hmcs-042821


Moderator:
Thank you, everyone, for joining today's Cyber Seminar on Propensity Score Methods for Comparing Multiple Treatment Options. Today we are thrilled to have Melissa Garrido with us to present on this topic. 


Dr. Garrido is a Health Economist and Associate Director of the Partnered Evidence-Based Policy Resource Center or PEPReC, at the Boston VA. She's also a Research Associate Professor in the Department of Health Law, Policy and Management at Boston University. 


Dr. Garrido has expertise in causal inference, econometric methods, and geriatrics, and palliative care, as well as research interests evaluating access to, and quality of substance use disordered treatment, and mental health care for individuals with serial, serious physical injuries. 


She's an Associate Editor at Health Services Research and a member of MEDCAC and the Federal Interagency Council on Evaluation Policy. Dr. Garrido received her PhD in Health Services Research Policy and Administration from the University of Minnesota-Twin Cities and completed an NIMH postdoctoral traineeship in mental health services at Rutgers University. 


So without further delay, I will hand it over to Melissa.

Melissa Garrido:
Thank you very much for that introduction and thank you for the invitation to speak with you all today. I'm thrilled to be presenting some work that I've been involved in for several years and started out as a a merit project through HSR&D and thrilled that it's producing some useful results.  


So before I get into too many of the details, I do want to acknowledge some of my collaborators. Jessica Lum has done a phenomenal amount of programming on this project and has has been working on this with me from the very beginning. Yevgeniy Feyman is a graduate student who is involved in the work and is currently doing some extensions of the work.   


And Steve Pizer has been a senior advisor on on the project. And just for transparency, some of the the figures I'm presenting today were published in a recent article on statistics and in medicine. So you can find some more of the details there, or I'm happy to to share the copy of the paper afterwards.


So just as an overview of what I'm hoping to to get through today, I would like to illustrate the challenges of comparing multiple treatment options in observational studies, spend some time outlining best practices for using propensity scores to compare the effects of multiple treatments. And I will define what I mean by multiple treatments in in a moment.  


And then I want to introduce a method called vector-based kernel weighting, which my team developed that is useful for multiple treatments in propensity scores, that reliably produces estimates with low bias, and high efficiency, and is relatively straightforward to to implement.  


So before we get into too many details, I do want to take a short poll about folks' experience with propensity scores, just so I can, kind of, understand everybody's background here. So that the poll question is just, "How familiar are you with propensity score analyses: Not at all familiar, somewhat familiar or very familiar?" I'll pause for a moment here.

Moderator:
Alright, that poll is now open, and I, and the responses have come in really quick. So I'm going to go ahead and close that poll.  And the responses that we have are: 18%, not at all familiar, 62% somewhat familiar, 11% say very familiar. Back to you, Melissa.

Melissa Garrido:
Alright, thank you. Alright so I'm going to spend just a a little bit of time, kind of, doing some level setting and, kind of, the the just bare bones, and rationale for using propensity scores for any kind of treatment. And then then we'll go on to the more specific multiple treatment methods case. So just broadly, propensity scores are one one way to address selection bias by preprocessing data sets.  


So this is, preprocessing methods include things like exact matching, or course in exact matching; entropy balancing is is gaining in in popularity. All of these methods focus on us getting similarity in observed confounders.  


So the idea is to make your your treatment and your comparison group look as similar as possible on on everything that you have that's an observed confounder before proceeding with analysis.  With and with the idea being that if if, if you, hopefully, don't have a lot of unobserved confounders, you're making your groups as similar as possible other than the receipt of the treatment that that you’re interested in in analyzing.  


So you might use use these kinds of methods when you don't have a a valid instrumental variable; or you have cross-sectional data and aren't able to do some, kind of, difference in difference analysis. So they they can't do anything about unobserved confounding, but they are a really useful tool to try to reduce observed selection bias.  


I just want to make sure that that no one thinks that these are a a cure-all for your selection bias problems, they’re just one one tool that you can use. So just just briefly, a a propensity score, you are creating a single composite score of all observed and measured potential confounders of the association between treatment and outcome.  


So rather than trying to, say, match your treatment and comparison groups on several specific variables like age, or gender, or race, or illness, different comorbidities, you create one score that that summarizes all of those conditions.  


