Cdw-102416audio

Cyber Seminar Transcript 
[bookmark: _GoBack]Date: 10/24/2016
Series: VIREC CDW
Session: Getting CDW Back Together: Joining Tables
Presenter: Margaret Gonsoulin

This is an unedited transcript of this session. As such, it may contain omissions or errors due to sound quality or misinterpretation. For clarification or verification of any points in the transcript, please refer to the audio version posted at www.hsrd.research.va.gov/cyberseminars/catalog-archive.cfm

Unidentified female: Hello everyone, welcome to VIReC’s CDW series. Today’s session is getting CDW back together. Joining CDW tables continued. Thanks to Cider [PH] for providing technical and promotional support for this series. Today’s speaker is Dr. Margaret Gonsoulin. Dr. Gonsoulin is a Sociologist who studied at the University of Virginia and taught for eight and a half years in the California State University System before joining in January 2014. Since joining the VA, Dr. Gonsoulin has focused her efforts on the corporate data warehouse. We will monitor any questions you have for Dr. Gonsoulin during the talk and I will present them to her during the session and at the end of the session.

As a reminder a brief evaluation questionnaire will pop up when we close the session. If possible please stay until the very end and take a few moments to complete the questionnaire. I am now pleased to welcome today’s speaker Dr. Margaret Gonsoulin.

Dr. Margaret Gonsoulin: Thank you Cheryl and Heidi and thank you everyone for joining us today. As you know this is a continuation of a series of talks that have been given over a couple of years; so hopefully you’ve had time to hear these previous talks, or maybe you saw them when presented.

The talked today is aimed at someone who has been using the CDW for a little bit and is now ready to sort of expand their skill set in terms of their SQL skills. So, before I begin I’d like to take a moment to thank Richard Pham, Mark Dean and Andy Kelly, this couldn’t have been done without all of your guidance. Thanks so much.

By the end of the talk today I’ll hope that you as a listener will be able to identify the correct linking keys for your practice, be able to incorporate some best practices, how to write your SQL queries and join your tables, understand the most common types of joins that people tend to use when writing SQL queries, and apply that logic to work that you’re doing in the corporate data warehouse.

So, to begin I’d like to talk about the different ways that you can go about identifying the correct linking keys to use in order to joint together the data that you hope to use in your analyses.

So, in general there are three main ways that you can gather up data about your linking keys. The first two are actually gathered from the CDW SharePoint site and they’re metadata reports. So, you will see that URL here at the bottom of this slide. You would start out here on CDW homepage, and click either link; it doesn’t matter to arrive at the metadata page. Once you’ve clicked that, click on execute the metadata report that you see circled here. And, here once you arrive at this metadata report you will see an alphabetical list of all of CDW’s production domains starting with allergy, going down to vital signs.

So, there are two different pieces of information inside this metadata report that you can use to find your linking keys. The first that I’ll talk about today is the entity relationship diagram that we discussed in previous cyber seminars in this series, for short we call it the ER diagram. And in order to arrive at this ER diagram, what you would want to do is find your domain of choice in the list of domains there. And, click on the actual name of the domain because you can see that each one of these domain names is a link, and it’s a link to the entity relationship diagram. So, for today we would want to scroll down until we find the outpatient domain and click on the name of that domain.

We would arrive at the entity relationship diagram and it would be looking like this, quite small. And impossible to read on the screen at this size; so you would want to click on the image of the ER diagram to enlarge it and then you sort of have to scroll around in here looking for the table or tables that you’re interested in finding out about; so I’ve done that.

And, I’m interested in the Outpat problem list, table IV our first problem today let’s say. So, what we are looking at here is that each one of these boxes is a table or view inside the warehouse. And, every time you see a column listed in here with PK or FK in the parentheses these are linking keys. So, the way that we would know to look for linking keys that would bring together the two tables we’re looking at right here, Outpat VDiagnosis and Outpat Problem List would be because we see that dotted line near the top of the two boxes that connects them. It’s telling us these two boxes or these two views can be connected; so look in here and find linking keys that will allow you to do that.

The most common way of doing that, although this does not always work, which is why we have other methods for linking keys. But, the most common way of finding those linking keys is to look for the keys that have the same name. So, an outpat problem list the primary key problem list SID all linking keys end with a three letters SID, connects to the foreign key in Outpat VDiagnosis of the same name. And, you can see those in the circle that are joined with a line joining the two circles.

