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Dr. Jacobs:	We’re so excited today to have Dr. Risha Gidwani. Dr. Gidwani is a Senior Policy Researcher at the RAND Corporation, and an Adjunct Associate Professor at UCLA School of Public Health. She uses both econometric and decision analysis methods to evaluate the value of health care. And her work focuses on benefit design, cost-effectiveness, patient financial burden, and health policy. She has studied quality of care, health system costs, patient out-of-pocket costs, patient-reported outcomes, utilities, disparities, and value-based purchasing, as well as comparative effectiveness and cost-effectiveness of interventions. Much of her work has focused on comparing health system performance across Medicare and VA and often focusing on cancer and end-of-life care. We’re so excited to have you here, Dr. Gidwani. Without further ado, I will pass it over to you. 

Dr. Risha Gidwani:	Wonderful. Thank you, Dr. Jacobs. I am very pleased to be here at HERC and to be giving this lecture. I’ve actually given this lecture for HERC a few times in years past, and so one thing I will say in the beginning is that there are a lot of slides here. There are more slides than we have time; however, I know a lot of you guys download these slides and use them as reference materials in the future. So I wanted to include slides so that you had a cogent exposition of the problem and some of the solutions, but just know that we won’t have time to go into every slide in detail. And you can use the ones that we don’t go into as further study on your own. Okay. Well, with that let’s jump right in and start talking about driving transition probabilities for decision models. 

So transition probabilities are incredibly important when you’re doing in simulation modeling, whether that’s cost-effectiveness analysis, budget impact analysis, or some other type of decision analysis model. And that’s because transition probabilities drive the decision model. And there are kind of two big categories of decision models that we can think about in terms of their structure, and one is a state-transition model where we are looking at the probability of a person moving from one health state to another. And that would be some big like a Markov model as a state transition model. There are also discrete event simulation models, and those look at the probability of experiencing an event. Not moving from health state but actually experiencing an event. Whichever model you conduct, you’re going to need transition probabilities in order to be able to have your model run. 

So because transition probabilities are the engine to the decision model, we’re going to spend a lot of time talking about them today. Oftentimes you are going to be deriving these probabilities from inputs that you get from published literature, and we’re going to learn today how and when you can do this successfully. Before I delve into the actual meat and potatoes of this talk, I want to acknowledge two collaborators of mine, Louise Russell and Rita Popat, both of whom are excellent methodologist and have given valuable feedback to this lecture. 

Okay, let’s start talking about probabilities in the decision model. So the schematic that you see here is the way that a decision model would look if you were using the software TreeAge, which I believe if you guys have not already seen a lecture on that in this series, you will be doing that soon. And so I’ve just created this hypothetical model where we’re studying the effect of two different drugs. The cost-effectiveness of two different drugs on diabetic patients, and we’re interested in understanding how Drug A versus Drug B perform in terms of allowing patients to achieve controlled diabetes. And so the ellipses here that you see here, these boxes are where the probability inputs would be inputted into the model, and so that’s the focus. Filling in these blanks is the focus of our presentation today. 

One thing I do want to caveat is that when you’re comparing two interventions and evaluating their cost-effectiveness analysis—evaluating their cost-effectiveness, excuse me. You don’t have to be looking at two drugs. You can look at any two or more strategies. So for example, we could instead of comparing Drug A to Drug B, we could compare a drug intervention to a diet and exercise intervention, combined with daily telehealth monitoring. In either situation, the important point is to get your transition probabilities correct. 

Okay, so here I’ve hypothetically filled in these transition probabilities, and you can see here that in this hypothetical example, the drug is more effective at achieving controlled diabetes than as the diet and exercise recommendation combined with telehealth monitoring. So this is really what we’re trying to get to at the end of this presentation is some values for these boxes. 

Okay, when you’re deriving your transition probabilities or any of your model inputs really, you can do so in one of two ways. You can either obtain existing data from a single study, or you can synthesize existing data from multiple studies. So if you have multiple studies and you want to create a single estimate from those multiple studies, you can pool those data using meta-analysis techniques. And mixed treatment comparisons and meta-regression are just advanced types of meta-analyses. What we’re going to talk about today is how you obtain existing data from a single study. 

Alright, so what you really generally are doing when you are attaining data for a transition probability input is you’re going to the literature, and you’re doing your PubMed search. And if you’re very lucky, you’re going to obtain a journal article that’s going to have exactly the type of information you need to be able to populate your decision model. But in all likelihood, you’re not going to be extremely lucky, and what you’re going to do is you’re going to get a model input from the literature that’s going to need to be modified in some way so that it fits your specific model. 

So there are a lot of different types of inputs that you’re going to see published in literature. Summary statistics could be probabilities, which would be great. Rates. But often times they’re going to be relative risk, odds ratios, or survival curves. Or sometimes the data may be published as means or medians. And that dotted line that you see there is just dividing what is a binary outcome from a continuous outcome. Whatever the way the data are published in the literature, whether it’s an odds ratio, a mean, rate, what we need to do is convert that summary statistic into a probability so that we can use that as an input in our decision model. 

So this is a table that is just an overview of all these different summary statistics and how they’re calculated and what they range from. This is exactly the kind of thing that you would learn in epidemiology 101 so not going to go over this, but you can use this as a reference tables if you like in the future. The one thing I will just point out is probabilities versus rates. So the probability is defined as the number of events that occur in time period divided by the number of people followed by the time period and range from 0 to 1 inclusive. The rate, however, is the number of events that occur in a time period divided by the total time period experienced by all subjects followed. A that ranges from zero to positive infinity. And so you can see here that the numerator of the probability and rate is the same, but the denominator of that probability and rate are different. And that’s just something to keep in mind. It’ll become more important in a couple of slides.