So the propensity score is the conditional probability of treatment given those observed covariates, and then you go onto match or weight your sample on this, on a single one dimensional score. And you do this before looking at your outcomes, so you're you're trying to to weight, or match your treatment and comparison groups so they look as similar as possible before doing any further analyses.


So the idea behind this is that with with this propensity score, if you have a set of covariates, and you have created a a reasonable propensity score, you're making it so that treatment assignment, and outcome are independent, conditional on a set of of covariates. And so everyone has a nonzero chance of receiving the treatment.  


And this is what allows you to calculate the the potential outcomes that allow you to estimate your treatment effect so that you can try to figure out a comparison [00:07:29] individual that looks like a treated individual may have looked if they hadn't received treatment.


So that that's, kind of, just the the very, very brief overview of of binary propensity scores. But as as you likely know, not all treatment decisions are binary.   


It’s it’s not always just treated versus untreated; we often have continuous treatment options where it might be like the the dose of a drug.  Or there there may be categorical treatments, and we're going to be focusing mostly on categorical treatments here today.  


So you may have things like multiple vaccines for COVID-19. How do you effectively compare the the Pfizer, Moderna, and and other vaccines in the absence of a clinical trial?  You might be comparing different modalities of care, so inpatient hospice versus outpatient hospice, versus no hospice for individuals at the end of life.  


In geriatrics, you might compare self-directed home and community-based services, versus home health aide services, versus adult daycare. I am going to use that that last example here, that last bullet point on this slide as as, kind of, a a motivating example.


So as I'm going through some of the the principles here, we're we're going to think about a a hypothetical study that, where we're comparing self-directed care, home health aide services, and adult daycare. And I'm I'm not going to go into the details of what what these different treatment options are because for the purposes of these examples, that the important thing is that we have three different treatment modalities.  


And the goal of each of these is to prevent nursing home placement for adults who have some, kind of, functional or cognitive impairment. So say, we have an observational study of these three types of of care options, and we're thinking about using propensity scores. If we were just to use a binary propensity score, there's a couple of different ways we might do this.  


We could do some pairwise comparisons of one treatment versus all the others; so self-directed care versus everything else; home health aides versus everything else, and so on. Or we might look at pairwise comparisons among specific treatments; so self-directed care versus home health; adult day care versus home health.  


And there are issues with with both of these depending on the goals of your analyses. So say you're going to dichotomize the treatment options. So it's, you're looking at self-directed care versus all of the other care options. If you do this, you might obscure some important between group differences.  


So a binary comparison of self-directed care versus the other two programs, as the graph on the right hand side of the of the screen, that might suggest that self-directed care, and the other programs have some similar nursing home placement rates. You you see a null effect.  


However, if you were to compare the three programs simultaneously, you might see that self-directed care is actually superior to home health aide services, but not to adult daycare. But those differences may have been obscured by artificially dichotomizing your treatment.


And then there are also issues if you're trying to do a bunch of pairwise comparisons amongst single, single treatments. So say, we're going to compare self-directed care versus home health, we're excluding the the folks that have received adult daycare. So if you're only interested in that specific comparison, that the two specific conditions that you're comparing, that's fine.   


You can go forward and use your your binary analysis methods that are, that are more familiar. But if you're interested in making inferences about different comparisons between these treatment groups, this this gets a lot more complicated.  


So if if I want to look at self-directed care versus home health, and then looking at adult daycare versus, versus home health aides, I can't necessarily directly compare those those two estimates if I'm doing a series of pairwise comparisons.   


I, sort of, have some circles to try to, try to make this point a little bit more concrete. So the three treatment options are A, B, and C. And if I'm interested in just comparing A versus B, I'm going to create a propensity score from the sample that has some nonzero chance of receiving either A or B. So that's that yellow highlighted section on this slide.  


And then, say, I want to compare A versus C. So then it's a different yellow highlighted intersection of of the individuals that have a nonzero chance receiving A or C. And then you, you would have it as a similar different yellow highlighted area for the comparison of B versus C.  


But if we're interested in really understanding specific differences between A, and B, and C; so though, you want to be able to compare a series of pairwise effects among individuals that have some chance of receiving any of those treatments.  That the the group of observations that you'd use shrinks, so the gray shaded areas are ones that were included in the pairwise comparisons.  


