Achieving Clinical Impact Through Interdisciplinary Teamwork

Barbara W. Trautner, MD, PhD
Aanand D. Naik, MD

Center for Innovations in Quality, Effectiveness, and Safety
Michael E. DeBakey Veterans Affairs Medical Center
Baylor College of Medicine

March 9, 2017
Kicking CAUTI
The No Knee-Jerk Antibiotics Campaign

HSR&D IIR 09-104
Multiple guidelines endorse neither testing for nor treating ASB
What are the negative effects of overtreatment of ASB?

• Overtreatment hurts all of us
 – Costs
 – Spread of resistant organisms

• Overtreatment hurts individuals
 – From antibiotics
 • Gastrointestinal side effects
 • Risk of Clostridium difficile infection
 • Collateral damage
 – Induce resistant flora
 – Destroy healthy microbiome
 – Diagnostic delays
Overview

• Story of a team and a project
• Results and the science behind them
• Lessons learned
• Next steps
Overview

• Story of a team and a project
• Results and the science behind them
• Lessons learned
• Next steps
Kicking CAUTI: The backstory

ASB is not CAUTI!
Walking and thinking
Houston Center for Innovations in Quality, Effectiveness, and Safety (IQuESt)
Composition of the Team

Barbara Trautner, MD, PhD
Infectious Diseases

Nancy Petersen, PhD
Senior Biostatistician

Sylvia Hysong, PhD
Industrial and Organizational Psychologist

Larissa Grigoryan, MD, PhD
Epidemiologist and Analyst

P. Adam Kelly, PhD
Psychometrician

Aanand Naik, MD
Geriatrician and Quality Improvement Scientist
What’s missing from our team?

• Omitted a key stakeholder from the planning team
• Related to physician hubris

Nurses!
Thinking and walking
Overview

• Story of a project and a team
• Results and the science behind them
 – Survey: cognitive biases
 – Algorithm: behavioral economics
 – Intervention: audit and feedback
 – Implementation: evidence integration triangle
• Lessons learned
• Next steps
Kicking CAUTI Campaign: Purpose

- **Objective:** for catheter-associated ASB
 - Reduce urine culture ordering
 - Reduce antimicrobial prescribing
- **Design:** pre/post intervention with a control
- **Comparison:** standard quality improvement
The Kicking CAUTI Campaign: Setting and Participants

- Two VA medical centers
 - Intervention: Houston
 - Comparison: San Antonio
- Acute and long term care wards (5 each)
- Focused on providers who order urine cultures and antibiotics
- Outcomes
 - Urine cultures ordered (primary)
 - Treatment of ASB with antibiotics (secondary)
The Kicking CAUTI Intervention: Key Components

1. Surveys: explore the knowledge gap
 – Identify cognitive biases

2. Algorithm: make the guidelines “actionable”
 – Applicable to specific patients
 – Provide step-by-step instructions

3. Audit and feedback: interactive educational component
Conceptual Model for Treatment of ASB and Patient Health Outcomes

- **Patient with catheter and ABU**
 - Followed
 - Not Followed

- **Urine Culture**
 - Followed
 - Not Followed

- **Do Nothing**
 - Followed
 - Not Followed

- **Prescribe Antibiotics**
 - Followed
 - Not Followed

Knowledge
- Awareness (access to guidelines)
- Familiarity (recall of content)

Attitudes
- Acceptance (positive affect + adaptability)
- Outcome Expectancy (positive affect + subjective probability from experience)

Exploring the Gap: ASB Survey Design

• Three parts
 – Knowledge questions
 – Constructs
 – Self-reported familiarity with ASB guidelines

• Questions probed suspected cognitive biases

• Piloted with infectious diseases fellows

• Administered prior to start of intervention
Baseline ASB Knowledge Score Varied with Years of Training