So, this is one way of seeking out the keys that will allow you to connect tables. But, this can be quite cumbersome because you can’t see the whole image at one time, and because at times the linking keys do not actually share the exact same name. They may have variations, but they’re still the two keys that link the two views or tables together.

So, let’s look at some alternatives for identifying linking keys. A second alternative, as I mentioned earlier is also to be found in the CDW metadata report on the CDW SharePoint site, that same URL that we started at. But, instead of clicking on the name of the domain like we see here on the far left, outpatient 2.1, we would instead click on the little plus sign (+) just to the left of the domain name. And, then we would get to the right a bold list of all the tables in this domain. Right now you’re seeing only a partial list because I was trying to make it fit on the slide. But, after you find your table that you’re hoping to link to other tables, look to the far right column under relationships and click on the link that you see there, which will open up a table of linking keys that relate to your view or table that you’re trying to use.

So, in this case I’ve scrolled down in the table list. I’ve found Outpat Problem List and I opened it, under the relationship column. And, it provides me with this table of linking keys. Now, I’ve highlighted the first row so that we could practice reading this, even though we’ve covered this in previous cyber seminars. I thought it was worth some repetition. So, in that first line we see the table Outpat ProblemList has a foreign key in it by the name Clinical Terms SID, as all keys have the three letters SID. It connects to the table DIM.clinical term on the primary key of the same name. And, so that is telling us every single connection, if you read row by row that this table has to any other table in the corporate data warehouse.

Now, I mentioned that there are three ways to arrive at linking keys or identify linking keys. The third way is actually from within the corporate data warehouse itself. Inside here you will find a view or a set of views really that begin with a Schema, that’s the beginning of a table or view name. Schema that is meta. and the name of that view. Not meta stands for meta data or information about the data. In this case we are interested in the meta view that is called DWViewForeignKeyV. Now they changed these metadata names to not have the V at the end, but I wanted to show you an example just in case some may still have the older name. But, the new naming convention is to remove the V; so I’m not sure exactly what you will see on your server, but I’m thinking that all the letter V’s have been removed. But, just in case here’s what it would look like with the V, and you can imagine just removing that V.

So, what we have in here is a view that we can run a query against and take a look at linking keys for any part, any table or view inside the corporate data warehouse. The two columns inside this view that I’ll be using today will be FK if you named this. It’s going to tell me the name of the view containing whatever foreign key it’s looking at at the moment, and the PK you name is allowing me to pick a view and get whatever primary key information is out of there and what connections that primary key makes to other views. So, I’ll show you how this works in practice.

All right, so let’s write a basic query against this metadata view. In this case we can use a select star because we know it only has five or six columns. We know that metadata tables are quite small, but in general that would not be a good practice to write Select * in the warehouse, but in this case it’s what you would want. Also, we will use a WHERE statement in a simple query against this view where we will look for information on the view we’re interested in because we’re trying to find the linking keys for our particular view.

So, we’ll select * from our metadata view, where either our primary key view name or our foreign key view name is our table of interest. So, let’s take a look at that. We have selected everything from the CDW work metadata view called DWView Foreign Key, you can see that the V is missing here because that’s what it’s been changed to. Where the foreign key view name is ProblemList or the Primary key view name is ProblemList. And, then you can see the output there at the bottom of the screen, and this is a screen shot of the SQL server management studio where I ran the query. You can see that the very first line of information is the same line we just looked at on the CDW SharePoint site, where outpoint ProblemList connects to Dim.clinical term. This is the third way that you can go about identifying the proper linking keys that you will use in your query.

So, let’s move on to the second topic of the day. How to incorporate some best practices as you begin writing these queries to join the tables you hope to join. Now, these are some reminders of previous content from this series about best practices, that we’ll be using in today’s example queries.

So, as you’ll remember one of the things that you can do as you’re trying to see whether your query has been written well or achieving your goal, is to test it with a small number of rows. And, you can do this by saying you want to select the top and then you choose a number of rows; so select the top 100 rows, run your test query, make sure everything is working correctly and that you’re getting the output you want. Also, you can use your WHERE statement in your query to make sure that you know limit where you can the number of records that you’re running against. So, you might limit to a specific date range or specific station or something like that to reduce the size of your query.

Also, you might eliminate empty rows of data by saying where some column is not known; you only want to look at those cases because that way you’re not going to process empty rows. Finally, we also previously discussed the extra processing that you’d get from putting your large fact tables in your FROM statement and then adding on your smaller or dimensioned tables to it, in your JOIN clauses. So, you might want to keep with that pattern in order to optimize your queries.

