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Dr. Risha Gidwani:
Welcome everybody to today’s HERC Cost Effectiveness Analysis Cyber Lecture. Today I am going to be giving a presentation that deals with how to derive transition probabilities for use as inputs in your decision model. Can everybody now see my screen? [Pause]
Unidentified Female:
Yes, we can. 

Dr. Risha Gidwani:
Okay, great. I want to remind everybody that this presentation is going to be about modelling rather than measurement alongside a clinical trial. Last week Jeremey Goldhaber-Fiebert did give a presentation about how to actually build a decision model I hope everyone had a chance to view that presentation; we do have archived sessions available if you did not. Once you have built the structure of your decision model you need to actually populate it with inputs which transition probability are and in this lecture we will talk about how to derive those transition probabilities. 
Before we delve into it, I want to let everyone know that we will have some interactive examples in this seminar today so please get your calculators out or pull up an Excel spreadsheet so that you are able to do the calculations. 

When we have a decision model, transition probabilities end up driving our decision model and that is the case whether we are using a state-transition model or a discreet-event simulation model. 
In a state-transition model, we are looking at the probability of moving from one health state to another and that probability is a transition probability. That may be something like moving from cancer to a health state of remission. In a discreet-event simulation model, we are looking at the probability of experiencing an event and that probability of experiencing an event is what allows somebody to progress throughout a discreet-event simulation model. That might be something like the probability of experiencing myocardial infarction. 

I am having some delay here as I am trying to move through the slides. Heidi do you have any recommendations on how I can…is the arrow key not the right way to do this?

Moderator:
I am not sure. The one thing I am noticing is that Go To Webinar Dashboard either drag that to your other screen or collapse it using that orange arrow, that may be having some issues. Other than that just click on your slides I think you may be in the wrong…and you should be able to move, there we go. 

Dr. Risha Gidwani:
Okay thank you much sorry about that everyone. As I said before transition probabilities are the engine to a decision model. You are often going to derive these probabilities from literature-based inputs rather than having them available from an individual study. I want to teach you in this course how and when we are able to do this. 
I would like to acknowledge the contributions of Dr. Rita Popat who is a Professor at Stanford University; she gave a lot of feedback and really helpful suggestions for how to improve this lecture. 
Here I have a schematic of what a decision model may look like and in this example, we are looking at diabetic patients who we may be offering Drug A or Drug B and we want to understand whether Drug A is cost effective relative to Drug B. In each drug a patient could have a probability of controlled diabetes or uncontrolled diabetes. And this is the structure to our cost effectiveness model and now we need to populate that cost effectiveness model inputs for the transition probabilities or the probability of control versus uncontrolled diabetes under each drug. 
When we build a cost effectiveness analysis model we do not have to be looking at two drugs, it can really be two or more of any strategies. In this situation, maybe we are actually not looking at two drugs, but really looking at one drug versus a diet and exercise and telehealth monitoring intervention. 
If I wanted to populate my decision model, I would want to understand the probability of being in control diabetes under the drug versus the probability of being in control diabetes under the diet, exercise and telehealth monitoring program. Here you can see that across my branches, across the probability of controlled and uncontrolled diabetes within Drug A that some of these probabilities have to add to one hundred percent and that is the same thing for the probability of controlled versus uncontrolled diabetes under the alternative treatment strategies.

There are a number of different ways to drive model inputs, these transition probabilities. You can obtain existing data from a single study or you can synthesize existing data from multiple studies through doing a meta-analysis, a mixes treatment comparisons analysis or a meta-regression. Today, we are going to be talking about how to obtain existing data from a single study and I will be giving lectures this month that will be talking about using meta-analysis to synthesize existing data from multiple studies, which will touch upon mixed treatment comparisons as well as meta-regression. 
So let us get into this. When you are trying to get transition probability inputs from the literature, if you are very lucky, you will read a journal article that will have the specific type of information that you need for your decision model. The problem is that the vast majority of people are not extremely lucky and what most people have to do is modify the existing literature in order to derive your model inputs. For example, you may have a journal article that has evaluated the effects of diet and exercise plus home telehealth monitoring on the likelihood of controlled diabetes at three months, but what you really need is something, literature input, that has evaluated the effects of diet and exercise and home telehealth modeling uncontrolled diabetes at one year. You have something that is very similar to what you need for your decision model, but not exact. In those situations, we can actually modify the existing literature in order to get the inputs that are specific to our particular model. 
There are a number of different types of inputs that are available from the literature, you may have a probability that is directly reported, you could have a rate like a mortality rate, a relative risk, an odds ratio, a risk difference, a mean or a median. These are all commonly reported statistics. You can see that I have a dotted line here and that separates out the continuous statistics from the binary statistics that are above the line. When we are building a model and we are trying to get transition probabilities we need those because we are interested in binary outcomes, that is that we are interested in the likelihood that each person transitions from one health state to another. Did a person move from controlled diabetes to uncontrolled diabetes is of course a binary response. 
Again, we need data in the form of probabilities for use in the decision model. If we have the continuous data, we would have to transform it into probabilities and if we have the summary statistics that are particular to binary data, we still need to transform that to probabilities so that we can use that in the decision model. 