But they're, they're different than a group that has some, kind of, chance of receiving any of the three treatments, that that yellow highlighted group. So you can only compare estimates and in that yellow area when you're trying to make inferences about difference, differences across the entire set of treatments.  


And and that's what the, the rest of the methods I'll be speaking about today are are meant to do.  So turning this back to our home health example, so if we were to estimate a propensity score for self-directed care versus home health aides, and a separate propensity score for self-directed care versus adult daycare, adult daycare programs, these two estimates would be obtained from different subsets of the sample.   


They would not represent the same populations.  So then we can't directly compare those those two two estimates, and that prevents inferences about the relative value of self-directed care versus adult daycare, versus home health aides for for a single patient population.


So as I alluded to earlier, that the choice of strategy here, it it really depends on your goal of analysis. If you're only interested in these pairwise comparisons, and don't want to make comparisons across the the different pairwise investigations, then you can just apply standard propensity score methods.  


But if you want to make these simultaneous comparisons of multiple options, you have to to put some additional restrictions on observations that you you use to estimate your treatment effect. So you need to only be looking at individuals who have a nonzero chance of receiving any of the treatment options.  


You'd use a a generalized propensity score approach, which I'll I’ll talk about more in a moment. And then we also need to think about the vectors of propensity scores, which I'll also get into here, in in just a moment.  


So in brief, a generalized propensity score is the probability of receiving one treatment level, or one, one of the multiple treatment options, conditional on observed covariates. So you have a different propensity score for each particular treatment option but all of these propensity scores are estimated from single multinomial model.   


You might estimate these with a multinomial logit or probit model. There is some semiparametric methods such as the covariate balancing propensity score method. And you can also use nonparametric machine learning methods to to estimate these generalized propensity scores.  


And and the rest of what I'm speaking about today refers to cases where where you’re using this generalized propensity score. And most of what I'm focusing on is using maximum likelihood estimation. But I can talk about some exceptions at the end.


And so when I, when I talk about vectors of propensity scores, what I'm referring to is a collection of an observation's estimated probabilities of receiving each treatment option. So if you have a binary treatment, you're your vector is is pretty straightforward. It's the probability of being treated or the probability of not being treated.  


If you have multiple treatment options, then your vector contains the probability of treatment A, treatment B, and and the probability of treatment C. And when when you're doing standard binary propensity score analyses, these vectors are included implicitly. So if you're matching or weighting your sample based on the probability of treatment, you are implicitly matching on the probability of not being treated.  


With the multiple treatment option, there, there's, are a variety of options; some, some require matching on the probability of each treatment; some only require matching on pairs of of treatments, and only require that everybody have a nonzero probability of of receiving any of the treatments.  


And and this matters; so, I mean, I'm going to show some some examples why matching on the probability of each treatment, it is actually, quite quite important for getting unbiased and efficient estimates.  So we have the the non-vector-based methods that require matching or weighting on the probabilities of two, two of the treatment levels, and then just require a nonzero probability of the other treatments.  


And then the vector-based methods that require the similarity on probabilities of all treatment levels; and as such, also required nonzero probabilities of all treatments.  So this is what really enhances our ability to make direct comparisons of pairwise treatment effects that are, that are derived from from the same sample.


So just to to drive this home just a little bit more, so say, we're trying to compare these two pairwise average treatment effects where you have differences in nursing home admission between self-directed care, and home health aides. And then we have the, an an estimate of the differences in nursing home admission between self-directed care and adult day care.  


If we were to use a non-vector-based method, we'd have that that first ATE would be estimated in individuals with nonzero but widely differing probabilities of receiving adult daycare.  Because that wasn't part of the the compare, the pairwise comparison.  


And then we'd have that second ATE estimated in individuals that have nonzero but widely varying probabilities of home health aide.  Again because home health aide wasn't one of the treatments being directly compared.  


So because these two average treatment effects were estimated in different populations, or different samples, rather, the direct comparison of of these two average treatment effects is challenging. So then if we we switch to a vector-based method, both of these average treatment effects are estimated in individuals with similar probabilities of receiving any of the treatment options.  


