cdw-012615audio

Session Date: 1/26/2015
Cyberseminar Transcript
Series: VIREC Corporate Data Warehouse
[bookmark: _GoBack]Session: Getting the Information You Need from CDW: SQL Starter Language
Presenter: Margaret Gonsoulin

This is an unedited transcript of this session. As such, it may contain omissions or errors due to sound quality or misinterpretation. For clarification or verification of any points in the transcript, please refer to the audio version posted at www.hsrd.research.va.gov/cyberseminars/catalog-archive.cfm or contact: margaret.gonsoulin@va.gov

Heidi:	At this time I would like to introduce our speaker for today’s session, Margaret Gonsoulin, who is a social science analyst at the V.A. Information Resource Center, a sociologist who earned her degree from the University of Virginia in 2005 and comes to the V.A. after being an Associate Professor in the California State University System.

Margaret Gonsoulin: 	Thank you and welcome everyone, thank you for joining us today. As you know, we will be talking some basic SQL starter language and todays talk entitled “Getting the Information You Need from CDW”. Before I begin, I would like to take a minute to thank Richard Pham for his continued support and assistance and my colleagues here at VIReC who are instrumental in making this cyberseminar happen – thank you.

As I mentioned today is a follow-up to the two previous talks given in this series. The first one – “First Time Research User’s Guide to CDW” was about conceptual overview of the relational database, the corporate data warehouse and the various elements found within a corporate data warehouse such as this one. The second one was “Seeing the Data when you Cannot see the Data” which focused on documentation to the corporate data warehouse, where you could find it and how to best use it. If you have not seen those, they would assist you in being able to write the queries that we will discuss in today’s talk. Before we begin, talking about the actual role SQL queries we will discuss a few key terms and their definitions that are important to understanding the lecture and then we will move into the basic SQL queries and how to use them to get information out of the corporate data warehouse.

Before we begin, I would like to make sure that you feel familiar with what a Production Domain is versus a Raw Domain in CDW. Production Domains as we discussed in the two previous talks contain “tables” that have been structured by database architects to support their rejoining. So they have added primary and foreign case if you remember from the first talk to assist people who are trying to rejoin those “tables” and make that job easier and more straightforward. The information found in the Raw Domains of the corporate data warehouse contain “tables” that are more direct extracts from the source system, common source system for CDW is VistA which is the Veterans Health Information system and technology architecture. It is an information system that holds the V.A.’s electronic health record. So what the Raw Domains are doing is taking the source system from mostly VistA and simply housing it with little to no editing being performed on them, they are not creating these joining keys. We are not joining anything today that is more of an intermediate level skill and this is the starter SQL language discussion. How this becomes important for today’s talk is to look at these types of domains and remember that the way that they have named their “tables” and their columns differ. When we are writing queries, it may look a little bit different when we are writing a query for columns and views and the Production Domain versus the Raw Domain. That is why I am mentioning that here now.

A few more definitions just to make sure everyone is feeling comfortable land familiar and remembers from the previous talk that CDW stands for Corporate Data Warehouse. It is a relational database that contains significant portions of the VA’s electronic health record among other data. Just as a reminder, VINCI is the Informatics and Computing Infrastructure. They do a lot of things at VINCI but in part, the part that is important for today’s talk they provide a remote server and the software that people would use to look into the corporate data warehouse and a copy of the corporate date warehouse. Many users of the CDW use it and access it through the remote server provided by VINCI. Also, SQL, which stands for Structured Query Language, is a programming language used to retrieve information from a relational database such as the corporate data warehouse.

The part that we are really introducing new today is SQL Server Management Studio or SSMS. This is the computer software that can be used to write and execute SQL code, it is not the only software that can be used but it is the one that the VA supports and you can find it on the VINCI server available for use. There are a few things to consider about this talk that I am listing here. The first one is that this talk already assumes that you have granted at least basic access to Corporate Data Warehouse and that you have access to SQL Server Management Studio and you are ready to open it. That is the stage that we are starting at today. Also, I want to point out that the examples that we use throughout this talk are really oversimplified material from the CDW because the purpose of the talk is to illustrate the logic of SQL not to demonstrate a viable research investigation. A real research question in the end would of course be much more complicated than anything we will talk about today, but the logic of SQL will remain the same no matter how complicated you get. All of these basic principles about the logic of SQL that we discuss today should be applicable as you move forward into more complex research investigations. But today’s talk will allow you to look at the content of the Corporate Data Warehouse for nay “tables” that you have been granted permission to see.