I have a slide here that goes through the definitions for each one of these different statistics that was on the previous slide. In the interest of time, I am not going to go through all of these things, but I do encourage you to familiarize yourself with this and use this as a reference slide in the future. What I will mention though is the definition of probability versus rate because this is something that is oftentimes mixed up in the literature and unfortunately is oftentimes erroneously conflated even with internal articles. A probability is the number of events that occur in a time period divided by the number of people who are followed by it for that time period. Conversely, a rate has the same numerator as a probability but it has a different denominator. A rate is also the number of events that occurred in a particular time period; however the denominator in a rate is the total time period experienced by all subjects who were followed. In the next slide, it will make this clear and we will really impress upon you the distinction between these two different statistics. 

These statistics, some of them are comparative and some of them are non-comparative. When I say comparative I mean that they are looking at the effect as an outcome that is in two different groups. For example and odds ratio is looking at the odds of the outcome in the exposed group versus the outcome of the unexposed group. We have two groups here, therefor it is a comparative statistic inherently. A rate is looking at the number of events divided by the total time period experienced by all subjects followed, we are only looking at one group, and it is a non-comparative statistic. Importantly, input for a decision model required non-comparative data and that is because the model itself will actually run the comparisons for you. You cannot put comparative data into a decision model and then also get comparative data out. Rather you put non-comparative data into a decision model and have that apply to each one of your groups and then the decision model yourself will populate the delta between your two different groups. For example in our decision model that I laid out earlier about controlled versus uncontrolled diabetes, the probability of controlled diabetes with Drug A would be the first input and the probability of control diabetes with Drug B would be the second input. Then our model would actually create a statistic for us that told us the difference in the probabilities controlled diabetes under these two drugs. 

If you have comparative data, you are going to have to transform it to non-comparative data so that you can use it in your decision model. If you just have the comparative data, you cannot use it directly as an input in your decision model. Now, if placebo is the comparison if you are comparing let us say Drug A versus placebo then that is a special consideration. If placebo is not effective in and of itself, then that is okay you can sort of use as comparative data of Drug A versus placebo and pretend that it is really just applying to Drug A. However, placebo in and of itself is oftentimes effective and if you are using comparative data from Drug A versus placebo, and pretending that it is really non-comparative data relative to Drug A then you are actually going to be underestimating the effectiveness of active treatment, I am sorry overestimating the effectiveness of the active treatment. There is some interesting work being done in this area, Ted Kaptchuk at Harvard is doing some really interesting work about the efficacy of placebo indicating that we really cannot think that placebo is not effective in and of itself. My recommendation is even if you have comparative data where you are looking at Drug A versus placebo you should still transform it to non-comparative data before you use it as an input in your decision models. 
If the literature has reported a probability directly then that is great, but oftentimes the literature based probability that is reported may not be relevant for your particular timeframe of interest. In this situation, you would have to transform this probability to a timeframe that is relevant for your model before you can use it. For example, you are interested in the probability of controlled diabetes and the literature may report that six month probability of controlled diabetes. However your model has a three month cycle length and you thus need a three month probability. You need to be able to transform this six month probability into a three month probability. 
Now you cannot do that directly through the probability itself and that is because probabilities cannot be easily manipulated you cannot multiply or divide probabilities. For example, a hundred percent probability of five years does not mean that the probability at one year is twenty percent. And an easy way to remember that is to go backwards. So at thirty percent probability at one year does not mean a hundred and twenty percent probability at four years because it is obviously impossible to have more than a hundred percent probability. So keep this example in mind and remember that when you are trying to modify probabilities for the time period of interest you cannot just directly multiple or divide that probability by the timeframe. Rather what you can do is use the mathematical properties of a rate in order to transform the probability to something that is of interest for your model. So unlike probabilities rates can be mathematically manipulated so they can be added, multiplied, divided what not. In order to change the timeframe from trying to get from that six month probability of controlled diabetes to the three month probability of controlled diabetes, you actually transform the probability to a rate and then transform that rate back into a probability. The next few slides will explain how to actually do this. 
I should note a caveat and that is that this way of manipulating probabilities through a rate transformation assumes that the event occurs at a constant rate over a particular time period. If that is not the case for your specific outcome of interest, then you cannot use this manner of modifying probabilities per rates. 
Let us go over rates versus probabilities. As we stated before, the probability is the number of events that occurred in a time period divided by the number of people who were followed for that period. Conversely, a rate is the number of events that occurred in a time period divided by the total time period experienced by all subjects followed. In a rate you care when the event happens, this actually changes the rate. For probability it does not matter when the event happened as long as it occurred at some point throughout your follow up the probability is going to remain the same. Here is an example and we have four people who were followed for a study that lasted four years. We have person number one who died at year three; person number two was followed for all years and ended up being alive at the end of the study follow up period; person number three died at year one and person number four died at year two. 
So if we wanted to calculate the rate of death with again the rate being the number of events occurring in the time period divided by the total time period experienced by all subjects followed. We start by understanding what is the total time period experienced by all the subjects followed. Well person number one contributes three years to the analysis; person number two contributes four years; person number three contributes one year; person number four contributes two years: three plus four plus one plus two ends up being that we have followed people for a combined total of ten person years. In those ten person years there were three events or three deaths, thus the rate is three per ten person years or .3 per person year. 
The probability is different, the probability is just the number of events that occurred divided by the number of people followed for that time period so we have four people who were followed for the time period, three deaths, and the probability of death is seventy-five percent. So with the exact same data, we get really different figures for the statistic of a rate versus a probability. 