So then it is possible to make a direct comparison of of the two average treatment effects. And I should pause here for a moment to talk about the the different treatment effects of of interest in a multiple treatment setting. So just for simplicity, we'll we'll stick to three treatment groups; we can expand this to to a greater number of treatment groups.  


So if you have three treatment groups, you're going to have three different average treatment effects that you would be interested in: A versus B, B versus C, and A versus C. And then there are nine different average treatment effects on the treated or a ATTs. So that's each of those ATEs that that are estimated among observations that receive a single treatment.  


So I include in this count, the transitive treatment effects so, so it'd be something like A versus B among individuals that receive treatment C. And this might be useful for informing decisions about different treatments under consideration.  Excuse me.  


So using our example, we might estimate the relative benefit of self-directed care versus home health aide among a group of individuals that are receiving adult daycare.  Maybe we're interested in switching them to a different program. So those are less commonly used in practice, but I think they're still useful so they're included here.  


So one of our our next choices is how we work with our generalized propensity score. What, and whether it is a non-vector-based or vector-based method, I'm going to focus on weighting and matching.  Subclassification, it’s a little bit difficult to get the optimal number of strata that are required to to reduce selection bias, it depends on your sample size.  


If you just go with the the standard option of five strata, it's less effective at reducing bias than than weighting. I'm not a fan of regression adjustment with propensity scores, it – and by this I mean when you include the propensity score as a covariate in your regression model.   


This produces inferior covariate balance relative to weighting or matching, and it can actually introduce greater bias into your treatment effect estimates. So everything else we'll talk about today focuses on weighting and matching.


So we have some choices between different weighting or matching methods. We have some non-vector-based methods, so that is inverse probability of treatment weighting.  Now, I'll talk about these in a little bit more detail and on the following slides.  


So IPTW is probably the most commonly used method, it's included in some canned Stata and R commands. So it's very commonly used but as as I'm going to show, it really leads to highly biased, inefficient estimates in a lot of applied scenarios.  


There is generalized propensity score matching, which performs better than inverse probability of treatment weighting but it is still likely to lead to biased and inefficient estimates. And as you've probably guessed from from the fact that I've been talking about vectors a lot, the vector-based methods work better.  They produce estimates with less bias that are are more efficient.  


There is both vector-based matching and then the method I'm presenting today, vector-based kernel weighting that that is simpler to to implement.  So I, I'm going to focus on inverse probability of treatment weighting, generalized propensity score matching, and VBKW.  


I compared these three methods in a study along with regular kernel weighting and vector matching. I, we could be here forever if I went into all of the details of of the methods, so I'm just going to focus on those three, three today.  


I'm going to highlight some results from our simulation study, explain what the weights for each of these methods, of these three methods are, and then illustrate what our simulation results might mean for your own analyses.  So just just as, kind of, a a schematic here, that that top line in the figure shows that the difficulties with using non-vector-based methods with multiple treatment groups.   


So on the left-hand side, you have the treated observations. And on the the, the two bars on the right-hand side are the different observations you might use to generate a weighted or a matched comparison group.  


So in the top line, if you're using inverse probability of treatment weighting, or some other non-vector-based method, your treated observation has a probability of receiving treatment Level A.  And then you're you're only matching your comparison groups on on that blue line on the probability of A.  But the the observations might have wildly different probabilities of receiving treatments B and C.  


So these observations don't really look similar to the observation in the treated group. The middle line and the bottom line are vector-based methods, in both of these cases you're going to end up with a comparison group that has similar probabilities of each treatment level as as the units in your, in your treated group.  


So that the multiple arrows in the VM, or vector matching line, that middle line there, are to represent that vector matching takes a bunch of steps. It requires some some clustering steps and lots, lots of steps that require some, kind of, investigator, or guesswork, and are a little bit harder to to replicate. Where VBKW does, achieves a similar goal but does it in fewer steps, and and still, and produces estimates that are less bias than vector matching.


So just to to dive into each of these three methods in a little bit more detail, we have inverse probability of treatment weighting.  In the default option of IP – IPTW, you're calculating an average treatment effect.  So your observations are receiving a weight of one over the probability of of the observed treatment.  


So it's the inverse of the propensity score for the, for the treatment option received. This is the the most common method for for promote for propensity score analyses of multiple treatments. It's often estimated with multinomial logit or probit. Or in the R package, and MPS, it uses generalized boosting methods.   