By the end of this talk, I hope that the attendee would have a basic understanding of SQL if they do not already have it; be able to read a simple SQL query; and of course be able to write a simple SQL query for both Production Tables and Raw Tables of the Corporate Data Warehouse. So we will have two examples today – one on the production table and the other one on a raw.

Before we begin to launch into the actual SQL lesson I would like to ask you about your CDW experience. How would you rate your level of experience with CDW data on a scale of one to five? One – being not have worked with CDW at all; to five – being very experienced with CDW. I think I will turn it over to Heidi for the poll.

Heidi:	Yes responses are coming in. We will give you just a few more moments before I close the poll and show the results. I am waiting for things to slow down a little bit and it looks like I am going to close things out. We are seeing thirty-eight percent saying they have not worked with it at all; thirty-four percent rating themselves at a two; eighteen percent rating themselves at a three; nine percent saying a four; and one percent saying they are very experienced with CDW. Thank you everyone for participating.

Margaret Gonsoulin: 	Thank you for answering our question. For all of the beginning people out there, I did intend to make this talk applicable to you and hopefully approachable and understandable so you are in the right place and hopefully you will find some assistance in beginning to use SQL today.

Beginning with an example from the Production Domain, we have chosen for today’s talk a table called Dim.ICD9. When you first go in to wanting to use SQL Server Management Studio you should of course double click on the icon or go to your program first and find it wherever you may have access to it. When you open up the software, it will initially look like this. You will see on the left hand side of your screen the “Object Explorer” and to the right hand side sort of blocked out blue square. Now I want to point out that for my access I happen to have access to this particular server that you see here in the top left hand side under “Object Explorer” highlighted in blue, but you would be given access to whatever server was appropriate for getting the data that you have been given permission to. So that could be a server overseen by Vinci. If you are an operations person like I am it might be the same one as me here, AO1, but you would be given the name of your service and would have logged into that server at this point and you would see its name here on the left rather than the one that I happen to be using. But it will look otherwise exactly the same as this.

One thing I want to point out is this button here in the menu called “New Query”. This button is the one that you will press to open a window instead of the big blue block that you see on the right, it would turn into a white window that you would type your queries into. This is usually the first button that I press when I come into SQL Server Management Studio. Another important place to focus your attention would be on the folder called “Databases”. We will look for our data inside this folder by expanding the little plus sign next to it eventually. Let us begin.

Now there are things that you can do as I just mentioned is expand the databases folder. When you do expand it you will see typically on most of these servers a long list of databases will open up and you will be searching for your database of interest. Anyone with basic CDW access should be able to find a folder in this list for a database called CDWWork. Now we cannot see it on this screen that we are looking at right now, we would need to scroll down a little bit, but anyone as I mentioned who has been given basic access to CDW should be able to find this folder.

The sample that I chose today is also fairly universally available to people with basic CDW access. I chose a dimension table that will be housed in CDWWork for most people with all of the basic access – no special access would be required. Hopefully this will be an applicable example to most people in the audience.

Now I have pressed the “New Query” button and I see a big white window in the middle of my SQL Server Management Studio screen. That is where I will eventually be typing my actual queries. I also want to point out in “Object Explorer” under CDWWork I have selected two expand a smaller folder, listed under there called “Views”. I have done this instead of selecting the folder directly above it called “Tables”. That is because for most end-users we will not be accessing the actual table in CDW, we will be accessing a view of that table. However, this does not tend to make any difference for me as a person who is relatively new to this environment it looks like a table, it has columns, it has rows, it is just called a view. I just need to remember to expand the list of “Views” rather than the list of “tables” and I move forward.

Now on little trick that comes in handy for people before you begin to write your own SQL query you can actually use a little automatic query if you will. That is available in SQL Server Management Studio. Step one would be to find your View of interest from the list in Object Explorer. And again today we chose Dim.ICD9 and we right mouse click on the name of that view and a dropdown menu would appear such as the one you see here on my left in Object Explorer where we could “select the top one thousand rows”. That is what I have selected and then what happens is this automatic query gets written into the query window. Now you can see this query starts with the word select and then “top one thousand” so it is the first one thousand there, not in any particular order as far as I know the first one thousand rows in the table. Then you see a list of each one of the columns that exist in that table and then in that automatic query you see the words “From” and then after that is where the information is being gotten from in the query. So we are going to go through how to write this and what this means but I wanted you to notice that you have this option for an automatic query to be written, it is very simple with your select statement and your fund statement for the first one thousand rows that happen to be in the table. Then you get some automatic results seen here on the bottom right hand side of the screen. This will be the first one thousand rows that appear in that view.