Let us go through another example and see what happens when time periods change. In the left hand side, we have a situation that is exact same as what happened in the previous slide, four people who were followed for a four year time horizon and we have people experiencing death at year three, year one and year two. In the right hand side graph, we also have four people who are also followed for a four year time period, but these events happen at a different time. Here the first death happens at .5 years, the second death happens at one year, the fourth death happens at .5 years again. 
Now let us calculate the rate versus the probability for each. On the left hand side, we have people contributing three, four, one and two years of follow up. That adds up to ten years of follow up and we have three events and the rate of death is .3 per person year and the same thing as before on the previous slide, we went through the probability of death as being three-fourths or seventy-five percent. On the right hand side when the timing of the events change we see that the rate of death changes as well and that is because people are contributing less years to follow up and that is contributing fewer numbers to the denominator. Because person one died at .5 years, he contributes .5 years to the analysis. Person two ended the study alive, he contributes four years to the analysis. Person three died at year one, he contribute one year to the analysis. Person four died at year .5 he contributes only .5 years to the analysis. So our denominator is very different, our denominator is fixed person years rather than the ten person years we saw on the left hand side. But there are still three events and so we have three events divided by six person years, we have a rate of .5 per person year. However, because the probability does not depend on the number of units of time of follow up and just depends on the number of people followed. And we still have four people followed up on the right hand side graph as we did on the left hand side graph; the probability of death remains the same, three out of four or seventy-five percent. Here just to reiterate in probability it does not matter when the event happened in a rate it matters greatly when the event happened. 

Here is where I would like you to pull out your calculators or your Excel spreadsheet, we have a group example for the audience, and what I would like you to do is calculate the rate of death and the probability of death from this graph down here on the lower left hand side of your screen.  Remember the rate of death is the number of events divided by the number person years, the follow up and the probability of an event is the number of events divided by the number of persons followed. We will just give you about forty-five seconds or let us say sixty seconds to work through this example and please go ahead and do this on your own. [00:18:46] [pause]. Heidi I ask that you please keep time for us so that we make sure we keep moving on after this.
Moderator:
Okay will do. [00:19:02 to 00:19:35] [pause]. And we should be right about forty-five seconds right now. 
Dr. Risha Gidwani:
Thank you alright I hope everyone has had a chance to work through this example and here on the right hand side we find that the rate of death is .375 per person year. So I hope that is what everybody got when they worked through this in the comfort of their own offices. What I like to do is always start with the denominator for the rate calculation. So here we looked at people that have two years, person one contributed two years; person two contributed three years; person three contributed one year; person four contributed two years. That means that their denominator is eight, we had three events or three deaths so our rate is three divided by eight or .375 per person year and our probability of death remains the same, three out of four people ended up dying throughout our study follow up period. 
Okay, so now that we had a chance to really understand the differences between probabilities and rates, I want to give you the equations that you can use to take advantage of the mathematical properties of a rate in order to manipulate probabilities for uses inputs in your decision model. If you had a probability and you are trying to derive a rate from that probability you would use a top equation, which indicates that a rate is the negative natural log of one minus the probability divided by “t” where “t” represents that timeframe. If you had a rate and you are trying to get from a rate to a probability a probability is one minus the exponentiated value of the negative rate times the time. 
Let us go through some examples to make this clear. We have in the literature a three year probability of control diabetes of sixty percent and what we are interested in is the one year probability of control diabetes. You recall from before that we cannot just divide the probability by three in order to get the one year probability we have to go through a rate conversion in order to get the one year probability of controlled diabetes here. 

We are going to assume that the incidence rate is constant over three years and we are going to use our equations for a rate which is the negative natural log of one minus probability which in this case is sixty percent or .6 divided by three which is our timeframe and that gives us a rate of .3054. From there we transform this rate back into a probability by using this equation where the probability becomes one minus the exponentiated value of negative .3054 times one and that gives us .2632 or a probability of twenty-six percent. What we did here in this first equation is we transformed the three year probability into a one year rate and then in the second equation we transformed the one year into a one year probability. If you wanted to you could also in the first equation instead transform the three year probability to a three year rate and then in the second equation, transform the three year rate into a one year probability. If you wanted to do that, you wanted to keep the rate as three years here and the “t” in this equation will be one rather than three and then down here if you wanted to transform the three year rate into a one year probability instead of a one you would have a one-third in the equation. Either way is appropriate you will get the same answer. 
Okay, one last example that is interactive for the audience in this seminar. We have a situation where we have thirty percent of people with controlled diabetes at five years and we want to understand what the one year probability is of controlled diabetes. I am going to put these equations here out on the screen for you and Heidi if you can give us another forty-five seconds, we will ask everybody to work through this example on your own.