You can modify these ways to create ATTs, in which case you're your treated observations receive a weight of one; and then your comparison observations receive a weight that is a ratio of the probability of the observed treatment to the probability of the comparison treatment.  


And and as with anything with a multinominal, our generalized propensity score, each observation has to have a nonzero probability of any of the treatment levels, and this does not require a similarity across the entire vector of propensity scores.  


And then in generalized propensity score matching, each matching step is only based on the propensity of receiving a single treatment. So again, this is not one that is vector-based; this is non, non-vector, a non-vector method.  


If you're going to estimate the average treatment effect of A versus B, you would take the average difference of the observed outcomes among the sample that were matched on the probabilities of receiving treatments A and the sample of matched on probabilities of treatment B.  You might complete these matches in a couple of different ways.  


One way that's a little bit more common in the literature is to complete matches for the probability of receiving treatment A from the sample who received either B or C. I focus on the the second method that's listed here where the matches are completed only from the sample received in the comparison treatment.  


Because this facilitates calculation of ATEs and ATTs.  I’m I’m not going to go into further details here but just wanted to be transparent that there are a couple of different ways to to calculate these matches. And like IPTW, each observation has to have a nonzero probability of any of the treatment levels, but we don't require a similarity across the entire vector of propensity scores.  


So moving to vector-based kernel weighting, first, I should define what kernel weights are. So kernel weights assign treated individuals a weight of one, and then assign weights to comparison individuals that are within a given bandwidth, or just range of the treated individual's propensity score.  


And they do this according to something called a a kernel function; there there are several different formulas that can be used.  So by doing this, we might have fewer extreme values by used, by using kernel weights than we would with inverse probability of treatment weights.  


So this graph I have up on the screen shows that the graph, it shows a graph of weights that you would use for your comparison group. So in inverse probability of treatment weights, you might use the entire range of, of propensity scores to calculate your weights. Where in kernel weights, you're looking at this very constraint range of of different propensity scores.  


So to actually calculate these vector-based kernel weights, so where we're assigning kernel weights to comparison observations that have similar vectors of propensity scores rather than a similar, similar level of one single propensity score: So we start with these by estimating an average treatment effect on the, on the treated weight to estimate the ATT weight for A versus B given treatment A. We would assign treated observations a weight of one.  


And then our comparison individuals receive a kernel weight if their probability of receiving treatment A is within a given bandwidth of the treated observations probability of receiving treatment A; but also if their probability of receiving treatment B is within a bandwidth of the treated observations probability of receiving treatment B; and again, for this, the same thing for the probability of receiving treatment C.  


And then to estimate the average treatment effects, we would generate weights that are the sum of all the the non-transitive ATT weights. So these are all of the the ATTs that are calculated within one of the the groups that actually received the treatment.


So again, we require each observation have a nonzero probability of any of the treatment levels. And then we hear that the key difference is that we require similarity across the entire vector of of propensity scores.

Moderator:
Hey, Melissa, we have a clarifying question.

Melissa Garrido:
Certainly.  

Moderator:
So somebody asked, they said that you stated a couple of times that each observation has to have a nonzero probability of any of the treatments. And since probabilities are usually estimated with logit or probit, which are continuous, and would produce probabilities as close to zero; "as you please," she says, but never zero, how is a zero probability defined operationally?

Melissa Garrido:
Great question so this is, kind of, at the very beginning of your propensity score estimation.  You might find groups that have just, they might have a covariate that perfectly predicts that they always receive a certain treatment or never receive a certain treatment.  


Oftentimes, in practice, you don't end up with with these very, very small probabilities. It's it’s something that comes up just based on the levels of the, of the covariates.  I'm not sure if that answers the question.

Moderator:
Great thanks.

Melissa Garrido:
So I also want to mention that this, the way that you calculate standard errors in each of these methods is a little bit different. So with inverse probability of treatment weights, you would use bootstrapping to calculate your standard errors. If you're doing a a matching process, then you'd use an _____ [00:32:33] events adjustment.  


And then with VBKW, there's, kind of, an open question between whether you should use a matching type adjustment or bootstrap because you're using weights but you're using weights within a very constrained set of observations. So whether you should use adjustments that treat your your estimation process as matching or weighting, it, kind of, depends on how how large your bandwidth is.  