These summary statistics that are published in literature could either be comparative summary statistics or noncomparative summary statistics, and so the right-hand column indicates whether that summary statistic is comparative or noncomparative. Whether the summary statistic is comparative or noncomparative, you need to transform that into noncomparative data in order for it to be useful for your decision model. And that’s because the decision model itself is conducting a comparison, so the inputs of the decision model need to be noncomparative so that instead your decision model does the comparison and produces a comparative output. 

Okay, so let’s say that you go to the literature and you actually find that there is a probability value reported in seminal study that evaluates what you need to evaluate for the purpose of your decision model, and so that’s great. You can use that probability; however, it’s unlikely that the literature base probability exists for the same time period that your decision model needs that ability to apply. And so what you then would need to do is transform literature-based probability into a timeframe that is relevant for your model. So if we go back to our example of diabetes, perhaps we find a paper that shows the six-month probability of controlled diabetes, but our decision model has a three-month cycle length. And so what we would need to do is transform the six-month probability of controlled diabetes into a three-month probability. 

The problem in doing that is that probabilities are not easily manipulated. You can’t multiply or divide them. So a hundred percent probability does not indicate a—a hundred percent probably at five years does not indicate a 20% probability at one year. And if that’s hard for you to remember, just think about it in the other direction. At 30% probably at one year does not mean 120% probability at four years. Obviously, that’s impossible. 

So probabilities have this challenge that they can’t be mathematically manipulated. However, rates can be mathematically manipulated. We can add them; we can multiply them. And so in order to change the timeframe to which probability applies, we are able to take advantage of a very nice and elegant way to convert a probability to a rate and then convert that rate back into a probability that applies to the timeframe of our interest. And we’re going to go through that in the next few slides, but before we delve into that, I do want to point out two caveats. While this is a very elegant, simple solution, it only applies in certain situations. It applies in situations when 1) there’s only two health states or two probabilities that you’re modeling. So if you have a decision tree and from one node it has two branches, well versus not well, or conversely alive versus dead, then that’s fine. You can go ahead and use this probability to rate conversion equation. 

However, if you have node that has three branches or three states emanating from it, like well, sick, and dead, you’re not going to be able to use this conversion equation. And we’ll talk about that at the end of the lecture today. So that’s the first caveat, is that this conversion equation applies to situations with two states only or two events only. And also this conversion equation assumes that the event occurs at a constant rate over a particular time period. Now this assumption of the constant event rate is generally likely to be met if you’re studying things like chronic diseases. If you’re doing something like infectious diseases and COVID, that may not be an assumption that’s met, so it really depends on your specific research question. However, much of the time in health services research, we are able to take advantage of this conversion equation, so it is a really important tool to have in your toolbox. 

Alright, so here are the actual equations themselves. They’re pretty simple. I’m in order to be able convert a probability to a rate, the rate is the negative natural log of one minus a probability divided by the time period. To convert that rate back to a probability, the probability then becomes one minus the exponentiated value of the negative rate times time. So let’s walk through an example to make that a little bit more clear. We potentially, hypothetically, have his three-year probability of controlled diabetes as 60%. But let’s say our model cycle length is one year, and so we want to figure out what is the one-year probability of controlled diabetes. Now, again, we assume that the incidence rate is constant over the three years. That’s one of our assumptions that we talked about before. 

And so then we would first convert this three-year probability into a one-year rate, and in order to do that, the one-year rate would be the negative natural log of 1 minus 60% divided by three, and that’s because I’m converting from a three-year probability into a one-year rate. That gives me a one-year rate of 0.3054. I then take that one-year rate and now I want to convert it to a one-year probability. And that is one minus exponentiated value of -0.3054 times 1, and that 1 is because I’ve already converted to a one-year rate. And since I want it to stay a one-year probability, this value of t=1. And that gives me a 1% probability—or I’m sorry, a 1-year probability of controlled diabetes of 26%. 

Okay, so I want to walk through an example, actually, with you, so if you can, please pull up Excel or grab a calculator or your smart phone and pull up your calculator app. And let’s just walk through an example. You can do this at home on your own, just to make sure that you have internalized this approach. So let’s say hypothetically we now have 30%—we have an outcome that 30% of people have controlled diabetes at five years, but again we want to convert back to our one-year probability because our model has a one-year cycle length. And so we need to be able to convert this 30% probably at five years to a one-year probability. So I want you to go ahead and do that. First, I want you to convert this five-year probability to a one-year rate, and then a one-year rate to a one-year probability. And so I’m just going to set an alarm on my phone, and we’ll just do about 30 seconds here. 

Unidentified Male:	Risha, we had a question. Somebody asked what the software was. They thought it was TreeAge. 

Dr. Risha Gidwani:	That’s right. It’s TreeAge. T-R-E-E-A-G-E. There are multiple types of software that you can run cost-effectiveness analyses in. Technically, you could even do it in Excel, and some people do. You can do it in R. I think Stata now has capabilities. However, TreeAge is a software that was specifically built to conduct cost-effectiveness analyses. And so if you’re new to cost-effective analyses, I would strongly, strongly recommend using it because it has built-in failsafes. Oh, and there is our 30 seconds. It has built in failsafes that will allow you to avoid problems like things like your branches from a node have to add up to 100% exactly. Can’t be more, can’t be less. And so TreeAge has built in failsafes like that. It has a number of different capabilities that render it particularly useful to cost-effectiveness analysis and invaluable for people that are doing their own cost-effectiveness analysis. So definitely take a look. It’s available on Macs as well as PCs.