Heidi:
I am good. [00:23:38 to 00:24:14] [pause] and we are at forty-five seconds. 
Dr. Risha Gidwani:
Great, alright. So the answer is, hopefully that everyone got, that a five year probability of thirty percent is a one year probability of 6.89%. First what we needed to do was do our rates to probability, I am sorry get our rate and our rate was negative natural log of one minus .30 divided by five and that equals .0713. Here what we did was we got the one year rate from the five year probability. In the second equation we transformed this one year rate into a one year probability and that is why we still have a one year in the timeframe and the probability is then one minus the exponentiated value of negative .0713 times one and that gives us a one year probability of 6.89%. I hope you filed these equations away somewhere because we oftentimes see rates reported in the literature or probabilistic reported in the literature that are not for your timeframe. And this is really going to be a helpful way of making sure your model inputs are accurate to the appropriate time period, which I hope the previous slides impressed upon you the importance of why understanding the right period is important. 
Going back to our main slide of all of the different slide, I mean the main table of all the different statics we have gone through the statistic of probability, which is also, called Risk sometimes. We oftentimes see epidemiologists calling probability risk, it is the same thing. Can we convert to a probability, well yes of course because it already is one but you want to use the rate conversion to make sure that the probability applies to the correct timeframe. If you are given a rate from the literature you can directly convert that to a probability using the questions that we just discussed. 
Now that we have dealt with those common statistics, I want to move on to three other statistics that are frequently reported in literature and that is the relative risk, the odds and the odds ratio.  
In the beginning there were two by two tables and these two by two tables allow us to calculate the probability, the odds ratio and the relative risk directly from them. This is a very common example of a two by two table that you will oftentimes see in the literature and this should be something that everyone is familiar with through their Biostats or Epidemiology 101 courses. Here you are looking at two groups of people, one group was exposed to intervention another was not exposed to the intervention and you want to understand which people in each group had the outcome and did not have the outcome. We are oftentimes interested in the probability of outcome in the exposed group, we would calculate that as A divided by A+ B, and we are also oftentimes interested in the odds ratio. The odds ratio is the odds of the outcome the exposed versus the odds of the outcome in unexposed. Odds themselves are defined as the probability of the outcome divided by one minus the probability of outcome. So if you can calculate the probability and can do that differently for each group then you can calculate the odds ratio, which we can definitely do from this table as well. And we can also calculate the relative risk. I am showing you these equations up here on the screen as well, but what I would really want you to understand is the relative risk and odds ratio differ. The relative risk is the probability of outcome and exposed divided by the probability of outcome in unexposed. Odds ratio is the odds of outcome in exposed divided by the odds of outcome in unexposed. These are measuring different things, but the point that the probability of the odds ratio and the relative risk even though they all measure different things, all come from the same source which is this two by two table. You are oftentimes not actually going to have this two by two table reported in the literature, and so we need to figure out how we can actually transform these statistics that the odds ratio and the relative risk that is reported in literature into a probability that you can use. 

Before we do that this is just another example of a table that applies to our particular example that we have dealt with all day today and that is looking at patients that have controlled versus uncontrolled diabetes, that is the outcome we are looking at and intervention is Drug A versus placebo. 

I should mention here that the odds ratio here would be the odds of achieving controlled diabetes with Drug A versus the odds of achieving controlled diabetes with placebo. Here the relative risk would be the probability of achieving controlled diabetes with Drug A versus the probability of achieving controlled diabetes with placebo. 

Here are our definitions again so that you can keep them in mind. Odds ratios and relative risks are very different; sometimes you will see them conflated in the literature as well. I encourage you to memorize each one of these definitions so you can properly assess whether it is truly a relative risk or truly an odds ratio reported. Because the relative risk is the ratio that gets you to the probability the versus odds ratio being the ratio of two odds, the relative risk gets easier to interpret than the odds. However, a lot of data reported in the literature is going to be odds ratios rather than relative risks and that is because odds ratios are the default output to a logistic aggression and a logistic regression is of course what we use for binary outcomes. Because that is oftentimes what people will report from a logistic regression it is something that you are going to see in the literature and going to have to know how to deal with. There is also one other advantage to an odds ratio, even though it may not be as easy to interpret it has better statistical properties. And by that I mean that the odds ratio of harm is the inverse of the odds ratio of benefit and that is not the case with the relative risk. The relative risk of harm is not the inverse of the relative risk of benefit. 
Let us talk about how to actually drive a probability from relative risk, which is relatively straightforward. The relative risk again probability in exposed divided by probability in unexposed. If you wanted to drive the probability of events in exposed from the relative risk, you could do so by multiplying the relative risk by the probability of the outcome in the unexposed. That is because it will allow the denominator of the relative risk to cancel out. If you are trying to understand that probability in exposed you multiply the relative risk times the probability in unexposed, the probability of unexposed cancels out leaving you with just the probability of exposed. 