Right now, there aren't the types of matching adjustments for multiple treatment groups based on propensity score values. So we did some investigation with bootstrapping and found that we were getting reasonable standard errors with bootstrapping if we used a large enough bandwidth for for kernel weights.  


Alright, so I wanted to spend a little bit of time talking about the the simulation study we did where we compared the performance of each of these methods on a variety of analytic scenarios. So I define an analytic scenario as a unique combination of the characteristics that are listed on this slide.  


So we have different sample sizes that you might encounter in an applied analysis.  We misspecified the estimated propensity score in a variety of ways. We varied the number of treatment groups; we varied the way the sample was distributed across the treatment groups.  


So was it evenly distributed or did one treatment group had the bulk of observations versus, and then just a few in the other groups?  We looked at treatment effect heterogeneity, and and then we also varied the coefficient set to calculate the the treatment probability. So this led to over 4,500 scenarios, 1,000 replications each.  


So this, this has been been a long time in the works. So the outcomes that we used were a range of bias efficiency outcomes as well as covariate balance and confidence interval coverage. So for bias, we looked at absolute bias, so just the distance between the estimated and the true treatment effect. We also looked at absolute mean relative bias. So this is the bias as a percent of the true treatment effect.  


For efficiency, we looked at the interquartile range, the root-mean-squared-error, and the median absolute error. And then we included a measure of covariate balance, just to make sure that the things that we can observe in an applied use of propensity scores actually match what we're seeing in the bias, and efficiency metrics in our simulation studies since we we don't know what the truth is when we're doing our own applied analyses.  


So here, we used absolute standardized differences in prognostic score values to to calculate covariate balance.   And then finally, we we looked at confidence interval coverage for a selection of of our simulations. So this is the proportion of time that the confidence interval includes the true value.  


What we found was that estimates based on inverse probability of treatment weighting were more likely to be biased and inefficient than estimates based on generalized propensity score matching or VBKW. So one thing we we looked at is how often are we going to get scenarios that, where the estimates have relatively low absolute mean relative bias?


So out of 1,008 scenarios here, this is with a sample size of 1,200 and and three treatment groups, we found that if we used IPTW, we received a a result that was relatively unbiased. Only 37% of the time the the median AMRB was was 40 and that’s quite large. With generalized propensity score matching, we were getting relatively low bias, about half of the time, so so better, but still not great.  


And then with VBKW we found that nearly every scenario produced relatively low bias, and our our median AMRV was only four.  We found similar results if we used a smaller sample size with three groups; also, if we used larger sample sizes, or if we looked at five treatment groups, so these results are fairly robust to to different specifications.  


And one thing that I think is really important to highlight is that inverse probability of treatment weighting is very sensitive to propensity score misspecification, much more so than either generalized propensity score matching or VBKW.  


So as I mentioned, we we ran a bunch of models with different levels of misspecification so that the dark blue lines – if I can get the pointer to work here. So this dark blue line here is a fully saturated propensity score model; so meaning that our estimated propensity score model is is perfectly mirroring what the true propensity score is.  


All of these other lines that are indicating bias were misspecific, misspecified propensity score models. If we look at VBKW, it didn't matter very much how, how misspecified our propensity score model was, all of our estimates had bias close to or at zero.


And then, tying this back to what what we had seen in empirical analysis, VBKW was also more likely to lead to covariate balance than the other methods. So for prognostic scores, a a smaller value is is ideal. So as you can see, VBKW led to a much smaller, absolute mean standardized difference in prognostic scores than the other methods.  


So I I'm only showing a a sample of our simulation results here today. But the the take home is that VBKW produces unbiased efficient estimates within a variety of commonly encountered analytic scenarios.  


It's robust to propensity score model misspecification, sample size, distribution of the sample across treatment groups, the type of kernel you use, the the size of the bandwidth.  Whether you use multinomial logit or a multinomial probit model to to estimate the propensity score. It's also robust to baseline covariate imbalance.  


So there are a few other choices that that we might use along with VBKW, that we're starting to investigate. So one is whether we we want to to estimate our propensity scores via maximum and likelihood estimation or covariate balancing propensity scores.  


