Econometrics Course: Cost as the Dependent Variable (II)

Paul G. Barnett, PhD
April 26, 2017
Poll

What method(s) have you used to evaluate health care costs?

- None yet
- Rank test (non-parametric method)
- Ordinary Least Squares regression with raw cost
- OLS log transformed cost
- GLM model (gamma regression)
Health care costs difficult to analyze

- Skewed by rare but extremely high cost events
- Zero cost incurred by enrollees who don’t use care
- No negative values
- Variance can vary with independent variable
Limitation of Ordinary Least Squares (OLS)

- OLS with raw cost
 - non-normal dependent variable can generate biased parameters
 - can predict negative costs
- OLS with log transformation of cost
 - Log cost is normally distributed, can use in OLS
 - Predicted cost is affected by re-transformation bias
 - Can’t take log of zero
 - Assumes variance of errors is constant
Topics for today’s course

- What is heteroscedasticity, and what should be done about it?
- What should be done when there are many zero values?
- How to test differences in groups with no assumptions about distribution?
- How to determine which method is best?
Topics for today’s course

■ What is heteroscedasticity and what should be done about it?
■ What should be done when there are many zero values?
■ How to test differences in groups with no assumptions about distribution?
■ How to determine which method is best?
What is heteroscedasticity?

- **Heteroscedasticity**
 - Variance depends on x (or on predicted y)
 - For example, the variation in income increases with age

- **OLS assumes Homoscedasticity**
 - Identical variance $E(\varepsilon_i^2) = \sigma^2$
Homoscedasticity

- Errors have identical variance $E(\varepsilon_i^2) = \sigma^2$
Heteroscedasticity

- Errors depend on x (or on predicted y)
Why worry about heteroscedasticity?

- Predictions based on OLS model can be biased
- Re-transformation assumes homoscedastic errors
- Predicted cost when the error is heteroscedastic can be “appreciably biased”
What should be done about heteroscedasticity?

- Use a Generalized Linear Models (GLM)
- Analyst specifies a link function \(g() \)
- Analyst specifies a variance function
Link function $g()$ in GLM

- $g \left(E(y \mid x) \right) = \alpha + \beta x$

- Link function can be natural log, square root, or other function
 - E.g. $\ln \left(E(y \mid x) \right) = \alpha + \beta x$
 - When link function is natural log, then β represents percent change in y for a unit change in x
GLM vs. OLS

- OLS of log estimate: \(E (\ln (y) | x)) \)
- GLM estimate: \(\ln (E (y | x)) \)
 - Log of expectation of \(y \) is not the same as expectation of \(\ln y \)!
GLM advantages

- Dependent variable can be zero
- No retransformation bias when predicting
 - Smearing estimator is not used
- Does not assume homoscedastic errors
GLM variance function

- GLM does not assume constant variance
- GLM assumes there is function that explains the relationship between the variance and mean
 - \(\text{var} \ (y \mid x) \)
Variance assumptions for GLM cost models

- **Gamma Distribution (most common)**
 - Variance is proportional to the square of the mean

- **Poisson Distribution**
 - Variance is proportional to the mean
Estimation methods

- How to specify log link and gamma distribution with dependent variable COST and independent variables X1, X2, X3
GLM with log link and gamma distribution in Stata

GLM COST X1 X2 X3, FAM(GAM) LINK(LOG)
GLM with log link and gamma distribution in SAS

- Basic syntax (*drops* zero cost observations)

 PROC GENMOD MODEL COST=X1 X2 X3 / DIST=GAMMA LINK=LOG;

- Refined syntax (*keeps* zero cost observations)

 PROC GENMOD;
 A = _MEAN_;
 B = _RESP_;
 D = B/A + LOG(A)
 VARIANCE VAR = A**2
 DEVIANCE DEV = D;
 MODEL COST=X1 X2 X3 / LINK=LOG;
Choice between GLM and OLS of log cost

- **GLM advantages:**
 - Handles heteroscedasticity
 - Predicted cost is not subject to retransformation error

- **OLS of log transform advantages**
 - OLS is more efficient (standard errors are smaller than with GLM)
Which GLM link function?

- **Box-Cox regression**
 - Stata command:
 \[
 \text{boxcox cost \{indep. vars\} if y > 0}
 \]

\[
\frac{\text{COST}^\theta - 1}{\theta} = \alpha + \beta x + \varepsilon
\]
Which link function?