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Number (%)</th>
<th>Knowledge score</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (SD)</td>
<td></td>
</tr>
<tr>
<td>All (n=169)</td>
<td></td>
<td>57.5 (18.8)</td>
<td>0.002</td>
</tr>
<tr>
<td>Staff</td>
<td>15 (9)</td>
<td>71.4 (22.2)</td>
<td></td>
</tr>
<tr>
<td>Residents</td>
<td>154 (91)</td>
<td>56.1 (18.0)</td>
<td></td>
</tr>
<tr>
<td>Level of Training</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>PGY-1</td>
<td>76 (45)</td>
<td>50.1 (17.9)</td>
<td></td>
</tr>
<tr>
<td>PGY-2</td>
<td>47 (28)</td>
<td>61.0 (16.1)</td>
<td></td>
</tr>
<tr>
<td>PGY-3-4</td>
<td>29 (18)</td>
<td>63.5 (16.5)</td>
<td></td>
</tr>
<tr>
<td>PGY-5+</td>
<td>16 (9)</td>
<td>71.3 (21.5)</td>
<td></td>
</tr>
</tbody>
</table>

Comparisons by AVOVA

Trautner et al, Am J Infect Control, 2014
58% reported minimal or less recall of ASB guidelines content

Guidelines familiarity differed significantly by year of training (p=0.02)
Organism type drives inappropriate antibiotic use for ASB

![Bar chart showing the percentage of providers who would treat different organisms.]

Staff providers were less likely than residents to treat enterococcus and ESBL E. coli (P<0.05, Fisher)
Solution: Diagnostic Algorithm

- Addresses biases
- Substitutes guidelines-compliant cues
- Makes the guidelines “actionable”
 - Applicable to specific patients
 - Provide step-by-step instructions
Guidelines Should be Actionable
Applying Behavioral Economics

- Clinical practice guidelines difficult to implement
 - Most follow principles of optimization
 - Find optimal strategy given all available resources
 - Often includes algorithms for all available options and contingencies (usual and atypical cases)
 - Comprehensive and cumbersome (CAUTI - 51 pages)
 - Not ideal for the fast, frugal, and stressful setting of clinical decision making
Bounded Rationality

Human rational behavior is shaped by a scissors whose two blades are the structure of task environments and the computational capabilities of the actor.

-Herbert Simon

Satisficing Algorithms

• Decision making under uncertainty
 – Find options that satisfy and suffice to achieve solution adequate for the situation

• Fast and frugal heuristics
 – Best for decisions limited by time, knowledge, computational ability
 – Rely on simple search, stop and decision rules
Fast and Frugal Algorithms

• Take-the-best algorithms based on matching cues to a criterion standard

• Follow three simple rules:
 1. Search Rule: Search through cues in order of their validity
 2. Stop Rule: Stop after finding first cue that discriminates between alternatives
 3. Decision Rule: Alternative with positive cue value has highest criterion value
Catheter-Associated UTI (CAUTI) vs Asymptomatic Bacteriuria

(Patient with urinary catheter or catheter use within 48 hours)

Start

Does the patient have any of CAUTI symptoms?

NO

Do not send urine culture

YES

Does a non-UTI diagnosis likely account for the symptoms?

NO

Send urine culture

Consider empiric antibiotics for CAUTI

Review urine culture results

(Continue on other side)

YES

Work-up other cause

Fever
Acute Hematuria
Delirium
Rigors
Flank Pain
Pelvic Discomfort
Urgency
Frequency
Dysuria
Suprapubic Pain

PYURIA, cloudy urine, foul smell or positive urinalysis are not symptoms of UTI and are not indications for antibiotics

Kicking CAUTI
The No Knee-Jerk Antibiotics Campaign

2005 IDSA GUIDELINES FOR ABU
2009 IDSA GUIDELINES FOR CAUTI
CAUTI Algorithm Development

• Turned guidelines into flowchart
• Flowchart reviewed by guidelines authors
 – Content validity
• Cognitive interviews with end-users
 – Face validity
• Revised version back to the authors
• Tested inter-rater reliability on case classification
 – Poor without algorithm: Kappa 0.35
 – Substantial agreement with algorithm: Kappa 0.76

