sampled
3.Data as they arrive over fime

3.Personalize to the context in which they are being used: Practice-cost
sensitive approaches
1.When to act based on cost-benefit tradeoff
2.Multiple models are deployed: utility based measures to alert

4. Methods for modeling heterogeneous populations

“Variability isthe law of life, and as no two faces are the same,
s0... no two individuals react alike and behave alike under the

abnormal conditions which we know as disease.”
- William Odler



Thank you!

ssaria Al cs.jhu.edu
twitter: @suchisaria