Also, just for your own purposes and saving time as you’re writing queries, you’ll probably want to remember to continue to use aliases. This is another way of saying you’re giving a short name to the tables that you’re using, so like in this case we see outpat ProblemList and we’re going to give it a short name of just the letter A. So, when we refer to it in other parts of our query we’ll just say A, instead of having to say outpat ProblemList, it’s the same thing for this dimension table by renaming the DIM.ICD9 as just the letter B.

So, we’ll use that as I mentioned when we refer to our linking keys in our queries. So, in this case our linking key is ICD9SID and then the first example in yellow you see I’m quickly referring to Outpat ProblemList by saying A.ICD9. And then the same thing will happen in our select statement; so you see two columns here on set date and ICD9 codes and I’m quickly referring to tables A and B, which I’ve already given an alias to in the query; so we’ll all see that throughout today’s talk in all our exampled queries.

Also, another shortcut just for you in writing your queries is to name your database at the very beginning of your query using the commands views. So, in this case you don’t have to repeat the name of your database as you proceed to use more and more tables or views from the corporate data warehouse. So, you see here in this example you say use whatever database the command go and then you write your query and you don’t have to repeat the name of your database in your FROM statement or your JOINs and so on and so forth.

Today we’ll add a new best practice. That best practice is the using, the execution plan. There is an online book that can be downloaded for free and there are several really great talks on execution plans by Andy Kelly from the Bissel Group, he gave these on CDW insight stays and since then I’ve started reading this book and I’m beginning to use these before I run any query. And I find that they are really quite helpful so while I’m not the expert in this area, I will share with you some brief tips and quick ways how to use these execution plans without having the process be overly arduous for your having to read a whole book before you start.

So, let’s say you have this query here which is purposefully intended to be a poor query, a poorly performing query. So, I said select * from CDW SPatient, .SPatient and I gave it the alias A. Now select * is already problem, right? You don’t want to select everything from a big ______ [00:18:45] [Distorted Audio] and then I’m adding insult to injury by saying inner join CDW outpat, by the way I’ve selected * on that too, right? This is an enormous file, I’ve renamed it B and then I’m joined on patient SID. But, before I ran this I said let me check my execution plan. So how do you do that?

There’s this button here it looks like three colored dots and then you just click on it. Down the row your execution plan will appear. So, one of the first things you can do is just hover over the left most box, which is the In of the execution plan, that’s what it represents and that will show you the box that pops up that you can see here on the screen. And, you can quickly focus your attention on what’s called the estimated Subtree Cost and the Estimated number of rows. If this is large you would start to be concerned, so a lot of people say “Well what is large”? And that is subjective. But, basically any time I get over towards like 100,000 or so I start to worry whether my query is efficient. And, this is definitely a large number of rows. So, you would say I probably shouldn’t really run this query; this looks really, really big.

Another quick check in terms of using these execution plans can be to look for thick arrows and that means that it’s processing a lot of data and so we do see those thick arrows here just above, next to the nested loop and so forth. So, you would start to worry when you see arrows this thick. Another quick check would be to look at all of the icons inside this execution plan to determine whether any of them have a red X on them indicating some kind of significant problem with your query. And you might want to go back and check your code and try to figure out what’s going on. So, I find these just these very quick looks at this execution plan have really helped me improve my code and make sure I’m not doing something highly irregular. It may help you too.

Okay, so those are the best practices that we’ll incorporate. So, before we begin the actual process of joining I want to move into our third topic for the day, which is just a kind of quick theoretical look at the most common types of joins that people use when writing SQL. So, we already discussed in our previous cyber seminar an inner join, which we’ll review again today. And, these circles represent tables, so we have table A and you can see the query down the low table A I stable one, in the FROM statement it will be renamed A. And then we have table B, which is in the inner join statement as table two which has been given the alias B. And, if we have this join as an inner join what we’re saying to SQL server is we only want to get those records that overlap between our two files, that have information in both.

What other kinds of joins do people tend to typically use? Okay well last join is also a very common kind of join. You’ll see it in many queries. So, in this case we want to keep everything from table A in that FROM line. And we only want to keep information from table B if it matches the information from table A, so we’re saying keep everything in our from line and add only those records from our left join or table two line if we have a matching record in the table one or table A.