Trautner et al, BMC Med Inform Decis Mak 2013
Using the Algorithm for Audit and Feedback

• Characteristics that maximize impact of A&F
 – Contains the right answer
 – Graphical or written format
 – Neutral tone
 • “Guidelines non-compliant” rather than “wrong”

Hysong et al, BMJ Quality and Safety 2016
Decreasing CAUTI through correct diagnosis: Personalized case report

Kicking CAUTI
The No Knee-Jerk Antibiotics Campaign

Dr. Barbara Trautner, Infectious Diseases
Catheter-Associated UTI (CAUTI) vs Asymptomatic Bacteriuria

(Patient with urinary catheter or catheter use within 48 hours)

Start

1. Does the patient have any of CAUTI symptoms?
 - Fever
 - Acute Hematuria
 - Delirium
 - Rigors
 - Flank Pain
 - Pelvic Discomfort
 - Urgency
 - Frequency
 - Dysuria
 - Suprapubic Pain

 NO
 - Do not send urine culture

 YES

2. Does a non-UTI diagnosis likely account for the symptoms?

 NO
 - 2a. Send urine culture
 - 2b. Consider empiric antibiotics for CAUTI
 - 2c. Review urine culture results
 - Continue on other side

 YES
 - Work-up other cause
1. According to the guidelines, the first thing to do is to check whether the patient had any of the following symptoms: fever, acute hematuria, delirium, rigors, flank pain, pelvic discomfort, urgency, frequency, dysuria, or suprapubic pain.

Correct: The decision to NOT send a urine culture was correct. Per chart review, the patient did not have any of the symptoms of CAUTI. Leukocytosis is not a specific symptom of CAUTI.

Feedback: Screening for asymptomatic bacteriuria (ABU) is not recommended. Unless a patient has symptoms consistent with CAUTI, a urine culture should not be sent in the first place. If the patient does have symptoms that could indicate CAUTI, a urine culture should be sent and then you should next consider whether another diagnosis could account for the symptoms.

CAUTI-related treatment of this patient stops here.
1. According to the guidelines, the first thing to do is to check whether the patient had any of the following symptoms: fever, acute hematuria, delirium, rigors, flank pain, pelvic discomfort, urgency, frequency, dysuria, or suprapubic pain.

Incorrect: You decided YES, the patient had symptoms. However, per chart review, the patient did not have any of the symptoms of CAUTI by IDSA guidelines. Leukocytosis is not a specific symptom of CAUTI.

Next Step: If this patient had shown symptoms that could indicate CAUTI, then you would next consider whether another diagnosis could account for the symptoms.
2. Did a non-UTI diagnosis likely account for the symptoms?
 Yes: Although you treated the patient empirically for CAUTI without further workup, it seems likely that a non-UTI diagnosis accounted for the symptoms. This is because the patient also was receiving prednisone, which could account for the leukocytosis.

 Were inappropriate antibiotics given?
 Yes: The patient did not have symptoms of CAUTI, or if another diagnosis likely accounted for the symptoms, antibiotics were not indicated. However, the patient received Ciprofloxacin on April 19th. Per IDSA guidelines, this treatment was unnecessary.

 CAUTI-related treatment of this patient stops here.
Thank you again for your time! The Kicking CAUTI Campaign team hopes this feedback will be helpful to you when you encounter possible CAUTI cases in the future.