Okay, so let’s get back to the lecture here. So hopefully you guys all came up with the same answer, which is a five-year probability of 30% ends up being a one-year probability of 6.89%. So in order to get to that, we took this five-year probability, converted it to a one-year rate. That’s why we divided by five in the denominator, and we got a one-year rate of 0.0713. We plugged that value into our probability conversion equation, and we got a probability of 6.89%. So I hope everybody arrived at the same answer. If you didn’t, then please work with this at home on your own because this is going to be a really important equation that you need to have a good handle on in order to be able to populate a decision model. 

Okay, so let’s say you’ve run this conversion, and you derived your probability from a five-year probability to a one-year probability. And so this one-year probability is going to be your point estimate in your decision model. It’s going to be an input that you put into your decision model, but this input is going to have some error around it. It’s going to have some sampling error. It’s going to have some measurement error. And so you need to include this uncertainty around this point estimate that you derived in your decision model as well. And we’re actually going to be talking about more. I believe in two weeks I’ve giving another lecture on sensitivity analyses and decision models, so we’ll go into that more in that lecture. 

If you’re not able to attend, though, I do want you to know that when you derive your one-year probability for use in your decision model, you still need to also drive some sort of estimate of variation around this one-year probability. And to do that, what you can do is take the 95% confidence interval from the reported five-year probability and you can use the same probability to rate to probability conversion equations to convert the upper and lower bounds of that confidence interval to be able to apply to your derived estimate. 

So here this first table just shows what we did before, which is this five-year probability of controlled diabetes of 30%, resulting in an annual probability of 6.89%. And then we know that the reported confidence interval from the five-year probability is, let’s say, this hypothetical 25-35%. So what we did is we converted the 25% five-year probability into a one-year probability. The same thing for the upper bound of the confidence interval got converted from a five-year upper bound into the upper bound that relates to the annual probability. And so then what we see at the bottom is that we have this point estimate for the one-year probability, as well as an estimate of variation around that point estimate that we derived from five years to one year. 

Okay, so going back to our table of summary statistics, I just want to summarize what we are able to do and not able to do in terms of converting the probabilities. So if the summary statistic has a probability, can you converted it to probability? Well, yes. It’s already a probability, but you can use rates to convert the time period to which that probability applies. And if the summary static reported is a rate, you can easily convert that to a probability using the equations that we just went through. However, what you’re normally going to see in the literature are summary statistics like relative risk and odds ratios. And so I want to talk about what a relative risk is, what an odds ratio is, and then the odds which the odds ratio is based upon. 

So on the next slide, let’s go into some of those and how and whether we can derive probabilities from those commonly reported summary statistics. So everything that I’m going to talk about is based on a 2 by 2 table, and so you can pull a probability out of a 2 by 2 table. You can pull odds out of a 2 by 2 table, odds ratios, relative risk. All of these come from the same 2 x2 table that you see in a basic epidemiology class where you’re looking at the groups, exposed versus unexposed groups and whether they do or do not have the outcome of interest. 

If we had this 2 by 2 table, would very easily allow us to be able to just directly pull the probability of outcome in exposed group, which is what we’re interested, we could just directly pull that out of the table. We could also from the same table pull out the odds ratio and pull out the relative risk. And the reason that I show this is because what we’ll generally have reported in the literature are the odds ratio or the relative risk, and what we want to do is be able to pull out the probability from the odds ratio and the relative risk. And so I want you to understand that these summary statistics are all based on the same 2 by 2 table. They’re using different information in the 2 by 2 table, but they’re all based on the same 2 by 2 table. And so we can sort of leverage this to be able to derive the probabilities when we only have the odds ratio or the relative risk as the reported statistic available to us. And this is just showing that we’ve just replaced the groups with our groups of interest and our outcomes of interest. 

Okay, so let’s define what an odds ratio and a relative risk is before we delve into how to derive a probability from them. So the relative risk, which is also sometimes called the risk ratio, is the probability of the outcome of the exposed group divided by the probability of the outcome in the unexposed group, just comparing two probabilities. Pretty easy to interpret. The odds ratio is the odds of the outcome of the exposed group versus the odds of the outcome in the unexposed group, where odds themselves are defined as a probability of the outcome divided by 1 minus the probability of the outcome. So you could just see here right off the bat that the odds ratio is a little bit more complicated to try to parse through than the relative risk. However, the odds ratio has better statistical properties. 

The odds ratio of harm is the odds ratio—is the inverse of the odds ratio of benefit. You cannot say the same thing for the relative risk. And not only does the odds ratio better statistical properties, it’s just more often reported in the literature, and that’s because the outcome of the logistic regression equation is an odds ratio. It’s not a relative risk. So we’re going to need to figure out how to be able to derive probabilities not just from relative risk but also from odds ratios because those are the commonly reported statistic. But let’s start probabilities from relative risk because they’re a lot easier to understand, and they build the foundation for understanding what we’re going to do with the odds ratio. 

So again, the relative risk is the probability in the exposed group divided by the probably of an unexposed group. And I’m sorry, it looks as though my animation does not go through when we’re using this platform, so I’m sorry about that. It would sort of help make things a little bit clear. So anyway, we’ll work with what we have. So you can probably see here that if you move the summary statistic of the relative risk and you instead of writing it as a relative risk, you write it as the numerator and the denominator, then it becomes very clear what you can do to be able to generate the probability of the outcome in the exposed group, your main interest, from the relative risks. 