Let us learn how to write our own SELECT and FROM statement rather than using the automatic one that we can get by right mouse clicking. The command SELECT allows a programmer as we just saw to list the columns, which can also be called “Variables” in the research world that they would like to see in the results of their query. We would start with the command SELECT and then we would begin to list each one of the columns separating them each by a comma. Now the one rule is to remember not to put a comma after the last column in your list and if you do they will give you an error message that is pretty easy to understand and you just go take the comma away. You also always in any query are going to need the “From” command. This selects the appropriate View from which the columns will be collected. The way that we write this out typically is to start with the database that it is in – a period – put the schema, a period and then the name of the View.

Let us take a look at this in context. From here we are inside SQL Server Management Studio. We have scrolled down in Object Explorer on the far left hand side of the screen until we found our table or View in this case of interest – Dim.ICD9 and I have expanded the list of columns in it. Now ideally you will want to look in the metadata reports or the documentation of CDW to find out what each one of these columns or variables mean before you start to use them. But for the purposes of today’s talk to save time we are just going to assume that that step has happened and move forward. Looking at our Dim.ICD9 we will make our selection of which columns we are going to include in our SELECT statement. For the purposes of our example I have chosen ICD9 code ICD9 description and MDC. In case these acronyms are unfamiliar MDC stands for Major Diagnostic Category and ICD stands for International Classification of Diseases.

Here is the form of our SQL query and we will use our SELECT statement come first. So we start with the word SELECT, we name our first column of choice, put a comma after it; name our second column of choice; put a comma after it, name our third which happens to be our last column in this example and then we do not put a comma after that. Then we begin our FROM statement and we say which database it is going to come from, what the schema is and in this case it is a dimension table to DIM will be our schema and then we name our View. We always end our SQL query with a semi-colon. As you can see here, right now it looks small but I am about to blow this up, we have typed our query, our basic query here in our query window and then we want to press the EXECUTE button, do not forget to press your EXECUTE button. I am going to make this bigger so we can all see it together and we have selected our first column ICD9, selected our second column after that ICD9 description, another comma, MDC no comma FROM CDWWork, that is our database .Dim, that is our schema .ICD9 that is our view. Then on the bottom right hand side after we press EXECUTE we would see these results come up in the window. As you can see we have a bunch of columns and rows just like we would expect to see in a fast dataset or an Excel spreadsheet. These number over two million rows in the results window. Now one of the things we can learn to do next is to ask for all results to come in order so we can decide which one of these columns would be good to ORDER BY and I am about to show you an example of that.

We will use the command in SQL called ORDER BY. This command allows the programmer to see the results in alphanumeric order based on whichever column or columns, you could have multiple that he or she would choose. It is important to remember that there is a rule pertaining to the command ORDER BY. It must be the last command in any query. Already we have our SELECT statement that we just went over and our FROM statement. So ORDER BY needs to come after it and you can see it written out here in the form ORDER BY and then you choose whichever column you wish to ORDER BY or you can add a comma and ORDER BY more than one column and you end with your semi-colon.

Putting this in the context of our example for today, I just went ahead and below up the FROM code right away but you can see where it was really typed and you can know that we have already pressed that EXECUTE button. We selected our same three columns from our same View and we have added our statement to ORDER BY the ICD9 codes. Now we will go it is defaulting to ascending order to the smallest number that represents our ICD9 code to the largest. But it would not do that in SAS in SAS if you were trying to write a PROC SQL Statement I am told that you would need to add whether you wanted it to be ascending or descending just in case you do that later. Today is all about actually working within SQL Server Management Studio so I am trying to say to a clear path on that topic.

One of the things I would like to point out about the results as they appear at the moment. We do see our ICD9 codes in order and when we put them in order, we can see that they are repeating. You can see here that 971.0 repeats and then right after that 971.1 also repeats and so forth. One of the commands in SQL will allow us to collapse these like entries and eliminate that repetition.