Here is a link to the IDSA guidelines: http://www.idssociety.org/Organ_System/
Stethoscope Penlights

Kicking CAUTI
The No Knee-Jerk Antibiotics Campaign

Made in China

Kicking CAUTI
The No Knee-Jerk Antibiotics Campaign
Results

- 289,754 total bed-days
- 11,188 urine cultures from catheterized patients
 - 4,076 (36.4%) positive
- Urine cultures ordered decreased by 71% (P<0.001)
- ASB over treatment
 - 1.6/1000 patient-days pre-intervention
 - 0.4/1000 patient-days post intervention
 - 75% decrease (P<0.001)
 - Biggest impact in long term care
- UTI under treatment did not change
Effectiveness of an Antimicrobial Stewardship Approach for Urinary Catheter–Associated Asymptomatic Bacteriuria

JAMA Intern Med. 2015;175(7):1120-1127

Monthly Rates of Urine Culture Orders per 1000 Bed-days
Intervention vs comparison sites across the 3 study periods (P < .001)
Evidence Integration Triangle Applied to Kicking CAUTI

Evidence-based Practices or Policies
Infectious Diseases Society of America (IDSA)
Guidelines for Managing:
- Catheter-associated bacteriuria (CAUTI)
- Asymptomatic bacteriuria (ABU)

Participatory Implementation Process
Intervention Menu:
- Audit feedback (patient and ward-level)
- Automated reminders
- Educational outreach
- Automated defaults

Stakeholders:
- Patients and their clinicians
- Nurses and nurse leadership
- Hospital infection control and specialists
- Informatics support

Practical Measures of Progress/Feedback
Algorithm to Guide Diagnostic Norms:
Cue 1: Does patient have symptoms of CAUTI? (from a list of evidence-based symptoms)
Cue 2: Does a non-urinary condition account for symptoms?
- Decision rule for each cue
Survey found improvements in knowledge, cognitive-behavioral constructs and guidelines familiarity

<table>
<thead>
<tr>
<th></th>
<th>Pre-intervention n=169</th>
<th>Post-intervention n=157</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge score, mean (SD)</td>
<td>57.5 (18.8)</td>
<td>69.9 (20.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Self-efficacy, mean (SD)</td>
<td>3.9 (0.7)</td>
<td>4.1 (0.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>Behavior, mean (SD)</td>
<td>2.5 (0.7)</td>
<td>3.4 (0.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Social norms, mean (SD)</td>
<td>2.4 (0.8)</td>
<td>3.6 (0.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Risk perceptions, mean (SD)</td>
<td>3.0 (0.6)</td>
<td>3.3 (0.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Have heard of the IDSA guidelines</td>
<td>151/169 (89.3%)</td>
<td>150/152 (98.7%)</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Respondents post-intervention were less likely to treat ASB

Grigoryan, American Journal of Infection Control, 2016
Diagnostic Accuracy Improved Post-Intervention

<table>
<thead>
<tr>
<th></th>
<th>Intervention Site</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Intervention</td>
<td>Post-Intervention</td>
<td>Pre-Intervention</td>
<td>Post-Intervention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Cultures</td>
<td>N=129</td>
<td>N=56</td>
<td>N=67</td>
<td>N=61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sxs</td>
<td>40</td>
<td>26</td>
<td>26</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Sxs</td>
<td>32</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prescribed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>25</td>
<td>30</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not prescribed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>85</td>
<td>429</td>
<td>462</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.28</td>
<td>0.08</td>
<td>0.13</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity (95% CI) 83% (.73-.94) 93% (.83-1.00) 90% (.79-1.00) 97% (.92-1.00)
Specificity (95% CI) 60% (.50-.71) 89% (.78-1.00) 79% (.66-.92) 79% (.63-.95)
Diagnostic Accuracy Improved Post-Intervention