There is a caveat here of course and that it is that you need to be able to actually find the probability of unexposed in the journal article, which you are oftentimes going to be able to do. As long as you have a relative risk and a probability of unexposed from a journal article, you are good to go you can employ this equation and get your probability of outcome in the exposed group. 

Here is an example of that. We have studied relative risk of 2.37 and the journal article that describes this study also did report that probability of outcome in unexposed is .17, maybe through a table somewhere. If we want to understand the probability of outcome in the exposed group, we multiply the relative risk times the probability in unexposed and that here gives us a probability in the exposed of 40.3%.
Caveat, over the entire study period. So the probability we are deriving from the relative risk is that relative risk will have been reported for the entire duration of our study so it is specific to that studies timeframe. If this study had a timeframe of ten years but we were really interested in a one year probability, we would then have to transform this forty percent probability over ten years into a one year probability employing the equations we did before of converting the probability to a rate and then a rate back to a probability. 

There is also one other wrinkle that I need to point out here. The relative risk if it is the result of a regression so for example multinomial logit regression may give you a relative risk. If the relative risk is being reported in the journal article is the result ever regression if it has been adjusted for covariates. However, the probability in the unexposed will likely be unadjusted especially if you are looking at it from a Table One which just gives characteristics of patients in each group at baseline. If you have a relative risk that is adjusted and a probability of outcome in unexposed as unadjusted, you run into a little bit of a problem. Here if you are trying to multiply the relative risk times the probability in unexposed that is unadjusted in order to derive the probability of the exposed you have a situation where the denominators may not completely cancel out. Because the denominator for the relative risk is a probability of unexposed in the adjusted that has been adjusted for covariates whereas the number that you are multiplying it by is a probability of unexposed that is unadjusted. Those may not completely cancel out. Then your derived probability estimate, your probability of outcome in the exposed will have some bias to it so you want to make sure that you vary this in some tipping analysis. I will mention that Dr. Popat and I along with two other colleagues from Stanford University have been doing some simulation work to understand the degree of bias that will occur when you have a probability of unexposed that is unadjusted, multiplied by a relative risk that is adjusted. Or finding actually that in many situations it is not very substantial. I would still recommend this as a strategy to move forward, understanding that it will have some degree of biased but that biased should be minimal and thus should be able to be accommodated by doing some variations and inputs and sensitivity analyses. 
Relative risks are nice because we can interpret them easily but as we said before, odds ratios are much more likely to be actually reported in the literature than relative risks are. We need to figure out how to derive a probability from an odds ratio. If the outcome of interest in the unexposed groups is rare, then you can assume that the odds ratio approximates the relative risk. And you probably remember this from your epidemiology courses. When we say that the outcome in the unexposed is rare we mean that it occurs about ten percent of the time or less. If the outcome in the unexposed is not rare, you cannot necessarily assume that the odds ratio approximate to relative risk and that is an advanced topic and you should consult a statistician before you try to derive a probability from this type of odds ratio. 
This is a slide from a paper that is published in JAMA in 1998 by Zhang and Yu; it is a great article called “What is the Relative Risk” I highly recommend everybody read this. It shows the difference in an odds ratio versus a relative risk. You can see here that things look pretty good, the relative risk pretty well approximates the odds ratio when the outcome is rare, when it is less than ten percent and here you can see this redline here sort of indicates this ten percent threshold at which the relative risk and the odds ratio look pretty similar. Once you start moving above a ten percent probability of outcome in the unexposed group then the relative risk and the odds ratio start diverging. When there is a more common event the odds ratio will overestimate the relative risk when it is over 1.0 and underestimate the relative risk when it is under 1.0. however there is something to keep in mind here and that is when the relative risk is relatively close to 1.0 then you can have a higher probability of outcome in the unexposed group and still assume that the odds ratio and the relative risk are going to be pretty similar. When you start moving into these really extreme values of odds ratios and relative risk on either end, then you really do need to adhere pretty closely to only having the odds ratio approximate the relative risk when the incidence of the outcome in the unexposed group is ten percent or less. 
When we want to calculate a probability from an odds ratio, if the outcome is rare we are going to assume that the odds ratio approximates relative risk. And we are going to use the same equation of the probability of outcome in exposed equals the relative risk times the probability in unexposed, but we are going to replace the relative risk with an odds ratio. 

Here we have an example and we have an odds ratio that is 1.57 that we got from a journal article. And the journal article also reported that the probability of outcome in the unexposed group was eight percent, this falls below our ten percent threshold so we consider this to be a rare outcome and move forward with assuming that the odds ratio approximates the relative risk. We then employ our same equation that the probability of exposed equals now the odds ratio times the probability in unexposed and from that we derive for this specific example that the probability of outcome in the exposed group is 12.56%. 
I actually made up this example and I made it up from this two by two table you see on the bottom right hand corner and you can see here that we have a hundred people, twelve plus eighty-eight is a hundred people who were exposed to the intervention and of them twelve percent had the outcome. So from the two by two table we see that the probability of outcome in exposed is twelve percent and you can see that is very close to this 12.56% that we got when we used our equation to derive probability. 