- **Box-Cox parameter**

<table>
<thead>
<tr>
<th>Link function</th>
<th>Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse (1/cost)</td>
<td>-1</td>
</tr>
<tr>
<td>Log(cost)</td>
<td>0</td>
</tr>
<tr>
<td>Square root (cost)</td>
<td>.5</td>
</tr>
<tr>
<td>Cost</td>
<td>1</td>
</tr>
<tr>
<td>Cost Squared</td>
<td>2</td>
</tr>
</tbody>
</table>
Which variance structure with GLM?

Modified Park test

- GLM regression gamma family log link & find residual
- Square the residuals
- Second regression by OLS
 - Dependent variable squared residuals
 - Independent variable predicted y

\[
(Y_i - \hat{Y}_i)^2 = \gamma_0 + \gamma_1 \hat{Y}_i + \nu_i
\]
Which variance structure with GLM?

Parameter from GLM family test (modified Park test)

\[(Y_i - \hat{Y}_i)^2 = \gamma_0 + \gamma_1 \hat{Y}_i + \nu_i\]

<table>
<thead>
<tr>
<th>γ_1</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gaussian (Normal)</td>
</tr>
<tr>
<td>1</td>
<td>Poisson</td>
</tr>
<tr>
<td>2</td>
<td>Gamma</td>
</tr>
<tr>
<td>3</td>
<td>Wald (Inverse Normal)</td>
</tr>
</tbody>
</table>
Other models for skewed data

- Generalized gamma models
 - Estimate link function, distribution, and parameters in single model
 - STATA ado file “pglm”
 - See: Basu & Rathouz (2005)
Questions?
Topics for today’s course

- What is heteroscedasticity, and what should be done about it? (*GLM models*)
- What should be done when there are many zero values?
- How to test differences in groups with no assumptions about distribution?
- How to determine which method is best?
What should be done when there are many zero values?

- Example of participants enrolled in a health plan who have no utilization
Annual per person VHA costs FY10 among those who used VHA in FY09
The two-part model

- Part 1: Dependent variable is indicator any cost is incurred
 - 1 if cost is incurred ($Y > 0$)
 - 0 if no cost is incurred ($Y=0$)
- Part 2: Regression of how much cost, among those who incurred any cost
The two-part model

- Expected value of Y conditional on X

$$E(Y \mid X) = P(Y > 0 \mid X)E(Y \mid Y > 0, X)$$

Is the product of:

- Part 1.
 The probability that Y is greater than zero, conditional on X

- Part 2.
 Expected value of Y, conditional on Y being greater than zero, conditional on X
Predicted cost in two-part model

- Predicted value of Y

$$E(Y \mid X) = P(Y > 0) \mid X)E(Y \mid Y > 0, X)$$

Is the product of:

- Part 1.
 Probability of any cost being incurred

- Part 2.
 Predicted cost conditional on incurring any cost
Question for class

\[P(Y > 0) \mid X \]

- Part one estimates probability \(Y > 0 \)
 - \(Y > 0 \) is dichotomous indicator
 - 1 if cost is incurred (\(Y > 0 \))
 - 0 if no cost is incurred (\(Y=0 \))
Poll
Which regression method(s) are used for a dichotomous (zero/one) dependent variable?

– Ordinary Least Squares
– Generalized Linear Model
– Logistic Regression
– Probit
– Cox regression
First part of model
Regression with dichotomous variable

- Logistic regression or probit
- Logistic regression uses maximum likelihood function to estimate log odds ratio:

\[
\log \frac{P_i}{1 - P_i} = \alpha + \beta_1 X
\]
Logistic regression syntax in SAS

```
Proc Logistic;
Model HASCOST = X1 X2 X3  / Descending;
Output out={dataset} prob={variable name};
```

- HASCOST an indicator variable
- Output statement saves the predicted probability that the dependent variable equals one (cost was incurred)
- Descending option in model statement is required, otherwise SAS estimates the probability that the dependent variable equals zero
Logistic regression syntax in Stata

Logit HASCOST X1 X2 X3
Predict {variable name}, pr

- Predict statement generates the predicted probability that the dependent variable equals one (cost was incurred)
Second part of model
Conditional quantity

- Regression involves only observations with non-zero cost (conditional cost regression)
- Use GLM or OLS with log cost
Two-part models

- Separate parameters for participation and conditional quantity
 - How independent variables predict
 - participation in care
 - quantity of cost conditional on participation
 - each parameter may have its policy relevance
Stata TPM command

- Fits two part regressions
 - First part: binary choice (Prob depvar > 0)
 - Second part: distribution of depvar conditional on depvar > 0