People also frequently use a right join, which will do just the opposite of that left join; keep everything in table B, which is in the right join clause of our query. And, only keep that from table A if there is matching records to table B. And so that table A remember is in the FROM line. Also, people may have occasion to use what’s called a full outer join. In this case when you request you’ll keep everything in table A, regardless of whether it has matching information from table B, and similarly you will do the same, everything from B, regardless of whether there’s any relevant information about that record or issue in table A.

All right, so let’s apply these principles to working in the corporate data warehouse. Our first practice problem is going to take a quick look at the problems reported by patients. So, in this case we’ll be using two views or tables, outpat ProblemList and dim.clinicalterm. So, always begin by making sure you provide information that’s really measuring what you want by looking in whatever documentation are available for that domain that you happen to be using. In this case we’re working with the outpatient domain; so I’m going to look in the outpatient fact book that you can find here on the VIReC internet site. But for various domains information may be located in a variety of places. You could also use information from the CDW SharePoint site for the outpatient domain. So there are just a variety of locations for all of these metadata and documentation. I outline that in the second talk CDW locating its documentation. So depending on your primary area of work, you may or may not have a fast book for that area yet.

So, before beginning I’m exploring the content of outpat ProblemList and I’m finding that it’s information that patients report about problems they’re suffering from. It contains columns to indicate things such as whether this problem is active for this patient, the onset date for the problems, the date that the problem was recorded in the data. And of course we have our linking keys in here; so we’re going to link out to clinical terms so we’re going to use the linking key clinical term SID that we already identified as a foreign key in this table.

What you’re seeing there on the left is what the view looks like in the data warehouse itself, and I’ve expanded so you can see the list of columns, and you see red stars by all the columns that we flagged for potential interest in todays practice problem.

Okay, so before proceeding of course we also want to make sure we understand the content in the second table that we’re joining to do dim.clinicalterm. As I read through the metadata I see this is a table that contains about 1.3 million clinical terms and may be used in CPR or entering a plan or a diagnosis. And, I’m going to come in here to collect two pieces of information for today’s practice problem, the term itself that describes the problem in this case. And, also the linking key clinical term SID, which is this table’s primary key.

So, as a review from our previous talk we’re going to perform inner join to bring these two tables together, that means we’ll only keep records where there’s both the problem reported and the clinical term that goes with it. So, our inner join will end up looking like this. First we’re going to use this database CDW work, have the command go and then I’m going to select two columns, activeflag and clinicalterm. Activeflag comes from table A, now table A is short hand for what you see on line six outpat problemlist. _____ [00:28:23] [Distorted audio] Table B, that is shorthand for what you see on line seven of this query, m.clinicalterm. And then in my select statement I’ve also created an aggregate count to tell me the number of times that problem has been reported.

This aggregate means I’m going to need my group by clause of course, on line 10 where I group by all columns that are not aggregates in the select statement; so that’s activeflag and clinicalterm. And looking at line eight you can see that we’ve joined these two views on the linking key that we found in the metadata clinical term SID. And, I’m reducing the size of my query as a best practice by saying I only want one day’s worth of data because I’m testing my query, and I only want one station.

So, as another best practice, just in case I run my execution plan to check for potential problems. So, I’ve got the button in the circle above, just as a reminder. I hit that button there and I received the output of my execution plan. I hover over the left most box again and I look at my subtree cost and number of rows and I can see a big difference now that has a much smaller query, running against many fewer rows, 663 is the estimate. The subtree cost is quite small, 19. I look across at the overall picture of my execution plan, I don’t see any red X’s and I don’t see any thick arrows; so I’m feeling pretty good about the efficiency of my query; so I run it.

I find that on this date at this one station I have 301 unique problems that were reported and I could scroll through that and find out whatever it is I was hoping to find out about my question, hopefully or edit my query to add more information from that point forward.

So, let’s go into practicing with a few different kinds of joins. So, for practice problem two we’ll take a look at the diagnoses made by physicians so for the problem list we had information reported by the patient as their problem. And here we’re looking at diagnoses rendered by physicians during visit. So, we’re going to use two tables outpat Vdiagnosis and dim.ICD10. And, learn how to join those together.

So, of course we begin with our metadata exploration to make sure we have our columns and content of interest. In this case I’ll be looking at information about the date and time of visit in the form of visitdatetime. I’ll be looking at whether this diagnosis was considered primary or secondary by using the column primarysecondary. And I’ll be gathering up linking keys to bring my two tables together in the form of ICD10SID.