The command that will allow this to happen is called GROUP BY. The GROUP BY command will collapse all the identical values into a single entry or row rather than allowing the repetitive rows to exist in the output of our query. Now remembering that the ORDER BY statement is supposed to be the last one in the query we would want to put our GROUP BY clause before it. Another important consideration when using the GROUP BY phrase is to think about which of your measures are aggregate and which are not because when you add a GROUP BY clause into your query you will need to put the name of every column that is not aggregated already into that GROUP BY clause. Now what do I mean by aggregated? That is a column that represents the sum or an average or minimum or maximum value, these sorts of things. Let us take a look at how it plays out in our example. We would add line called GROUP BY but remember not at the end before the ORDER BY statement because ORDER BY needs to be last. In anyone of columns that is not the sum or an average or some kind of aggregate measure, will need to be listed in our GROUP BY statement if it is listed in our SELECT statement. So looking at this in the context of Dim.ICD9 we can see that we have selected the three columns ICD9 code; ICD9 description and MDC. None of these are aggregate measures, none of them are sums or averages or something like that. We must if we are going to keep them all three in the SELECT statement include all three of them in the GROUP BY statement. It will collapse white values in the combination of all three of these columns. All of your like ICD9 codes will be grouped together but let us say that the same ICD9 code had two different descriptions associated with it, then you would see two separate rows for that ICD9 code and the same goes with MDC. It is collapsing based on the combination of all three columns at this point.

Now we can see that there are approximately sixteen thousand rows in our output and we can see right now that the ICD code of nine hundred seventy-one has its own individual single row and all like values are collapsed within it. Another function that SQL allows us to perform is to count how many times we see the same information repeated in any given View or Table. We will learn about that next.

The function that will allow us to do this is called the COUNT function. It can be added to the SELECT phrase in the query and it will then create a new column that sums up the amount of times each value exists in the column of choice. Now because this new column created by the COUNT function is a sum this means it is an aggregate measure. The programmer will be obligated to include a GROUP BY clause in the query for any other columns in the SELECT statement that are not aggregated columns. Another thing that we will have to add into our query or that we should for good practice not really have to, it will not cause your query to fail if you do not do this but it is considered good practice is the little command called AS. This allows for us to give a name to the new column that we are creating when we use the COUNT function. We are creating that sum and we would be able to give it a name using AS SELECT see how that works. Here we have the query that we have become familiar with in the talk. We have a SELECT statement with our three columns but now we have added a comma after the third column and then we put the function in COUNT and then we use parenthesis () and we are going to choose the column that we want to COUNT BY and then we see the phrase AS. The FREQ is just a name that I came up with but you could put any name in the place of FREQ that you would wish to name this column. I chose this to stand for frequency because it was a count but you can call it anything you like.

The last of our query we will take on the familiar form saying FROM which database and view and then we will definitely need to keep the GROUP BY statement and include any columns from the SELECT statement that were not aggregate measures. In this case we have column one, two, three in our form and then ORDER BY which column we wish. This is not necessary but I am keeping it in to build a more robust query at this point. Showing you in the context of our example, we have our SELECT statement and you can see in red the section that we added for the COUNT. We have named the new column FREQ and everything else in this query is the same as before and you will notice the GROUP BY will include the three columns from the SELECT statement that are not aggregate and we see the results column come out on the bottom of our screen in SQL Server Management Studio. We can look again at the same one we have been using as an example for ICD9 971.0. We see the description there and then the major diagnostic category and a frequency of one hundred and thirty because we know that one hundred VistA systems send their information in and it is collected in the CDW so that number is expected.

Now we will move on to a new statement called the WHERE statement. The WHERE command allows a user to limit their search to include only a chosen subset of the data. If we only wanted to see the ICD9 code 309.81 which is indicative of post-traumatic stress disorder we could ask for that in a WHERE statement. Now it is important to be careful to know what type of data you are dealing with in the warehouse because even though right now 309.81 does look like a number, you do need to make sure that it is not a string or character before you go forward with writing your WHERE statement. Let us check on it.

In SQL Server Management Studio under Object Explorer we can look under the View Dim.ICD9 and see a list of all the columns in the column folder and find the one of interest to us today. ICD9 code and then in parenthesis it describes the kind of variable that it is, you can see that here in the red circle. We see VARCHAR, I have heard people pronounce that VARCHAR and this stands for a character or string of variable links. In the fifty that you see in the parenthesis is indicating the maximum number of characters that can be entered into that string. Some of the other examples in this particular list of columns that you can see here are just a simple CHAR, which is a string of fixed links and whatever number comes after it would be that link. Then we see INT stands for integer it will hold up to four bytes of information. Then smallint, which is another integer but it, holds only up to two bytes of information and then four dates. There are many other examples out there.