- User developed ADO file
 - must be installed from web

- Federico Belotti & Partha Deb (2012)
Stata TPM command

- **First part options**
 - Logit or Probit

- **Second part options**
 - OLS of raw value, OLS of log, or GLM

- **Example syntax**

 TPM COST X1 X2 X3, f(logit) s(glm, fam(gamma) link(log))
Stata TPM command

Post-estimation commands

– Predict values of depvar
– Allows out of sample predictions
– Corrects for retransformation bias in OLS models
Alternatives to two-part model

- OLS with untransformed cost
- OLS with log cost, using small positive values in place of zero
- Certain GLM models
Topics for today’s course

- What is heteroscedasticity, and what should be done about it? *(GLM models)*
- What should be done when there are many zero values? *(Two-part models)*
- How to test differences in groups with no assumptions about distribution?
- How to determine which method is best?
Non-parametric statistical tests

- Make no assumptions about distribution, variance
- Wilcoxon rank-sum test
- Assigns rank to every observation
- Compares ranks of groups
- Calculates the probability that the rank order occurred by chance alone
Extension to more than two groups

- Group variable with more than two mutually exclusive values
- Kruskall Wallis test
 - is there any difference between any pairs of the mutually exclusive groups?
- If KW is significant, then a series of Wilcoxon tests allows comparison of pairs of groups
Limits of non-parametric test

- It is too conservative
 - Compares ranks, not means
 - Ignores influence of outliers
 - E.g. all other ranks being equal, Wilcoxon will give same result regardless of whether
 - Top ranked observation is $1 million more costly than second observation, or
 - Top ranked observation just $1 more costly

- Doesn’t allow for additional explanatory variables
Topics for today’s course

- What is heteroscedasticity, and what should be done about it? (GLM models)
- What should be done when there are many zero values? (Two-part models)
- How to test differences in groups with no assumptions about distribution? (Non-parametric statistical tests)
- How to determine which method is best?
Which method is best?

- Find predictive accuracy of models
- Estimate regressions with half the data, test their predictive accuracy on the other half of the data
- Find
 - Mean Absolute Error (MAE)
 - Root Mean Square Error (RMSE)
Mean Absolute Error

- For each observation
 - find difference between observed and predicted cost
 - take absolute value
 - find the mean
- Model with smallest value is best

\[
\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|
\]
Root Mean Square Error

- Square the differences between predicted and observed, find their mean, find its square root
- Best model has smallest value

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}
\]
Evaluations of residuals

- Mean residual (predicted less observed)
 or
- Mean predicted ratio (ratio of predicted to observed)
 - calculate separately for each decile of observed Y
 - A good model should have equal residuals (or equal mean ratio) for all deciles
Formal tests of residuals

- Variant of Hosmer-Lemeshow Test
 - F test of whether residuals in raw scale in each decile are significantly different

- Pregibon’s Link Test
 - Tests if linearity assumption was violated
 - See Manning, Basu, & Mullahy, 2005
Questions?
Review of presentation

- Cost is a difficult dependent variable
 - Skewed to the right by high outliers
 - May have many observations with zero values
 - Cost is not-negative
When cost is skewed

- OLS of raw cost is prone to bias
 - Especially in small samples with influential outliers
 - “A single case can have tremendous influence”
When cost is skewed (cont.)

- Log transformed cost
 - Log cost is more normally distributed than raw cost
 - Log cost can be estimated with OLS
When cost is skewed (cont.)

- To find predicted cost, must correct for retransformation bias
 - Smearing estimator assumes errors are homoscedastic
 - Biased if errors are heteroscedastic
When cost is skewed and errors are heteroscedastic

- **GLM with log link and gamma variance**
 - Considers heteroscedastic errors
 - Not subject to retransformation bias
 - May not be very efficient
 - Alternative GLM specification
 - Poisson instead of gamma variance function
 - Square root instead of log link function
When cost has many zero values

- Two part model
 - Logit or probit is the first part
 - Conditional cost regression is the second part
Comparison without distributional assumptions

- Non-parametric tests can be useful
- May be too conservative
- Don’t allow co-variates
Evaluating models

- Mean Absolute Error
- Root Mean Square Error
- Other evaluations and tests of residuals
Key sources on GLM

Key sources on two-part models

References to worked examples

References to worked examples (cont).

Link to HERC Cyberseminar

HSR&D study of worked example

Performance of Statistical Models to Predict Mental Health and Substance Abuse Cost
Maria Montez-Rath, M.S. 11/8/2006

The audio:
- http://vaww.hsrdr.research.va.gov/for_researchers/cyber_seminars/HERC110806.asx

The Power point slides:
Book chapters