

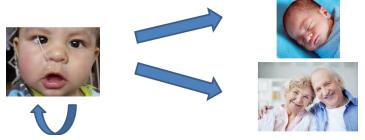
A defense of ecological analysis

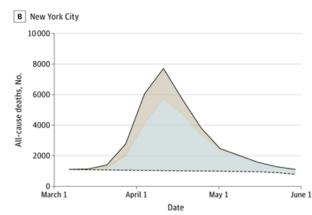
Dan Weinberger, PhD Associate Professor of Epidemiology

What is an ecological analysis?

- Correlation of aggregate data
 - Time trend analyses (how do disease rates change after introduction of a vaccine?)
 - Spatial analyses (association of ZIP code-level incidence of lung cancer with ZIP code level smoking rates)
 Research Evidence

https://o.quizlet.com/IGXf2yAfY1kKvVLkaGKvQg.png

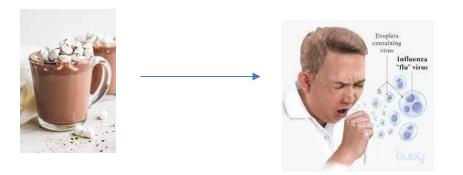

Why is ecological analysis essential?

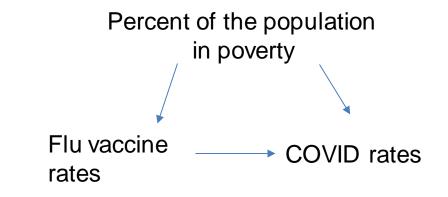

 Some phenomena act at the population level or can only be measured at the population level, so individual-level analysis cannot capture it:

> Vaccines provide direct protection to individual and disrupt transmission, providing an additional community benefit

COVID-19 Pandemic had both individuallevel and societal impact that affected health

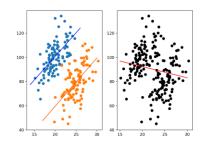
- Infection
- Overwhelmed healthcare
- Other social/environmental determinants

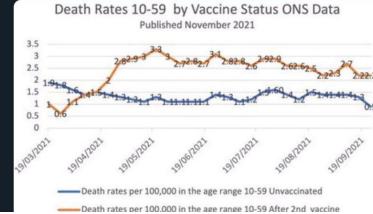

Weinberger et al JAMA Internal Medicine 2020



Why do people hate ecological analyses?

- Often not done in a rigorous way
 - Insufficient adjustment for confounding (or inability to adjust for relevant confounders);
 - Association of hot chocolate sales with influenza rates

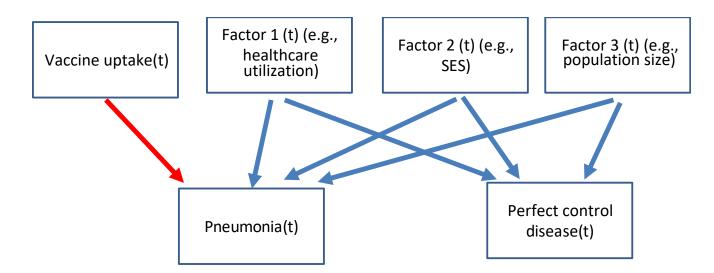


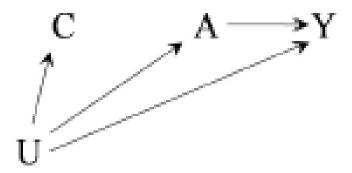


Why do people hate ecological analyses?

- "The ecological fallacy": inferring individual level effects from aggregate associations
 - Provinces with higher % Protestant had higher suicide rates in Europe in 19th century than predominantly Catholic provinces ≠ Protestants more likely to commit suicide
- Simpson's Paradox: relationships at individual level flip when

viewed in aggregate


Age Band	Unvaccinated			Vaccinated			Unvaccinated
	People	Deaths	Deaths per 100k	People	Deaths	Deaths per 100k	/ Vaccinated
10-29	5,000,000	40	0.8	5,000,000	20	0.4	200%
30-59	1,000,000	60	6.0	10,000,000	300	3.0	200%
10-59	6,000,000	100	1.7	15,000,000	320	2.1	78%
This	Howev	age groups the ver, in the com	e unvaccinated de bined age group	Simpson's Parace eath rate is twice the unvaccinated much younger th	the vaccinate d death rate is	lower.	rson.