To recap, whether you can assume that the odds approximates the relative risk depends on the probability of outcome in the unexposed you should be able to find this from the journal article. If you cannot find it in the journal article that you are getting the odds ratio from try doing a literature search to see if you can identify this value for a similar group of patients and see whether it meets the rare disease assumption. 

We talked about probability from relative risk, we talked about probability from odds ratio, now I want to talk about getting a probability from odds themselves and this is actually as straightforward as it gets because odds and probability have a very clear relationship. The odds are the probability divided by one minus the probability and the probability is the odds divided by one plus the odds. If we have an odds of 0.17, we have a probability of .125 or 12.5%. We would derive that by looking at this equation on the right hand side, the probability of odds divided by one plus the odds, the odds are one-seventh, one plus one-seventh is eight-sevenths; one-seventh divided by eight-sevenths gives us .125. 

If you are actually doing your own data analysis on individual patients and you are running your own regressions you can pull the probability the adjusted probability of the event from the regressions directly. I used Stata so I am going to give you an example from using a Stata program and you want to use the margins command to do this. So if I have a logistic regression, my normal logistic regression is coded as logistic and the “y” and “x” variables so your dependent variable and then your independent variable. Here I only have one independent variable in all likelihood if you are running regression you are going to have two or more independent variables. What I would do is I would type in my logistic command, this i. in front of my predictor variable indicates that this variable should be denoted as a dummy variable. Then after I type in my logistic command, I would type in a margins command with again the predictor variable identified as a dummy variable. What this will give you is the predicted probabilities that each group, each level of your independent variable has the outcome. Let us say you had a group of patients and your “x” variable is race, and you have three groups, you had Black, White and Hispanic patients. If you run this type of command, you will get the probability of event in your Black patients, the probability of event in your White patients and the probability of event in your Hispanic patients. 
Going back to our main table here, we just when through odds, odds ratios and relative risk and we found that yes we can convert those to probabilities. Odds are very easily converted to probabilities; odds ratios can be converted to probabilities if the outcome is rare and you have the probability of event in the unexposed group. The relative risk can also be converted to a probability assuming that you have the probability of event in the unexposed group. 
In the next slides we are going to move on to discussing the risk difference. The risk difference is the risk of events in one group minus the risk of event in another group. A risk is just another word for a probability. If we are looking at the probability of an outcome of patients treated with Drug A versus the probability of that same outcome for patients treated through placebo we would just calculate the delta between those two probabilities to get at the risk difference. This risk difference is the change in risk that is due to treatment but the treatment has the lower risk than the control, the risk difference is negative and if the treatment has a higher risk than control then the risk difference is positive. 

Again, probably of treatment minus probability of control equals the risk difference. If the article gives you the risk difference it will oftentimes give you the probability of treatment or the probability of control. If it gives you the probability of treatment, great, you use that directly that is exactly what you need it is your input for your decision model. If it does not and it just gives you the probability of the outcomes in the control group you use that in combination with the risk difference in order to drive the probability of treatment. Very straightforward here, you can calculate the risk difference as long as you have two of the three variables that are involved in creating the risk difference. 

Alright now we move on to survival curves. Previously ratios, risk differences, probabilities, relative risks etcetera, we assume that all probabilities were constant throughout the model meaning that the probability of controlled diabetes was going to remain 6.89% every single year in the model. Now you do not have to assume this, you can have every probability change over time, we did not here for the sake of illustration but what I do want to point out here is that survival is different. Survival should never assume to be constant over time because as people age their probability of dying changes and that is something that you are going to have to incorporate in your model. You are going to need multiple probabilities for death in your model, one for each time period of interest. The U.S. Panel on Cost Effectiveness in Health and Medicine does recommend that people take a lifetime perspective when engaging in a cost effectiveness analysis model. If you are starting a cohort that enters the model at age twenty you are going to following them until death and of course the probability of death for an eighty-five year old is going to be very different in the probability of death for a twenty year old. And that is that probability input in your model cannot be constant over your model it is going to have to be modified as people progress over time. 
There are two major types of mortality statistics and they are going to come from different sources. First is the all-cause mortality and that is something that you can find at the CDC website and that is going to give you age and sex adjusted rates of mortality. The panel on Cost Effectiveness on Health and Medicine does recommend that you use this all-cause mortality as opposed to a disease specific mortality. The reason for using an all-cause mortality is that if you only look at the disease specific mortality you will be underestimating mortality in your cohort and thus overstating the effectiveness of your treatments. 
You go to the CDC to get all-cause mortality, if you do need disease specific mortality you can include that in your model as well and that is going to probably be reported as a probability of death and come from a survival curve. So we will handle these two types of data sources differently when we are trying to use them as inputs for our decision model. 