Why are we looking at that? We are looking at the type of data that we have because we are trying to decide which is the best way to write our WHERE statement. We are trying to decide between writing the word LIKE in the WHERE statement or using the equal sign - = - in the WHERE statement. Typically LIKE is used when you have a string variable and equal signs are used when you have numeric variables. We have a string variable and we are going to choose LIKE for today’s example in our WHERE phrase. Now, we will have a rule about how to write our string characters of interest for our ICD9 code or anything else and that will be put single quotes around the characters that you are looking for ‘----‘. With numeric values, you would not have quotes around those values. Looking at our example today, we would have our SELECT and our FROM statement and then in our WHERE statement we would have where our column of interest is LIKE whatever value in these single quotes. Putting that in context we would write our WHERE statement WHERE ICD9 code LIKE 309.81. now I have note down here but not enough time to really get into it about an actual research concerns about varieties of entries and use of wild cards. If you are looking into this further you might want to take note of that, but we will move on for today’s purposes.

Before we move into the Raw example, I wanted to ask you one more poll question to tell me a little bit about yourself. Which of the following best describes your role in the VA? Research Investigator or PI; Data Manager or Analyst; Project Coordinator; Operations; or Other. I believe I will turn it over to Heidi again.

Heidi:	We will give everyone just a few more moments to finish responding there and go through the results. It looks like we are starting to slow down I will give you just a few more seconds before I close it out. We are seeing ten percent Big Research Investigator or PI; forty-five percent saying Data Manager or Analyst; fifteen percent saying Project Coordinator; eight percent saying Operations; and twenty-two percent saying Other. Thank you everyone for participating.

Margaret Gonsoulin: 	Yes thank you very much for participating and it is great to have all of you here. Next I am going to go through really the exact same set of steps so we will more quickly through the second half. For our Raw Domain for a View in the Raw Domain that is holding the same or equivalent information as we just looked at. In this case our example will be to look at Dim.ICD9_Diagnosis_80, notice the difference in the way that it is named. That is the major difference. At this simple level of SQL there really is no significant difference in the way that you are going to work with a Production Domain versus a Raw Domain. I wanted to specifically show you how easy it is to apply the same SQL basic commands in both situations because when I first started to use CDW I found the Raw Domain, people would talk about them in a way that made them seem quite intimidating. I realize now that as long you are just looking at the content, there certainly is not any significant difference to worry about and I will show you why here.

Whenever you are in the Raw Domain, what is different so far is that I am on a different server and you would be on a different server than if you were in the Production Domain too. It may not be this exact same server that you see here on the top left hand side of Object Explorer depending on what sort of access you have, but nevertheless so far it is still SQL Server Management Studio, you still see a list of databases on the left and nothing really looks any different. We will still focus our attention on “new query” and on “database“. When we Expand “databases” on the raw server now we will still look down, we still find CDWWork and expand that particular folder to look for our dimension table.

When we click the “new query” button we will still see a white window open in the middle and we will still scroll down within CDWWork looking for our view of interest Dim.icd9_diagnosis_80. Just noticing this list on the left it looks different because the naming traditions are much closer to their origins in VistA and have not been renamed by the architects of the CDW the way that they have renamed things when they have architected the material found in the Production Domains.

Again, you can still run your automatic query by right mouse clicking on the view of interest and selecting “top one thousand rows.” You will still see your automatic query be written in the white window to the top right and you will still see your automatic results come out on the right bottom hand side of SQL Server Management Studio.

We will repeat the steps for SELECT and FROM. We select the columns of interest from our View of choice and we named them just the same, it is the names look a little bit different now. We also need to remember to end with our semi-colon. Here in the Raw Server I am going to look at the columns that I found in Dim.icd9_diagnosis_80. I am going to select the ones I am going to work with in today’s example. I am going to pick Code_Number, which is the ICD9 code; Diagnosis; a Description and this is a longer description called Description and Major_Diagnostic_Category again. I am going to type my query with the SELECT Statement and a FROM statement, I will expand this for you. You can see now the only difference from last time is I have four columns instead of three, nothing about the logic of SQL has changed. I am going to list all four of those columns in my SELECT statement and I am going to separate each one of them with a comma except I will not put a comma after the last one just like before. Then I am going to say I want that to be FROM CDWWork, that is my database, Dim, that is my schema and the name of my view ICD9_Diagnosis_80 and end with my semi-colon. No difference at all. We see over eleven million results appear from this raw view.