So you multiply this relative risk times the probability of the event in the unexposed group. So again, we’re just rewriting here the relative risk as the numerator and the denominator, and because when we multiply the relative risk times the probability of the outcome in the unexposed group, the denominator cancels out of the relative risk, and then we’re left with is a probability of the outcome in the exposed group. So very simple, very easy to be able to get the probably from the relative risk. The only caveat is that it does mean that you need to be able to find the probability of the outcome in the unexposed group in that same journal article that reports the relative risk. That shouldn’t be too difficult. That usually is something that’s reported. 

So let’s just walked through an example here. So we have this hypothetical relative risk of 2.37, and we have the probability of some event in the unexposed group is 0.17. We pulled these two values directly out of the journal article. We just multiply the 2.37 times the 0.17, and we get a probability of outcome in the exposed group of 40.3%. Remember, that’s over the entire study period, so you may need to do the probability to rate to probability conversion in order to be able to make that 40.3% apply to the time period that you’re interested in for your decision model. 

Okay, one caveat. There’s always caveats, and the caveat for deriving a probability from relative risk is that if the relative risk is a result of a regression model, which it may be—may or may not be, you just read the journal article to figure that one out. But if it is the result of a regression, then that means that relative risk has been adjusted for covariates, but most likely the probability of the outcome of the unexposed group that they report in the literature will be unadjusted. And so that means that things don’t cancel out quite as well as we would hope. 

So if we were to multiply the relative risk times the probability of the outcome in the unexposed group that’s unadjusted, what you’ll see here—and again, I’m sorry the animation isn’t coming through. But if we rewrite the relative risk as a probability of the outcome in the exposed group that’s adjusted, divided by the probability of the outcome in the unexposed group that’s also adjusted and we multiply this quantity times the probability of the outcome in the unexposed group that’s unadjusted, you see that these don’t perfectly cancel out. And so that means that your derived probability estimate will have some bias in it, so you need to make sure that you vary this in sensitivity analyses. So come back in two weeks, and we’ll talk more about sensitive analyses. But just for now, keep that in mind. 

Okay, so relative risks are nice. They’re very easy to interpret, very easy to pull probabilities out of. But like I mentioned, odds ratios are much more likely to be reported in the literature. So how do we derive a probably from an odds ratio? Well, if the probability of the outcome in the unexposed group is rare, meaning it occurs 10% or less of the time, then you can assume that the odds ratio approximates relative risk and use the equations that we just talked about. If the outcome is not rare, that’s an advanced topic, and you should definitely consult a statistician. 

This graph is a really nice schematic of comparing with the odds ratio versus a relative risk looks like. This comes from a paper published by Zhang and You in JAMA in 1998, and it’s really this wonderful schematic that shows you how the odds ratio compares the relative risk. So on the y-axis here we have the odds ratio. On the x-axis, we have the probability of the outcome in the unexposed group. And here we have this dotted red line that shows whether the probability of event in the unexposed group is rare or not, so there’s this 10% threshold. And you can see here that the odds ratio approximates the relative risks, so here’s an odds ratio of 0.7 and a relative risk of 0.75. And you can see that the odds ratio approximates relative risk pretty well when the probability of the outcome in the unexposed group is 10% or less. And so this is just sort of a visual way of indicating to that the odds ratio is a good measure of the relative risk when the outcome is rare. 

Alright, my animation also is not here, so you’re seeing the punchline right now. But let me just walk through this. So if the outcome is rare, you assume that the odds ratio approximates relative risk. And so in that situation, we would take this equation where the probability of the outcome of the exposed group is derived from multiplying the relative risk times the probability of the unexposed group, and we would replace the odds ratio over the relative risk. Relative risk gets kicked out of this equation. We pretended that the odds ratio can be put there instead. So in this example that I’m showing you here, let’s say we have an odds ratio of 1.57, and we have the probability of the outcome in the unexposed group is 8%. So that’s less than 10%; it’s rare. It meets our threshold, great. So in order to derive the probability of the outcome in the exposed group, we would multiply 1.57 times 0.08, and that gets us a probability of outcome in exposed of 12.56%. 

Now I mentioned that the odds ratio and the relative risk and the probabilities are all derived from this 2 by 2 table, and let’s say we actually had access to this 2 by 2 table, which we probably will not. But if we hypothetically also had access to this 2 by 2 table, you can see what we would produce if we had been able to pull the probability directly out of the 2 by 2 table. And if we were able to do that, then the probability of the outcome in the unexposed group would be 12 divided by 12 plus 88. Said differently, 12 divided by 100 or 12%. So if we have the underlying 2 by 2 table ourselves, we would get a value of 12%. We don’t have that. We’re trying to use summary statistics to be able to derive our probability from the odds ratio, and what we came up with was 12.56%, which is pretty close to the 12% that we would’ve gotten had we had access to the data ourselves. 

Okay, so whether you can assume that the odds ratio approximates relative risk depends on the probability of outcome in the unexposed group. It has to be 10% or less. So that’s something that you need to figure out before you employ this equation, and that should be available in whatever paper you’re pulling the odds ratio from. If it is not available, what you could do is try going to the literature to try to find this value for a similar group of patients. And if it’s 10% or less and, again, you feel like that group of patients as being studied in other literature is similar to the group of patients as being studied in the paper from which you obtained your odds ratio, then you can try to employ this equation as well. 