<table>
<thead>
<tr>
<th>Intervention Site</th>
<th>Comparison Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Intervention</td>
<td>Post-Intervention</td>
</tr>
<tr>
<td>Positive Cultures</td>
<td>Positive Cultures</td>
</tr>
<tr>
<td>N=129</td>
<td>N=56</td>
</tr>
<tr>
<td>Sxs</td>
<td>No Sxs</td>
</tr>
<tr>
<td>Antimicrobials prescribed</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>Antimicrobials not prescribed</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>49</td>
</tr>
<tr>
<td>Sensitivity (95% CI)</td>
<td></td>
</tr>
<tr>
<td>83% (.73-.94)</td>
<td>93% (.83-1.00)</td>
</tr>
<tr>
<td>Specificity (95% CI)</td>
<td></td>
</tr>
<tr>
<td>60% (.50-.71)</td>
<td>89% (.78-1.00)</td>
</tr>
<tr>
<td>Positive Likelihood Ratio</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>8.5</td>
</tr>
<tr>
<td>Negative Likelihood Ratio</td>
<td></td>
</tr>
<tr>
<td>0.28</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Diagnostic Accuracy Improved Post-Intervention

<table>
<thead>
<tr>
<th></th>
<th>Intervention Site</th>
<th>Comparison Site</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Intervention</td>
<td>Post-Intervention</td>
<td>Pre-Intervention</td>
<td>Post-Intervention</td>
<td>Pre-Intervention</td>
<td>Post-Intervention</td>
<td>Pre-Intervention</td>
<td>Post-Intervention</td>
</tr>
<tr>
<td></td>
<td>Positive Cultures</td>
</tr>
<tr>
<td></td>
<td>N=129</td>
<td>N=56</td>
<td>N=67</td>
<td>N=61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sxs</td>
<td>No Sxs</td>
<td>Sxs</td>
<td>No Sxs</td>
<td>Sxs</td>
<td>No Sxs</td>
<td>Sxs</td>
<td>No Sxs</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prescribed</td>
<td>40</td>
<td>32</td>
<td>26</td>
<td>3</td>
<td>26</td>
<td>8</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not prescribed</td>
<td>8</td>
<td>49</td>
<td>2</td>
<td>25</td>
<td>3</td>
<td>30</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>83% (.73-.94)</td>
<td>93% (.83-1.00)</td>
<td>90% (.79-1.00)</td>
<td>97% (.92-1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>60% (.50-.71)</td>
<td>89% (.78-1.00)</td>
<td>79% (.66-.92)</td>
<td>79% (.63-.95)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>2.1</td>
<td>8.5</td>
<td>4.29</td>
<td>4.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>0.28</td>
<td>0.08</td>
<td>0.13</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Accuracy Improved Post-Intervention

<table>
<thead>
<tr>
<th></th>
<th>Intervention Site</th>
<th></th>
<th>Comparison Site</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Intervention</td>
<td>Post-Intervention</td>
<td>Pre-Intervention</td>
<td>Post-Intervention</td>
</tr>
<tr>
<td>Positive Cultures</td>
<td>N=129</td>
<td>N=56</td>
<td>N=67</td>
<td>N=61</td>
</tr>
<tr>
<td>Sxs</td>
<td>40</td>
<td>26</td>
<td>26</td>
<td>36</td>
</tr>
<tr>
<td>No Sxs</td>
<td>32</td>
<td>3</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prescribed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity (95% CI)</td>
<td>83% (.73-.94)</td>
<td>93% (.83-1.00)</td>
<td>90% (.79-1.00)</td>
<td>97% (.92-1.00)</td>
</tr>
<tr>
<td>Specificity (95% CI)</td>
<td>60% (.50-.71)</td>
<td>89% (.78-1.00)</td>
<td>79% (.66-.92)</td>
<td>79% (.63-.95)</td>
</tr>
<tr>
<td>Positive Likelihood Ratio</td>
<td>2.1</td>
<td>8.5</td>
<td>4.29</td>
<td>4.62</td>
</tr>
<tr>
<td>Negative Likelihood Ratio</td>
<td>0.28</td>
<td>0.08</td>
<td>0.13</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Overview

• Story of a project and a team
• Results and the science behind them
• Lessons learned
• Next steps
Lessons Learned