This is a table of survival rates from the CDC website. Here I am just going to focus in on the elderly population, people aged seventy-five and older who were male. You can see from the footnote here that this is the rate per one hundred thousand. What we want to do is transform this rate into a probability. This table on the upper left hand side is just the exact same data that you saw in the previous table from the CDC. You can see here that the rate of death changes very much depending on the age range. What we want to do is transform the rate that the CDC gave us into a probability for use in our decision model. The CDC already told us that this was per one hundred thousand population and so our denominator here is going to be one hundred thousand. We get our numerator from the CDC table and that gives us a rate for each one of these different rates. I transformed it into a probability. The rate of 4493.7 got transformed into a probability of death of 4.39%. The seven thousand three hundred fifty eight was transformed into 7.09% and this last category of fifteen thousand four hundred and fifteen deaths was transformed into a probability of death of 14.29%. You can see here that we of course cannot assume that probability is constant throughout our model, as our patient’s age they are going to have a different probability of death. 
At the bottom right hand corner is a table that I would put into my actual decision model. Here in my decision model. I am following patients for a hypothetical of twelve years, so I have zero through eleven cycles each lasting one year and I am starting patients in the model at the age of seventy-five and then I am following them until age eighty-six when I am assuming that they are all _____ [00:47:25] [audio skipped] until age eighty-six. Here in my first few years as people go from age seventy-five to age seventy-nine, they have an annual probability of death of 4.39%. As they go to age eighty, we know that their probability of death increases and now it becomes 7.09% until they hit age eighty-five and then it becomes much higher. 

If we want to get data from the disease specific about survival there are a few different forces one could do this. We are leaving now behind the CDC all-cause mortality and we are talking about disease specific mortality data. You are going to see these disease specific mortally data either as being reported from a Kaplan-Meier curve, a Kaplan-Meier curve is unadjusted for covariates which means that the information that is being presented to you most likely comes from randomized controlled tile data which are through randomization patients in each group are balanced with respect to covariates. If data comes from an observational study you are going to want data to be adjusted for covariates to minimize differences across the treated and control groups at baseline. So you would run an adjusted survival analysis operationalizing a cost proportional hazards model and using the data from the Cox Proportional Hazards Model to get an adjusted disease specific mortality. 
Here is an example from this is what a survival curve looks like so this is a study conducted by Kuck et all that was published in the Lancet in 2010. This was looking at cardiac patients and these patients could either undergo a cardiac ablation or they were in the control group. This is a randomized control trial so they are just presenting the straight Kaplan-Meier Survival Curves. Here the dots represent censored observations and censoring means that the patient was lost to follow up. If we needed to pull out a probability of death from these data, what we could do let us say if we were interested in the probability of death at month eighteen, is we could actually follow these patients at month eighteen who are in the control group. We see that their probability, this is actually the “y” axis is showing survival rather than death and so here we would say that at month eighteen the probability of surviving for the control group was about fifty-four percent. I want to mention that this is a very quick and dirty way of getting probabilities from survival curves because we are not actually accounting for the seventh string here or the lost to follow up which means that patients would be falling out of the denominator over time. If you really wanted to get the very exact probability of death at month eighteen, the best way to do this would be going to the individual patent data and asking the author if he or she could share that with you. In the absence of being able to get that you can use this approach just know that it is a quick dirty way to do so. 
Now we just talked about survival curves, and we can convert this to a probability but we need to remember that they are conditional and that may change with each time period. _____ [00:50:41] [lost audio] pretty quickly and that is the mean or what would you have for continuous data. If you are trying to derive data, I am sorry probability from a continuous distribution whether that is mean or even a median you need two things to do so. First, you need a validated way to generate a binary variable from a continuous distribution meaning that you need a threshold. In our example of controlled diabetes what is sometimes denoted as a threshold for controlled diabetes is a hemoglobin A1C value of less than seven. Here in our situation we may have a distribution of hemoglobin A1C value and we want to understand the proportion of patients had controlled diabetes we would measure how many patients fell below. If we drew a line in a distribution to cut it off at seven we would measure how many people fell below that threshold and use that information to drive the probability of controlled diabetes from this continuous distribution. However, we also would need something else in order to do this and that is an estimate of variation around the mean. Because we of course would not able to plot a distribution which adjusts the mean value we need to be able to have the mean along with either the standard deviation of the variance in order to be able to start understanding the shape of the distribution. If you had a median, you would need an _____ [00:52:03] [skipped] in order to understand how to plot the distribution. The median is of course a much more difficult situation because if you have a median interquartile range reported you know that the data are not normally distributed. So it is going to be a lot harder to understand what proportion of patients fell below a particular threshold if you only have the median along with the assessments of variation. In this situation, you should definitely involve a statistician. 
Okay, we can convert means of probability if we have an estimate of variation and we believe that the data are normally distributed. If the data are not normally distributed we may be able to do so but they will proceed without consulting a statistician in this regard. 