Okay, most of the time odds are not reported in the literature. But let’s say you came across a rare paper that does report odds, and you want to derive a probability from odds. Very easy to do so and that’s because odds are defined as probability divided by 1 minus probability. So if we wanted to find probability from odds, probability is just odds divided by 1 plus odds. So if you had an odds of 1 divided by 7, that results in probability of 0.125, and you can see that equation down here. 

If let’s say you, yourself, actually have access to the individual data and you want to produce probabilities, it’s very easy to do so. And but what you might want to do if you’ve access to the individual level data and it’s observational data, is produce predicted probabilities or probabilities that are adjusted for covariates. And so your logistic regression model that you would use for a binary outcome is going to produce an odds ratio, and let’s say instead you want to produce a predicted probability instead of an odds ratio from your logistic regression model. You can do so using the margins command data. And so in order to do that, what you would do is you would just put a dummy in front of each of your x variables or your main predictor variables that you want to produce a predicted probability from, and then you would type the margins command. And that’s going to give you the predicted probability of x, given that y=1. 

Okay, so in summary, we just one went over odds, odds ratios, and relative risks. Can we convert those to a probability? It’s very easy to convert and odds to a probability. You could convert an odds ratio to a probability if the outcome is rare, and you have the probability of the event in the unexposed group. Similarly, you can convert a relative risk to probability as long as you have the probability of the event in the unexposed group available. 

Okay, now let’s talk about survival curves and means. So you may get survival data, especially if you’re working on an oncology model because many of those clinical trials are reporting data in survival curves. And so if you do any work in oncology, this is something that you’ll want to pay attention to. Now survival data in probability, something to keep in mind is that previously throughout this lecture, we’ve just sort of assumed that probabilities are going to be constant throughout the model. Now they don’t have to be, but often times we consider them to be constant throughout the model. That means that whether your model has—let us say that your model has a cycle length of six months, and it’s lasting for four or five cycles, for example. And so we would assume that the probability of controlled diabetes in cycle one is the same as the probability of controlled diabetes in cycle five. You don’t have to, but that’s oftentimes how these models work. 

However, something that should not be considered to be constant over the time horizon of your model is survival, because we know that as people age, their probability of survival reduces. With cancer patients, the further out they are from their diagnosis, their probably of survival may change. And so you may have multiple probabilities for death in your model, one for each time period of interest. So in that example where I said that there was a six-month cycle length and five cycles, the probability of death in cycle five may be different than the probability of death in cycle one. 

Alright, now let’s talk about where you can get survival data from. So if you’re talking all-cause mortality, you can get this information from the CDC. They published age- and sex-adjusted mortality rates. There also is literature that’s specific to diseases and/or treatments, and those will oftentimes give you the probability of death at a particular time point. And you can get that from survival curves. 

So let’s talk about all-cause mortality from mortality rate tables. And so here, this is just a table of death rates by age, race, and sex in the United States. You can find this publicly available on the CDC’s website. And you can see here that we got the rates per 100,000 population in specified group. So this tell us that this is a rate, and now we need to convert this to a probability. So I just want to point out here because we’re just going to look at different rates, and therefore probabilities, for people at different ages, we’re going to look at 75-79, 80-84, and people there are 85 and older. And we’re going to look at both sexes, so we have the rates here. 

Okay, so right here on the left-hand side is the same table, is the same information that I just showed you in the previous table where these are the CDC numbers of rates. And now what we want to do is convert these rates to probabilities, and so this is what we’ve done, is convert these rates here in the left-hand column into a probability. So first, you can see that the rate is per 100,000 people. So I derived a single summary statistic from that, and then I converted this rates into a probability. This rate into this probability. This rate into this probability. And again, this is the equation down here to convert the rate to a probability. And so what you can see here is that the probability of death jumps dramatically when you move from 75-79 to the next category from 80-84 and to 85 and plus. 

And so if you, let’s say, had a model where you were modeling elderly people, people who were aged 75 and older—and let’s say that this is a model that has an annual cycle length, so people are one year older every single model cycle. What you would want to do is tell your model that the probability of death changes based on the age of the people in my model. Another way to say that is the probability of death changes based off of the cycle length. And so in the first few cycles, we’ve got the probability of death being 4.4%, and then it jumps when people age 80 in model cycle five. That jumps to about 71% and then jumps again in model cycle ten when people are 85 to about 14%. And so that’s a way that you could accommodate a different survival probability based on which cycle in your model you’re at. 

Alright, so that was all-cause mortality. Now let’s talk about disease-specific survival data. And there’s kind of two big types of survival curves that you’ll come into contact with. One is the Kaplan-Meier curve, and that data comes from randomized-controlled trials. And so those data are unadjusted because if randomization is working as it should, the treated and the control groups are balanced at baseline with respect to their covariates. If the data are coming from observational data, then they’ll generally be presented in a Cox proportional hazards curve, and that has been adjusted for covariates because the data are observational. 

So when I pull out survival data from curves, there’s sort of this quick and dirty method to do that, and that is that you essentially sort of eyeball the probability of an event at a specific month. And so you can see here that this blue line is my control group. I have time on my x-axis. On the y-axis is survival—not death, survival. And so I can sort of just eyeball that the probability of survival at month 18 is about 54% for my control group. This is a very quick and dirty way to do this. There doesn’t seem to be really great guidance for how to pull information out of survival curve data. So I’m giving you this information right now, but keep an eye on the literature because if somebody comes up with a better way to do this, that would be an addition to the literature definitely. 