 Again we are going to go forward and put them in order using our ORDER BY statement. Remembering that we must put ORDER BY as the last command in the query. We will just proceed exactly the same as we did before with the Production Data. We will list our four columns this time, from our Raw view of the ICD9 codes and ORDER BY our column of choice. Here you can see our new line of code will be to ORDER BY Code_Number, that is the ICD9 code in the raw view.

Once again if we take a look at these results we will see the repetition in these code numbers and we can get rid of them and collapse the like values, the same way that we did before using GROUP BY. We will collapse our repeated entries, we will remember that ORDER BY still needs to be the last in the command of the query. We will remember that every column that is not aggregate must be included in the GROUP BY clause. In this case our GROUP BY clause is going to have all four of our columns because none of them were sums or minimums or maximums or averages. We will include all four of the columns that we selected in the GROUP BY clause.

Here we are in our SELECT statement we see our four columns listed. Notice that the spacing is different now because I mostly ran out of room on the line. SQL does not care how you space, it will just ignore spaces so you can space your code anyway you like. Select the four columns of interesting on the View of interest and we GROUP BY all four and then in this case we are still ORDERING BY our ICD9 code. There are now about a hundred and one thousand rows of data in this view.

What we are going to do now is to recreate that same COUNT function in the context of this raw data view and create our frequency table. Again we are going to use AS and we are going to assign the name of FREQ but again you could assign any name to this COUNT that you wished. We are also going to remember to use the GROUP BY clause for all non-aggregate measures in our query and it will take on the exact same form as before except now we are counting after column four instead of after column three and we will GROUP BY all four non-aggregate columns form the raw selection that we made. We see our SELECT statement now has in the red text the COUNT added and we are counting the number of ICD9 codes and giving them the resulting column the name FREQ. We now have the equivalent of our frequency table coming out as our output to this query when we EXECUTE it. Remember we have to hit that EXECUTE button. I am focusing our attention with this little red mark here on 309.81, the ICD9 code for 309.81 to show you that when there is a variety of diagnoses or descriptions or major diagnostic categories associated with the code, we will see repetition of that code come out in our Results set.

Let us take a closer look at that exact result set just looking at that smaller subset that we define in a WHERE statement. We are going to select only the ICD9 code, which is represented by the column code_number of 309.81 for post-traumatic stress disorder. Again, we are going to check to see whether it is character or string before we write our WHERE statement because you can never be too careful.

When we take a look at code_number we see VARCHAR again which is a string of variable links, the maximum length of eight thousand. The typical choice is LIKE rather than an equal sign - = - in the WHERE statement. We are putting it all together now, we are going to include WHERE, GROUP BY, ORDER BY along with our SELECT and FROM this time. Notice ORDER BY store last; GROUP BY is still going to have every non-aggregate measure in it; FROM still names our database; SELECT still lists all our columns and adds our COUNT; and WHERE is going to have the single parenthesis around our (309.81). We have now included the actual CDW column names and database names in this query and the red line is our new line of data where a code number like single quote ‘309.81’ and we see our result set is simply the three repeating, 309.81 in there corresponding diagnosis description, MDC and frequency. You can see in some general sense that this is a bit more raw than the production ones that we looked at earlier if you will.

To summarize these basic commands (SELECT, FROM, WHERE, GROUP BY and ORDER BY) form the core of most SQL queries. Now you can get much fancier than this but any time you want to look at data this will be enough for you to have a look at any data that you have access to. I am using this basic structure; you should be able to explore the content anywhere in CDW, production or wall. Just to let you know the goal of the next cyberseminar will be to show you how to combine columns from multiple views because today’s talk was only about looking at one view at a time and a few columns within that view. In other words, the next talk will be about using JOIN in SQL.

If you would like to contact me after this for any specific questions, you will find the information on this side and for today’s session, I will be happy to take a few questions. Thank you.

Heidi:	Thank you very much for the excellent presentation. There are multiple questions that have come in and I have selected a few due to time and will try to answer the remaining offline. The first question actually came in from three different people so that it would be important for you to address. That is a question about metadata and where can we find metadata to explain to describe the database before we start running queries?