• Three years of data collection requires 4+ years of work
 – On ramp and hiring, approvals, data access
 – Data cleaning and analyses

• Include key stakeholders in intervention
 – Nurses, clinical nurse assistants

• Multidisciplinary team was key to success
 – Both for study design and analyses

• Timing and timeliness are important
American Geriatrics Society
Ten Things Physicians and Patients Should Question

Released February 21, 2013 (1-5) and February 27, 2014 (6-10)

1. Don’t recommend percutaneous feeding tubes in patients with advanced dementia; instead offer oral assisted feeding.

Careful hand-feeding for patients with severe dementia is at least as good as tube-feeding for the outcomes of death, aspiration pneumonia, functional status and patient comfort. Food is the preferred nutrient. Tube-feeding is associated with agitation, increased use of physical and chemical restraints and worsening pressure ulcers.

5. Don’t use antimicrobials to treat bacteriuria in older adults unless specific urinary tract symptoms are present.

Cohort studies have found no adverse outcomes for older men or women associated with asymptomatic bacteriuria. Antimicrobial treatment studies for asymptomatic bacteriuria in older adults demonstrate no benefits and show increased adverse antimicrobial effects. Consensus criteria has been developed to characterize the specific clinical symptoms that, when associated with bacteriuria, define urinary tract infection. Screening for and treatment of asymptomatic bacteriuria is recommended before urologic procedures for which mucosal bleeding is anticipated.
Antibiotic Stewardship is:

• And yet everybody thinks it is cool
 – The White House
 – The Centers for Disease Control and Prevention
 – The World Health Organization
Overview

• Story of a project and a team
• Results and the science behind them
• Lessons learned
• Next steps
Dissemination: “Less is More” IIR

<table>
<thead>
<tr>
<th>Activity</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>Q11</th>
<th>Q12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project start up</td>
<td></td>
</tr>
<tr>
<td>Operational partnership calls</td>
<td></td>
</tr>
<tr>
<td>Site leadership calls</td>
<td></td>
</tr>
<tr>
<td>Interim data analysis</td>
<td></td>
</tr>
<tr>
<td>Project Quarters</td>
<td></td>
</tr>
</tbody>
</table>

Intervention Sites

- **Ann Arbor**: On-ramp, Intervention, Sustainability
- **Greater Los Angeles**: On-ramp, Intervention, Sustainability
- **Miami**: On-ramp, Intervention, Sustainability
- **Minneapolis**: On-ramp, Intervention, Sustainability

Comparison Sites

- **Madison**: Observation
- **San Francisco**: Observation
- **Tampa**: Observation
- **Milwaukee**: Observation
- **Final data cleaning and analysis**: Observation
- **Dissemination activities**: Observation

HSR&D IIR 16-025
Summary

• Kicking CAUTI had a positive impact on clinical care
 – Decreased screening for and treatment of ASB
• Demonstrates the success of a theory-driven intervention in changing practice
 – Behavioral economics
 – Audit and feedback
 – Evidence integration triangle
• Lessons learned will be applied to “Less is More”
References

• Infectious Diseases Society of America Guidelines on CAUTI and ASB

• US Preventive Services Task Force

• Link to project publications
Acknowledgements

- IQuESt
 - Allison Burns
 - Amy Amspoker
 - Ashley Gendrett
 - Larissa Grigoryan
 - Sylvia Hysong
 - Harrison Kell
 - P. Adam Kelly
 - Aanand Naik
 - Nancy Petersen

- Baylor College of Medicine
 - Deborah Horwitz
 - Kershena Liao

- STVHCS
 - Jose Cadena-Zulaga
 - Cynthia Kelly
 - Jan Patterson

Funding: VA HSR&D, VA QUERI
Questions/comments?

- Barbara Trautner
 trautner@bcm.edu
 @bwtrautner

- Aanand Naik
 anaik@bcm.edu
 @empoweringpts