So CBPS uses a generalized method of moments approach. It estimates a propensity score model that optimizes covariate balance across treatment groups, so it requires less checking for balance after you specified your propensity score model than than traditional methods.  So we we've run some preliminary results so far.  


So it suggests, our results so far suggests that the estimated treatment effects from IPTWs with CBPS are less bias than IPTWs with with maximum likelihood estimation. But VBKW, regardless of how how it's estimated, it still produces estimates that are less biased than IPTW with with CBPS.  And we see similar patterns observed for efficiency.  


So we're still finding evidence to suggest that you should use VBKW over inverse probability of weighting. And you might have some flexibility in how you estimate your your propensity score model.

Moderator:
Hey, Melissa, one clarifying question of when you refer to IPTW. Somebody asked what form of IPTW propensity models you were using for comparison, and they asked, "Are they stabilized, trims, doubly robust?"

Melissa Garrido:
Yes, that's a great question. So so far, everything that I'm presenting is not using the doubly robust. So we're looking at the performance of these these methods before including any other covariates in in another model.  We're not trimming the weights, although we did, we did explore that.   


And that didn't make a difference either. But we we generally stick to non-trimmed weights because those are easier to interpret. And I believe everything in here has been, has been a stabilized IPTW. Great, a great question.  

Moderator:
Great thank you.  

Melissa Garrido:
And one other choice that we're looking into is, how does VBKW perform relative to entropy balancing?  So entropy balancing is a different type of weighting method that creates treatment and comparison groups with similar moments of covariate distributions.   


But it doesn't require a specification of a propensity score model and it's, at least in some applied situations, it works remarkably well.  You get almost no covariate imbalance after applying entropy balancing. So we've run some preliminary results and we found that if we have a a relatively low imbalance in our baseline covariates, then entropy balancing produces estimates with less bias than VBKW.  


But in the vast majority of our analytic scenarios, there's too much covariate imbalance for entropy balancing to handle. And in that case, VBKW is more robust, produces unbiased estimates; and importantly, actually produces an estimate where entropy balancing is is failing quite often in in our scenarios.  


So we're we're still working on this, but that's the, that, those are our preliminary results so far. So we have some next steps that we're working on to try to refine VBKW.  


We are testing it in plasma simulations. So these are simulations based off of real data where we can set a treatment effect but use, kind of, the, a natural data generating process rather than trying to introduce our own ways that different covariates are correlated with with each other.   


We’re we’re using real data from the health and retirement study. We're also working on developing the ACE data command. So that's, that's in progress. We would like to continue refining the adjustment for standard errors with a a matching adjustment.  


We also want to try, figure out what the optimal bandwidth is to use for assigning the kernel weights.   We've, we've done some investigation into this, but it's, kind of, been an ad hoc manner. So a a more optimal, systematic approach would would be ideal.  


And then, as one of the audience members alluded to, we should test the performance when we combine these methods with covariates in doubly robust estimates.  


So so just to wrap up, it's really important to account for vectors of propensity scores when we're creating propensity score matches or weights. This becomes even more important when you're using multiple treatments.  


Ensuring similarity across the vectors of propensity scores will lead to estimates with less bias and greater efficiency and failure to account for these vectors will limit the types of comparisons you can make of of your different pairwise treatment effects. And VBKW is a relatively straightforward method to account for similarity across the vectors of propensity scores.  


I've included some references in the slides.  And here's my contact information, I'm happy to to go into more detail with anybody who has questions afterwards. I'm happy to take any questions now. Thank you.

Moderator:
Thank you, that was a fantastic presentation. I, along with some people in the questions, are really excited to hear there's going to be a Stata package that you're putting together.  Somebody asked when that will be ready?

Melissa Garrido:
As soon as we can, can get it out the door, it is actively in progress. And we just hired another person to help us get the programming done and get it out into the world.

Moderator:
Okay thanks. So we had some questions as we went along. Somebody was, sort of, interested more in the intuition behind propensity scores in general, and wanted to know whether it was, it worked at, like, exact matching, or whether you need to be, have exactly the same values?  


I'm afraid I can't scroll up with the question pane right now, but maybe if you could just talk a little bit about the intuition, and whether you're, sort of, exact matching on those values?