So I’ve already kind of used information from the metadata report to find my linking keys and confirm that this linking key will do what I believe it will do in terms of joining me to DIM.ICD10. So, taking a quick look now at our second table and its content. I can see that here’s where I’ll be able to collect my code for the ICD10 code and also of course I’ll need my matching linking key, which is the primary key of this dimension table.

So, in this case we’ll practice of last join. So this means that whatever table we put in our FROM statement of our query will keep all of it, and in this case we would also want that best practice to mean that we were putting our fact table, the outpat Vdiagnosis table in that FROM statement. So, I’ve thought about that ahead of time and I’ve aligned my plan accordingly. And, then I’m going to left join in my codes from the dim.ICD10 table only keeping those codes where there’s matching diagnosis there.

So we have a question in mind when we write every query. In this particular case my question was I want to take a look at the top 10 diagnosis so far this month at my station. So, what you’re seeing in this query is a lot of the familiar that we just talked about from the previous query but now you see at the top of the select statement, select top 10 because in the end I want my top 10 diagnoses. And then you see what we saw before, we selected two columns in this case, primarysecondary and ICD10 code. Now these come from two different tables, primarysecondary is coming from table A, which you can see on line five is our fact table, the diagnosis table. And then ICD10 code if coming from our left join statement, line six, dim.ICD10.

And you can see that we have joined them on the keys that we specified earlier ICD10SID. Now we’ve also created a count because we want to find the most common diagnoses. So, that’s what our count will do for us is give us a frequency of how often that diagnosis was rendered. And then because we have that count again we’ll see on line eight the two columns that we specific in the select statement that are not aggregates being grouped by. Now on line seven you’re seeing our best practice of reducing our query to a particular day and particular place. And, we are adding a new line here from the last query in the form of order by in which we’ve discussed in previous talks. So we’re going to order by that frequency that we created when we said to count times the ICD10 code appeared. So, here we’ve decided to descend it so that the most common diagnosis is at the top or to be exact, the most common 10 will be the output.

So, before we run this once again we would want to follow that best practice where we looked at our execution plan and we would hover over the left most box again and we would see our subtree cost was only 1.6, very small and our number of rows 4,000 or so, also very small for the CDW. And, we don’t any enormous errors; we don’t see any red X’s so it’s time to execute our query.

So here you see the query we just discussed and you see the output on the bottom right hand side of the screen. We see the list of the top 10 diagnoses, the frequency with which they occurred at our station for the last month and we can see whether they were considered primary or secondary diagnoses.

Now in order to get your descriptions of these diagnoses you would want to start joining to yet another table ICD description so on and so forth. So, you start expanding your list of tables that you’re bringing together.

So, for our third example we’ll take a quick look at where you can read more for “real life” examples of right join. We have examples of this that appear in our researchers notebook series, it’s a recent publication on how to find the most recent marital status using the corporate data warehouse. You can see the URL for this site where you can down load researchers notebooks if you’re interested. They provide SQL tutorials that are a little bit more you know practice oriented, like solving a problem and annotating the code to help you learn that kind of SQL code. So, they may be useful to you for that purpose as well as perhaps you’re working with marital status and would like to see the code on that.

So, let’s practice taking the look at what a right join would look like. In this case of course, we’re going to be keeping everything from table B, which is the table listed in our right join cause and only keeping that material from table A, when it matches. So, that is the table that is in our FROM cost. If you were to read through that researchers notebook you would start to see us building all kinds of pieces of table to bring back together, we were searching for the most recent episode of care to find that station number and then using that station number as a proxy for the place where the patients most likely been, most recently. And we assumed that someone would say oh, are you still married and so we would have the most accurate or up to date information from that station should the patient have visited more than one station and have inconsistent marital status.

So, as we were working through that process we got to step five and ended up performing a right join that you see described in the annotation in green above. But, the right join statement looks very much like every other join statement we’ve written inner join, left join, etc. It’s second to last line of code that you see here on the screen.

So, the process in terms of writing the SQL is pretty consistent and straight forward and it’s just the logic of where you’re putting your tables and the combination of that logic was following through on some best practices that kind of determine whether you’re going to have a right join or a left join in general. At least that’s been my experience.

So, to summarize a little bit today I hope that you’ve found useful ways of identifying your linking keys. Some may work better in some circumstances than others. You might use your ER relationship diagram or the metadata report on the SharePoint site. If you already have access to the general data in the corporate data warehouse you can run queries against the views for very unique combinations of looking for your linking key or looking for your tables of interest. And, come up with linking key tables that you create on your own that will answer all your linking key questions at one time, that’s possible.