Okay, so can we convert a survival data to probabilities? Yes, you can. Just the thing to keep in mind with survival curve data is that they are conditional upon surviving up until that point and that the survival data may and most likely do change with each time period. And so you don’t want that value to be constant in your decision model. 

Okay, now let’s talk about means. That’s the last thing we have here. So a mean is representing a continuous distribution, and so if you want to figure out how to derive a probability from a continuous distribution, this can be a bit tricky. You do need a couple of things. The first thing you need is a validated way to generate a binary variable from a continuous distribution. You essentially need a threshold in a continuous distribution that splits it into two. So one example, which is actually very easy in diabetes, is that hemoglobin A1c is a way to measure diabetic control, and that value is a continuous value. There is an acceptance in the literature that hemoglobin A1c of less than 7 indicates that the person’s diabetes is controlled. So here we have a variable that is continuous but that we are able to assign a threshold to based off of clinical consensus. So we are able to derive this binary variable of controlled diabetes from this continuous value of hemoglobin A1c. That’s the first thing you need. We’ve got this validated way, or accepted way, to generate the binary variable. 

The second thing you need is an estimate variation around the mean because if you just have a mean value, you just have one point estimate. What you really need to do is understand the shape of the continuous distribution so you can understand how many people are below some threshold value. So that’s really important. You need to be able to get the standard deviation or variants. If it’s a normally distributed variable, the interquartile range, or the range along with a median if it’s an nonnormally distributed variable in order to be able to understand what that shape of distribution looks like and the proportion of people that are under a specific threshold if you drew that through the distribution. That’s a pretty advanced thing to do, so I definitely recommend involving a statistician. 

Alright, the other thing you would need to do is if you were deriving a probability from a mean, that probability value itself is, again, going to have some uncertainty, some error around it, sampling error, measurement error. You need to be able to quantify this uncertainty so that you can vary that mean derived probability value in sensitivity analyses. And so that’s, again, very, very important. You will not get your cost-effectiveness analysis model published in a decent journal if you do not run sensitivity analyses. So getting this estimate of variation around the probably that you derive from the mean is going to be necessary. And that’s, again, and advanced topic, and you should consult a statistician or potentially a mathematician. 

Okay, going back to our summary table of summary statistics, so can you convert a mean to a probability? Yes, it’s possible to do if you have estimates of variation around that mean. If the data are just being reported as the mean, you’re not going to be able to do that. Almost every single journal article is going to have some estimate of variation around it, so that shouldn’t be a problem. It’ll just a challenge for whichever statistician you involve, but it is possible to do. 

Okay, so at the beginning of the lecture, I gave you what is this very nice elegant equation for converting the timeframe to which a probability applies. We used the probability, convert that to a rate. Convert the rate to another probability. And that allows us to really come up with a solution that generally plagues all decision models, that the timeframe that the literature-based probability applies to is not the same as the cycle length of your model. But I also mentioned that this probability to rate to probability conversation equation assumes that you only have two health states or two transitions that can occur. 

What happens if you have more than three? That becomes a problem. So let’s say you have a situation in which the branch is emanating from a node in your model, are well, sick, and dead. Now you have three states, three probabilities that could occur within a single cycle length. You need to figure out what you do in this situation. Recall that the conversation procedure for a two-state transition will not yield correct probabilities when there are three or more state transitions that can occur. Dr. Louise Russell and I published a paper in PharmacoEconomics a couple of years ago, and we talked through this problem and sort of demonstrate that in Table 3 of that paper. So if you’re interested in understanding more of what the error looks like, you can go ahead and download that paper and take a look at Table 3. 

There are some potential solutions when you do have more than two transitions that can occur, and you need to be able to modify the timeframe to which the probabilities apply. One of the simplest things you can do is you can revise your model structure so that each node only has two branches or two transitions that occur. So if you, for example, had an original model that had three branches, well, sick, and dead, you could restructure that model so that there are only two branches, well and sick. And then there’s a new set of branches come from sick that say sick and alive versus sick and dead. And that way each node only has two branches, and you can employ this equation. Now that may not be possible for you. Maybe it’ll make your model to bushy. Maybe you don’t have enough data to be able to derive the appropriate conditional probabilities in that situation. 

So if it’s not possible for you to revise your model structure, you could instead consider eigendecomposition. This is a complex mathematical process, but it will potentially allow you to be able to change the cycle length to which your probability applies—or I’m sorry, the timeframe to which your probability applies when you have more than two transitions that are occurring. It does require that either the data come from a single source or multiple data sources with the same followup time. That is very rare to happen in the literature, and so you’re most likely not going to find that. The other problem is that even if you do have this situation where your data came from a single source or you have multiple data sources with the same followup time, you could run the eigendecomposition, and it could result in negative numbers or complex numbers that you cannot use as inputs into your decision model. So it can be a bit complex of a process and then result in a non-tenable solution as well. 

Dr. Russell and I have a third approach that we recommend using in certain situations. In situations where there’s only three transitions possible, not more than three, and two of the published probabilities are very small; and your model cycle length is shorter than the timeframe to which the published probability applies. If you apply the two-state formula of converting a probability to a rate, back to a probability, the error is going to be pretty small. So you may consider this approach if all three conditions, A, B, C, are met, as well as the probabilities that your trying to derive are not a major driver of model results. And in two weeks when I give my lecture on sensitivity analyses, we’ll walk through how you can figure out whether the probabilities in question are a major driver of model results or not. If you are interested in learning more about eigendecomposition, there’s a few papers up here that you can take a look at. 