Margaret Gonsoulin: 	Yes, the previous talk that I gave, let me bring it back up here seeing the data when you cannot see the data is stored on the internet site for VIReC. I am not sure Heidi is it also out on the cyber site.

Heidi:	It is on the cyeberseminar archive catalogue and anyone who does not have that link the archive notice that is sent out within the next few days that link will get you to that archive so you will be able to find this information out there.

Margaret Gonsoulin: 	Thank you. What I attempted to do was walk a new user through all of the various locations where you can find documentation of the data found in the Corporate Data Warehouse. It is a bit of a diverse set depending on whether you are dealing with production data or raw data; you would really find the most help in different places from each other. With raw data, you would end up spending most of your time with the data architecture repository because the documentation of the source data in VistA is the most comprehensive data. But there is also some good documentation for Raw Domains out on VINCI as well. With Production Data, you have more choices, of course the metadata on CDWs SharePoint sites but also we have documentation at VIReC of various sorts and sometimes going back to the DAR is also really important. I go through all those steps and seeing the data when you cannot see the data.

Heidi:	Alright thank you very much. Another popular question is – can you save the result from a query? Or can they save them or export it or save it elsewhere outside of CDW?

Margaret Gonsoulin: 	I think it depends on if you are dealing with PHI or sensitive information. You can save the results setup a query in a protected space. You just literally go and save it from within SQL Server Management Studio, you can also copy a result set and put it into an excel file but you would not want to take any chances with I think any kind of PHI or any kind of sensitive information. I would definitely I think that kind of a question becomes it depends very much on what exactly you are trying to save in a new location. I think simply here on the top left hand side you can save result sets that you create into files named or you can copy the results that literally by selecting the content and pulling it into an excel file. I would be careful and want to talk to people about privacy issues and maintaining security and all that sort of stuff before thinking about saving it somewhere.

Heidi:	Okay, great. The last question I will bring up for today was also asked by a few different people. When would you want to use Raw versus the Production data? What are some of the pros and cons versus for using both of the Domains?

Margaret Gonsoulin: 	There is different information although the example I gave today showed you two ICD9 tables. There is different information stored in Production Domains than in Raw. For example, right now surgery is a Raw Domain and there is not a time of surgery information housed among the Production data. If you wanted to do a detailed on surgeries and you use CDW you would write as of this moment be forced to use data from the Raw Domain. It is literally different data – there is oncology data; IV drug data in the Raw Domain, not nearly in the kind of detail that you would find there could you get it any kind of information on the Production on those same topics. You might be able to find cancer patients in the Production Domain with some diagnoses, but you would not be able to find as detailed oncology information because that is a Raw Domain at the moment.

I think it is literally, like people are looking for radiology data, that is not a Production Domain it is a Raw Domain and that is how they end up working in the Raw Domain. The pros and cons of them really you cannot see a significant difference from the perspective of today’s talk because all of the simple SQL commands as you can see from today’s talk work exactly the same in Production and Raw. There is no big difference in that regard but once you start to try and join multiple tables together to do a sophisticated research analysis of some sort then you start to see the difference I think between Production Data and Raw Data.

Remembering that the primary reason for creating Production Domains are to architect them in such a way that just means to build them, in such a way that it supports rejoining those tables back together that is made quite a bit easier by the architects of CDW. In the Raw Domains when it is just pulled from VistA, which is also a relational database, the JOINS are not as easy, not as straightforward. It is in the JOINING that you start to see the difference and start to feel the difference.

Heidi:	Thank you very much. Due to time, I am going to have to hold off of the remaining questions and we will try to answer as many as we can offline. I would like to thank Dr. Gonsoulin again for taking the time to develop and present this talk and we encourage you to forward any remaining questions to our presenter or to VIReCs help desk at VIReC@VA.gov. We will be rebroadcasting this session again on Thursday and then we will in the future be presenting another session on CDW relating to CDW A Hands on Guide to Multiple Measures in National Databases and we hope you can join us for that session. Lastly we will be pulling a brief evaluation questionnaire which we encourage you to complete before we close the session. We thank you again for joining us today.

Unidentified Female:	Thank you everyone for joining us, I am going to close the meeting out here in just a moment. When I close that out you will be prompted with the feedback form. Please take a few moments to fill that out, we really do read through all of your comments. Thank you everyone for joining us for today’s session and we hope to see you at a future HSR&D cyberseminar. Thank you.
Page 2 of 11