One point that I want to leave you all with is that we have talked today about deriving probabilities for inputs in your decision model and these probabilities are point estimates. We know that they are not precise; we know that there is some sampling error as well as some error involved in estimating the probability rather than directly measuring the probability from our sample. So we need to be able to incorporate both sources of these errors into our decision model. So that means that we still need to derive estimates at the variation around your derived point estimate of probability and use that in your sensitivity analyses for your model. This is an advanced topic and something that is outside the scope of this lecture, but it is something that I want to make sure that everybody is aware of is that what we have done today is just derived the probability point estimate one still needs to understand the variation around that derive probability point estimate. 
A few other points: the quality of the literature that you use when you are trying to seek these relative risks, odds ratios, mean values, survival curves, etcetera to derive your probability estimates from. The quality of this literature matters greatly. So here, maybe we have our example and we are looking at diabetic patients who either receive a drug or received a diet, exercise and telehealth monitoring intervention. What you really want to see is if you have these types of disparate interventions, what you really like is that these two different treatments should have been studied in a head to head randomized control trial in a single study. But that is rarely the situation, you oftentimes do not have these disparate strategies that have been directly compared to one another. In that situation what you would try to look for instead is one study that compared drug to placebo in a randomized control trial as well as another study that compared diet, exercise and telehealth compared to placebo in another randomized control trial. And very importantly, that these two randomized control trials enrolled similar patients. If you really have different randomized control trials that are studying different patient populations then you really have a problem. If you have a drug study that enrolls sicker patients in a diet, exercise and telehealth study that enrolled healthier patients then what you are doing is comparing sicker patients for another drug strategy versus healthcare patients under the diet, exercise and telehealth monitoring strategy. And you are no longer just having the difference between these two groups that are experiencing drug versus this intervention as being the intervention itself, you also have a confounder of how sick they are. There is a potential solution in the situation, If you have two randomized control trials studying these two different interventions each compared to placebo, that have differential sickness in these different studies, you may be able to do a network meta-regression which we will briefly touch on in the next lecture so stay tuned for that.
In summary, you need to transform data that are reported in the literature into probability for use in your decision model. If you have a rate, if you have an odds ratio with outcome of less than ten percent you have a relative risk or you have survival data that is pretty easy to do. If you have continuous data with an estimate of variation and you believe that the distribution is normal you can transform those reported data into a probability as well. Advanced topics are when you have an odds ratio and an outcome is greater than ten percent or you have means differences or standardized mean differences, which we did not go over today because they are advanced topics. 

Please if you remembered nothing else from tis lecture, remember that probabilities applied to a particular length of time and if you want to change the length of time to which a probability applies you have to do so by converting that probability to a rate and then that rate back into a probability. 

Folks that are interested in learning a little bit more about this I would recommend that you check out these two articles, both published in Medical Decision Making and both give a really nice detail about transition probabilities for use in decision models. 
With that I will open it up to any questions.

Moderator:
Hi Risha, we do have a few questions. One is about, this is a very specific question, which I will start with. On slide forty-seven if you could back.

Dr. Risha Gidwani:
Okay. 

Moderator:
Here you were calculating I believe the probability of death, the question is – what is “t” here?

Dr. Risha Gidwani:
“t” is always the timeframe to which your data apply. So here, the CDC gave us annual estimates and we still want annual estimates so in this situation “t” is just going to be one. If the CDC had given us five year estimates and we wanted to transform to one year estimates, “t” would be one-fifth. 

Moderator:
Okay, thank you. Now there is a question, another specific questions about slide fifty-three if you could flip there. 
Dr. Risha Gidwani:
Okay. 

Moderator:
You know I am not sure if this is the specific slide but the question was talking about similarities sorry, slide fifty-four. 

Dr. Risha Gidwani:
Okay. 

Moderator:
Here you are talking about similar patients. How do you evaluate how similar patients are? What dimensions are you looking at? Are you looking at age, gender, disease? What things do you want to look at?

Dr. Risha Gidwani:
You really want to look at any variable that you think is going to influence the difference in outcomes between your treatment and control group. For example I am really interested in severity, I think severity of illness is always going to matter, but maybe in your particular research question gender also matters or you think race also matters. In some questions race will not matter in others it will so if you are looking at physician practice style differences then race may be something that you want to include. If you are looking at something that is really a biological mechanism and you do not think race has any role in that it is not like _____ [00:59:18] for example then race is not a variable that you would want to look at. The way that I actually evaluate this is I read the method section of every article and if I have one article that is studying younger female patients and another article that is studying older mixed male and female patients then red flags are going to go up. Does age matter in what the probability of outcome would be? Does gender matter what the probability of outcome would be? If I think yes, they would then I would say well these two studies are pretty different and I am going to have to use an alternate strategy in order to drive my model inputs. I am either going to have to do a network meta-regression which we will touch on next time, or I am going to have to find a different study and if I cannot find the right study then I am going to have to try to do the study myself to derive my model inputs. 
Heidi I notice we are at the top of the hour, I do not know if we want to wrap up here. 

Moderator:
We definitely can. For the audience I want to thank everyone for joining us today, you will be prompted with a feedback form; I would like if you could take a few moments since we did have that interaction today and let us know what you thought of that in the feedback, there is a portion of thoughts on today’s session. If you could do that, we would really appreciate it. The next session in this series is scheduled one week from today Risha will be discussing Part Tow of this topic. Registration information was sent out this morning so take a look in your email it should be right there if you have not registered for the session already. I thank everyone for joining us, hopefully you can join us next week and if not we look forward to seeing you at a figure HSR&D Cyberseminar. Thank you everyone. 
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