Alright, one thing I do want to mention before we move to a summary and questions is that the quality of the literature matters a lot. And so when you are building your decision model, you should really be spending a lot of time searching PubMed and parsing through articles to make sure that you’re getting the highest quality data inputs possible because any model, garbage in is going to be garbage out. The best way to be able to get a model input for your cost-effectiveness model is from an RCT-based study where the two treatments in question were studied head-to-head in a single RCT. That part—so it might not be difficult to find an RCT. It might be difficult to find your two treatments of question studied in a single head-to-head RCT. So for example, if we were look at diabetic patients and we wanted to run a cost-effectiveness analysis of whether they received a drug versus whether they received diet and exercise recommendations plus daily telehealth monitoring. It’s really rare that these two things are going to be studied in the same RCT. Most likely the drug company that is producing this drug is funding the RCT, and they’re comparing their drug versus placebo or Drug A versus Drug B. 

So if you don’t have this nice situation in which both of your interventions of interest were studied in the same RCT, what you would want to do is find a single RCT that compared let’s say drug to placebo, and then another RCT that compared this intervention to placebo. And these two RCTs enrolled similar patients. And from there, you would want to be able to pluck out inputs or pluck out results that you then transform into inputs for your decision model. 

So in summary, you will almost always need to transform reported data into probabilities for use in your decision model. It’s pretty easy to do this if the data that are reported are in the form of a rate, are in the form of an odds ratio, if the outcome in the unexposed group is less than 10%, if the data are reported as relative risk, or if they’re reported in a survival curve or survival rates. What’s more difficult but possible is if you have continuous data with an estimate of variation. And if you have situations in which you have an odds ratio but the probability of the outcome in the unexposed group is greater than 10% or you’re looking at summary statistics that we didn’t talk about today, like a mean difference and a standardized mean difference, then those are really advanced topics. And again, you’d need to consult with a statistician about your particular data and your particular research study. 

Probabilities apply to a particular length of time, and to change the length of time to which a probability applies if you have only two states or two probabilities, you can use that probability, rate, to probability equation. And if you are doing your own cost-effectiveness analysis model, I can almost guarantee that that’s something you’re going to come back to again and again. 

Okay, if you’re interested in reading a little bit more about this, there’s a few papers that I recommend. The first actually is a paper that myself and Dr. Russell had written that actually came out of this lecture that I gave many years ago for HERC. And so it builds on a lot of what we spoke about today, and that was published in PharmacoEconomics in 2020. The other couple of papers that I strongly recommend were published in the ’90s, but they withstand the test of time. And I think they’re two of the best articles out there about how to derive transition probabilities, so again strongly recommend reading this Miller and Naglie studies. They’re both excellent.

And with that, I will open it up to any questions. 

Dr. Jacobs:	Thanks, Risha. That was fantastic. So informative as always. We had a few questions that came in. One of them was about, so when you’re converting probabilities to rates, this person asked what unit of rate do you assume? And they clarified, like you mentioned, annual rates, but they are wondering if there’s other considerations like number of people per year or something like that. 

Dr. Risha Gidwani:	So yeah, you can see that a little bit here. So let’s see, let me get back to the survival rates. Oops. Oh, my goodness. I think I went to fast, and it’s just catching up. Okay, so here we’ve got a rate this is per 100,000 population, so yes, you do need to take into account that the rate is per a specific number of people, not just for a specific period of time. It’s also people. And so what we’ve done here is I’ve converted the rate that was reported, so I’ve got a 100,000 people in the denominator here. And from that, I get a single summary statistic about the rate, and then I convert it into a probability. So yes, you do need to take into account whether there’s the size of the population to which the rate applies as well. 

Dr. Jacobs:	Great. And we had some questions about, how do you derive probabilities from hazard ratios? 

Dr. Risha Gidwani:	Yeah, that’s a really good question. So I think the short answer is that’s very difficult because a hazard ratio is this instantaneous rate. It’s not this constant rate. And so in order to be able to drive probabilities from rates, you do need to assume that the events are occurring at a constant rate, and that’s something that’s generally not met by the hazard ratio. 

Dr. Jacobs:	Great. “Can you discuss converting cumulative incidence to probability?” 

Dr. Risha Gidwani:	Well, do you mean like in incidence rates? So incidence could be a probability, or incidence can be a rate. But I think the thing you want to think about—let’s see, I think one of my slides sort of gets at that. 

Dr. Jacobs:	And they said they meant incidence proportion. 

Dr. Risha Gidwani:	So the proportion of events, the number of events in one group divided by the number of people that are being studied? So that’s the same thing as the probability. So the incidence proportion is just another name for a probability. 

Dr. Jacobs:	Great. Okay, and then another question, I think you sort of covered this. But someone said, “Constant rate implies exponentially distributed time, but for infectious diseases like COVID, what rate function can be used? What’s the appropriate PDF?” 

Dr. Risha Gidwani:	Yeah, I unfortunately do not have a solution for you. So this conversation equation very much depends on a constant rate occurring over time. One of the things you may want to do is change the structure the model, so change the cycle length to which your probability applies. And maybe instead of doing a weekly cycle length, you do a daily cycle length, and maybe you would need to consult with an infectious disease physician to make sure that this was an appropriate assumption. But you might say, okay, I don’t believe that the incidence rate of COVID is constant over a week, but maybe I believe that it’s constant over a daily period. But that means that the rate that you were getting is from a day, not that the probability that you’re getting is from a day. So it might be also difficult—you need to make sure that you’re finding a daily rate, not a weekly rate.