https://covidactuaries.org/2021/11/22/simpsons-paradox-and-vaccines/; https://towardsdatascience.com/what-is-simpsons-paradox-4a53cd4e9ee2

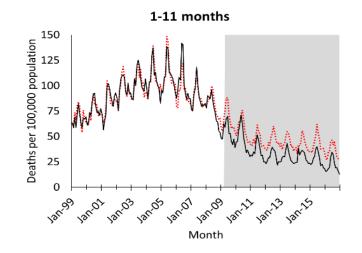
Causation from ecological data

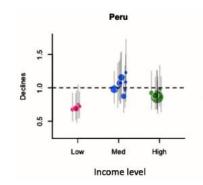
Figure 7.13

Difference-in-difference or synthetic controls approaches

Regression: E(pneumonia cases_t)= b0 + b1*Perfect_control_t

Identify confounders at the same level of measurement


Hernan and Robbins



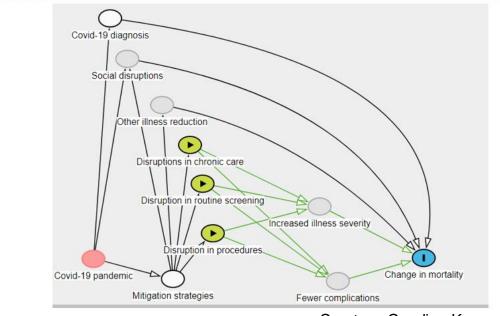
General approaches to improve the rigor of ecological studies

- Control variables
 - E.g., 'synthetic controls' approach: use other causes of death to adjust for trends unrelated to a vaccine
- Negative control outcomes
 - outcomes that shouldn't be affected by the change
 - Evaluate changes that happen just before intervention
- Incorporate time series data from multiple spatial units
- Combine ecological + individual level analyses

Jackie Kleynhans, Cheryl Cohen, PLOS Medicine

The flip side.

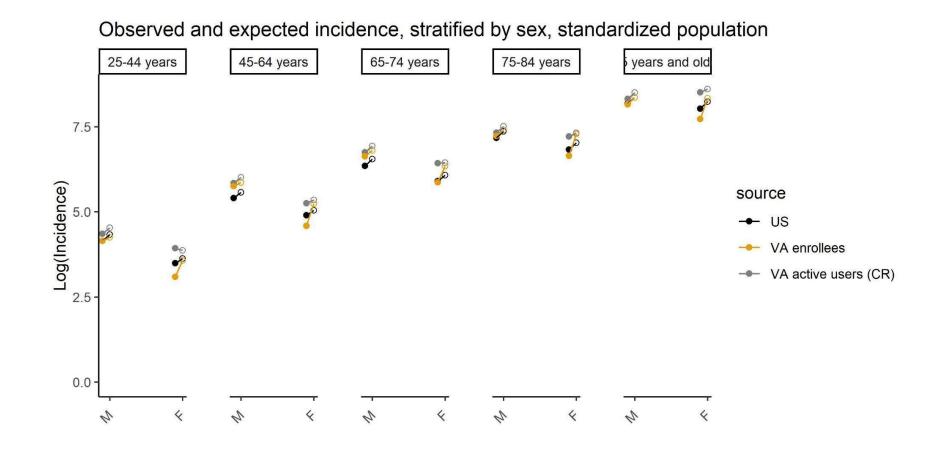
• "individualistic fallacy" in which the major population determinants of health are ignored and undue attention is focused on individual characteristics.



Combining ecologic and individual-level analyses in DCNP

- There are many ecologic variables of relevance for DCNP (measures of hospital capacity and disruption, community transmission rates)
- Also relevant individual-level variables (e.g., loss of control of chronic conditions)

DCNP Conceptual Framework



Courtesy Caroline Korves

Example: Pandemic-related increases were more pronounced for women in the VA (now: why?)