Melissa Garrido:
Yeah that’s a a great question.  Exact matching is really difficult, it's partially a function of your sample size. So the goal is to to match your treatment and comparison groups on values of the propensity score as as well as you can.  If you’re, if you're using a matching process, you're doing this based on individual observations, values of propensity scores.   


You'll, rather than using the exact value, you'd probably use some, kind of, radius or caliper. So say, within point, some function of the, the logit of the propensity scores is usually used as as a caliper.  


If you're weighting on the propensity score, your goal then is to make the distribution of the propensity score be similar in your treated and comparison groups. So it's, it gives you a little bit more flexibility than than exact matching.  

Moderator:
Right, thank you. We have a few questions about, around slide 36 when you were comparing bias and efficiency.  A couple of people wanted to know whether these were also relevant for when you had a two group comparison?

Melissa Garrido:
Yes so these, in a two group comparison, I think, we would end up with with more similar results.  So that all of these methods would probably perform more closely to each other. I didn't do it with with these particular scenarios. But in previous work, I found that kernel weighting leads to less bias and greater efficiency, and in some cases that, than IPTW.   


But I I don't want to misspeak because I don't, I don't remember the degree of difference in in the methods. But the important thing there is that if it's a binary treatment case, all of the methods are then implicitly including vectors.  


So every, everything is matched on the probabilities of all the possible treatment levels.  So there they are more likely to perform similarly to each other.

Moderator:
Great, thanks. Someone had a question about what the R package is that conducts boosting for multinomial propensity scores?

Melissa Garrido:
That is M-N-P-S which, I think, it stands for multinomial propensity scores. That's one of the few packages that I am aware of that, that works to to produce estimates for propensity scores with multiple treatment values.   


But it uses the inverse probability treatment weights. So if you are going to use it, proceed with caution, just knowing that there might be some bias that's left behind and in those estimates.

Moderator:
Right, thanks. Someone else had a question about, "How do you assess similarity across vectors?"

Melissa Garrido:
That's another, great questions, let me see if I can pull up one of the relevant slides here. Bear with me for one second.  So here we're looking at, just distances in the the probabilities of of treatments.  


So you're you’re trying to minimize the distance between probability of of A in your your treated and comparison groups, probability of treatment B in your your treated and comparison groups.  And and so on with with all of your treatment groups, you're trying to minimize that that overall distance in in the groups.

Moderator:
Somebody mentioned, weighted and TWANG packages, I'm not familiar with those, but _____ [00:50:35 to 00:50:37] 

Melissa Garrido:
Yes yeah, I think TWANG actually calls MNPS, and or it might be the other way around. And then weight, WeightIt is another R package that, I believe, calls MNPS. And then it also includes different pre-processing techniques, like entropy balancing, and course, and exact matching.  I'm a Stata user so take that with a grain of salt.

Moderator:
Okay okay, a comment question, so is the take home message that any of the methods work reasonably well for binary outcomes, but VBKW for multiple outcomes?  

Melissa Garrido:
Yes that would be the take home message, much much more succinctly put than I did.

Moderator:
Great and I have, I'm able to scroll again. I think, I think we covered all of the questions but let me just make sure because I was. Yeah, I think so. And everyone has, everyone said, "Thank you, love, love the take home message," everybody, I'm very excited.  


That's a great presentation. Thank you so much. And if, I know you had your contact information there, so if anyone has follow up questions, I guess, they can contact you.

Melissa Garrido:
Yes, please feel free to to reach out. I am, I'm super excited that I got to present this today. I, I've been working on this for years so it's nice to finally share it with the world. So thank you all for listening.

Moderator:
That’s fantastic. Actually, I did have a question content wise with the comparison between the different home community-based service models. Is that coming out in a paper or is that out in a paper already?

Melissa Garrido:
No it's, I would love to do a paper on that. But it's so far just illustrative for it – 

Moderator:
Okay.   

Melissa Garrido:
– And for an example.

Moderator:
Alright, thanks. Okay great, thank you so much.

Melissa Garrido:
Thank you.  

Moderator:
Thank you, Dr. Garrido, for taking the time to prepare and present for today. And thank you, Dr. Jacobs for moderating the questions. Thank you, everyone, for joining us for today's HSR&D Cyber Seminar.

[END OF TAPE] 
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