Also, there are a variety of ways that you can choose to join, as I was just talking about, the last join, right join, outer join, etc. depending on what you’re hoping to accomplish in the end with your data. And, as you do all of this never forgetting to use the best practices that we’ve been covering and learning. I’m always continuously learning to use best practices throughout all of your query writing and I think the execution plan is such a great edition thanks to Andy Kelly, we should all start making what we can of that resource.

So, here’s my contact information if you need it. Thank you so much for attending today and I’d be happy to try to answer any questions you may have.

Unidentified female: Okay we have a couple of questions from the audience. One question and I believe this refers to slide 22 Margaret when you have the first diagram for the “as A” isn’t the as part unnecessary?

Dr. Margaret Gonsoulin: Yes, it is unnecessary. It will know that you mean an alias without the word or command for as in between; so you could just say from table one, space A and it would still do it. I just found when I was you know just starting out; I found that inclusion of the word as helpful to me so that I could more easily read the query. So Include it, but you’re welcome to exclude it and it would still function properly.

Unidentified female: Okay great. Another question is what does the INTO statement do?

Dr. Margaret Gonsoulin: Into allows you to write the results of your query into either a permanent or a temporary table depending on whether you name your table with a # in the front. If you put a # it will be temporary, which means that it would disappear when you close down your query window, or if you want to save it and make it permanent, you could give it a name that doesn’t have that # and say that somewhere. But we will cover that in the top _____ [00:44:00] [Distorted audio] So I have included that as one of the selected intermediate data management skills.

Unidentified female: Okay, another question. Order in CPRS are often accompanied with text, is there a prejoined table that links orders with the notes that accompany the order?

Dr. Margaret Gonsoulin: I am not aware of one. There are some text notes that are in – I mean they’re in text fields that are notes of various kinds that you will find directly in many of these tables, but I think by and large you know they have had to separate out text notes because often times they’re so much identifying information in text that they’ve had to permission them differently, protect them more because there’s a lot of social security numbers, names, doctors names, all sorts of PHI inside those notes. And, so right now in general notes as a rule are treated as a whole separate domain. As far as I understand it they are on a separate server because they’re also very large so there would be lot of sort of you know, I could help you look into that through the help desk or find you and attach you to the right people, but basically I think it’s probably a process. Because like I say all the notes are definitely on a different server and they’re protected differently in terms of permission and access to those data; so I’m not sure I know the answer immediately right now but I could help connect you to the people who would be able to sort out all of the different steps you might have to go through to make those connections.

Unidentified female: Another comment from the same person is a good example is orders for patient control analgesia where every order has text.

Dr. Margaret Gonsoulin: I would say that’s just so – such a detailed question that a help desk question and it may be better dealt with in that environment.

Unidentified female: Okay, great. Another question you don’t need to group by everything selected in select statement if you select many variables, correct?

Dr. Margaret Gonsoulin: Well the reason for the group by statement is for anything in your select statement that’s not an aggregate if you included an aggregate in your select statement. So, in general you don’t have to group by things in your select statement _____ [00:47:12] [Distorted audio] having a group by in these particular queries is because I created a count which means I added an aggregate to my query; so it can’t aggregate unless I group by the categories of the other columns in the select statement, if that makes sense to you.

It’s just like you couldn’t create a frequency table if you didn’t aggregate the values of a variable because everything would have a frequency of one; so you have the group by.

Unidentified female: Okay. We do not have any other questions at this particular moment.

Dr. Margaret Gonsoulin: Well thanks everyone for coming.

Unidentified female: Okay, if there are no other questions we’d like to thank Margaret for taking the time to present today’s session. To the audience if your questions were not addressed during the presentation you can contact Dr. Gonsoulin directly and there is a slide at the end of her presentation with her email address. You may also contact the VIReC help desk at VIReC@VA.gov. The next session in our CDW series is entitled Data Management in SQL, selected intermediate SQL skills. And this is scheduled for a week from today, Monday March 31 at the same time, noon Eastern Time. This session will also be presented by Dr. Gonsoulin and we hope you can join us.

Thank you once again for attending this session. Heidi will be posting the evaluation shortly, let me just do one more quick check to see if there are any other questions, and there are not. So, thank you so much.

Unidentified female: Thank you everyone. When I close the meeting you will be prompted with a feedback form, please take a few moments and fill that out. Thank you everyone for joining us and we look forward to seeing you at a future HSRND cyber seminar, have a good day.

2