Dr. Jacobs:	Great. Someone says, “Excellent talk. When you’re picking statistics from published data, let’s say, odds ratios, would you recommend picking adjusted or unadjusted statistics?”

Dr. Risha Gidwani:	What a great question. So I mean, if it’s observational data, you generally want it to be adjusted because you don’t want—your transition probabilities are the engine to your model, so you don’t want there to be bias in your main decision model input. So what I would recommend is using an adjusted odds ratio and just know that when you do your adjusted odds ratio, that same issue—it says relative risk. But the same problem occurs for odds ratios, is that your summary statistic is going to be adjusted, but the value that you’re multiplying the summary statistic for is may be unadjusted. You might want to actually contact the authors of that paper and say, hey, I have this adjusted odds ratio from which I want to derive a probability. Can you A) just give me an adjusted probability, or if not, can you also provide an adjusted probability of outcome in the unexposed group? But do not underestimate—and I should have said this actually, so thank you for bringing this up. Do not underestimate the likelihood of actually contacting the author and asking them for the relevant probability yourself. That is certainly something that is worth a try if the author is still around to be contacted. 

Dr. Jacobs:	Great answer. And someone said, “You mentioned that you need transition probabilities in discrete event simulation. Did you mean that you need timed competing events rather than probabilities of transitioning to events?”

Dr. Risha Gidwani:	Well, you want the time as well as a probability, really, because you still need to understand the probability of something happening within a certain time period. So you’re not going to be able to sort of sidestep this issue of needing probabilities, and actually this issue of competing events could occur whether you’re doing a discrete event simulation or a state transition model. So for example, you can’t—in the state transition model, you may not be able to develop an adverse event—or you’re not going to be able to develop an adverse event if you’re dead. So I think that’s an important consideration, but it’s a separate consideration from a probability. 

Dr. Jacobs:	Great. We had another one come in. “How would you recommend using a test, for example, biomarker positive rates in the model?” Might need clarification on that one.

Dr. Risha Gidwani:	I’m not sure I quite understand the question.

Dr. Jacobs:	Yeah, maybe if they could clarify what they mean, we can followup. But that so far, okay. Okay, so for the deriving—this is a different one. “For the deriving the probability from the mean, I missed why you would go with option two versus option one, a validated way to generate binary variable. What is the implication if you estimate the binary variable?” 

Dr. Risha Gidwani:	So you actually need both. They’re not either/or. So first, you need to be able to generate the binary variable from continuous distribution. So if you think about what _____ [00:54:12] in our normal distribution looks like, it sort of looks like this hill. And what you’re doing is you’re putting a vertical line in this hill to generate a threshold. And then you want to know the proportion of the area, let’s say, to the left of the vertical line. And so if we’ve got this continuous distribution of hemoglobin A1c, we’re drawing this vertical line in this continuous distribution at the threshold, that the x-axis equal 7. And we want to know how many people are in the area under the curve from 7 and below, and so that’s what we’re doing in Step 1, is generating a binary variable from a continuous distribution. 

And so let’s say from there we say that, okay, the proportion of people that are under this curve to the left of this threshold of 7, let’s say that that’s 40%. And then we would put in our decision model the probability of controlled diabetes with this intervention is 40%, but we know that that 40% is not without error. That 40% has sampling error. That 40% has measurement error. So now we need to generate an estimate of variation around that 40% value so that we can vary that 40% value in sensitivity analyses, and that’s what Step 2 is doing. 

Dr. Jacobs:	Great clarification. We have another one—as I said, much clearer. Thanks. “If you’re using data from an RCT comparing two drugs over time and your comparison is of the two drugs, would you recommend incorporating background mortality?” 

Dr. Risha Gidwani:	I think it’s a good question. So it kind of depends on your particular decision model on what you’re interested in. All-cause mortality may be something that you’re interested in if you’re comparing a drug for elderly people, for example, and you know that the risk of all-cause—not disease specific but all-cause mortality—is pretty high. Then, yeah, you may want to include that. If you’re comparing something like, I don’t know, corticosteroid cream for rash in small children, then it might not be worth it for you to track down all-cause mortality and put that into your model. It’s probably an extremely small number, and it’s not going to make much of a difference in your model. So it sort of depends on your research question. 

Dr. Jacobs:	Great. So that’s all we have for now, and we’re right at the end. Maybe I’m sure people can follow up with you or if you have any last words or comments. I think we can close it out and just note, as you said, our next seminar in this series is with you on the 23rd, and you’ll be looking at sensitivity analyses for decision models. 

Dr. Risha Gidwani:	Great. Well, thanks so much. I’m happy to be here, and I hope this was useful. I will say this is kind of stuff that refer to again and again, and so if you’re interested in cost-effectiveness analyses, I would print this out and save it somewhere. And hopefully, I hope this will help you guys avoid some of the headaches that I came up against early in my career. 

Dr. Jacobs:	Thank you, Risha. It was fantastic as always. Thank you. 

Dr. Risha Gidwani:	Thank you. Take care. Bye-bye. 

Dr. Jacobs:	Bye. 

Unidentified Male:	Attendees, when I close the webinar momentarily, you will be presented with a short survey. Please do take a few moments and provide some answers to those questions. We count on them to continue to bring you high-quality Cyberseminars such as this one. Thank you.
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