Vestibular Related Traumatic-Brain Injury: Imaging Overview

Anthony T. Cacace
Professor

Department of Communication Sciences & Disorders
Wayne State University
Detroit, MI
Audience Demographics

- Students
- Audiologists
- Physical therapists
- Psychologists
- Physicians
- Other allied health care providers
- Basic scientists
Acknowledgments

This material is based on work supported in part by the Department of Veteran’s Affairs, the Veteran’s Health Administration, and the Office of Research and Development, Rehabilitation Research and Development.
Acknowledgments
Wayne State University Investigators

Anthony T. Cacace, Ph.D.
E. Mark Haacke, Ph.D.
Yongquan Ye, Ph.D.
Ramlilac Gattu, M.S.

Yang Xuan, B.S.
Senior MRI Technologist

Randall Benson, M.D.
Attending Neurologist
Center for Neurological Studies, Novi, MI
Disclaimer

The views expressed in this presentation are those of the authors and do not necessarily reflect the position or policy of the Department of Veteran’s Affairs or the United States Government
Evaluating the Vestibular Consequences of Blast Injuries and mTBI

• VA merit based research project performed at the Vestibular/Balance Laboratory, VA Medical Center, Mountain Home, Tennessee

• Principal Investigator: Faith Akin, Ph.D.
 – Co-Is: Drs. Murnane, Hall, Cacace, Haacke

• Includes:
 – Comprehensive vestibular studies
 – Interviews and questionnaires
 – Neuroimaging
 • Collaboration with Wayne State University investigators
Blast-Induced Injuries

• Becoming increasingly problematic for health related agencies like the VA, because
 – Injuries are not well defined
 – Long-term effects are unknown
 – Wide gaps in knowledge exist concerning:
 • Underlying processes
 • Site(s)-of-lesion, and
 • Mechanisms involved in the auditory/vestibular apparatus and brain
Conceptualization of the Problem

• Blasts can simultaneously affect the periphery and central nervous system
• Blast over pressures are represented as a compression wave in the brain
 – Gelatin like structure of the brain shifts violently inside the skull
 – Contusions and micro-hemorrhages can occur at gray/white matter junctions
 – Disruption or shearing effects can occur within white matter tracts that interconnect various brain areas that subserve various sensory, motor, and cognitive functions
 – Alterations in the neurobiochemical environment in numerous regions-of-interest
Physical Acoustics of Blast Waves

1) Normal pressure
2) Blast forces max; wind flows away from explosion
3) Followed by reverse blast wind & drop in atmospheric pressure
4) Atmospheric pressure returns to normal after blast wave subsides

Blast-Related Non-penetrating TBI

From above

From in front

From the side

Diffuse axonal
- cortical/medullary
- internal capsule
- deep gray matter
- upper brainstem
- Corpus callosum

Contusion
- superficial gray matter
- infer, lat, ant frontal lobe
- temp. lobes

Subdural hemorrhage
- frontal and parietal convexities

From the midline
Neuroimaging Biomarkers
(Anatomical-Based Measures)

- Standard T_1-weighted high resolution anatomical MRI (1.5 Tesla)
- Voxel-based morphometry (VBM)
 - Group comparison study
 - Useful for developing hypotheses
- Diffusion-Tensor Imaging (DTI)
 - Useful for evaluating white matter tracks, microstructure, and connectivity that cannot be seen with standard MRI
- Susceptibility-Weighted Imaging (SWI)
 - Efficacious for detecting small vascular lesions (i.e., microhemorrhages) that cannot be seen by standard MRI or DTI
Some Relevant References

Patient Characteristics

- **Diagnoses:**
 - Mild traumatic brain injury (mTBI)
 - Post traumatic stress disorder (PTSD)

- **History:**
 - Exposure to single or multiple blasts (IED’s, roadside bombs, rocket-propelled grenades, mortars, etc.)
 - Blast + concussion
 - Concussion alone (i.e., MVAs)

- **Vestibular-related symptoms/complaints:**
 - Imbalance
 - Lateropulsion
 - Light headedness
 - Vertigo
Vestibular-Related Symptoms and/or Complaints

- **Imbalance** (*IMB*): Experience difficulty walking in a straight line, clumsiness and coordination problems, difficulty maintaining an upright posture.

- **Lateropulsion** (*LP*): the tendency to fall toward one side or the other.

- **Light Headedness** (*LH*): feeling faint or about to pass out; often subsides when you lie down.

- **Vertigo** (*VERT*): the sensation of motion (i.e., either that you or your environment are spinning, whirling, falling, tilting, etc.).
Aims and Hypotheses for Imaging-Related Studies

• Do the vestibular and mTBI-related symptoms experienced by individuals have an anatomical basis?
• What methodology can/should be used to test this hypothesis?
Voxel-Based Morphometry (VBM)

- Unbiased technique to characterize anatomical differences between brains of well-defined groups using high resolution T₁-weighted MRI
 - Useful for developing hypotheses
- Accomplished by:
 - Normalizing individual MRIs into a standardized anatomical space
 - Segment images into gray matter, white matter, and cerebrospinal fluid (CSF)
 - Performing a statistical analysis on a voxel-by-voxel basis between groups (*a priori*, p<0.01)
 - Accounting for multiple comparisons in the statistical analysis
 - Co-register statistically significant differences in anatomy on a standard anatomical template
Participants

- 10 healthy normal controls
- 11 individuals diagnosed with TBI and/or PTSD
 - With primary vestibular-related complaints
- Matched for age and gender
 - Controls (n = 10 males; mean age: 25.7 yrs; SD: 4.2 yrs)
 - TBI/PTSD (n = 11 males; mean age: 36.1 yrs; SD: 11.6 yrs)
- Groups differed with respect to vestibular-related symptoms, complaints, and diagnoses
Demographics
(Experimental Group)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Age (yrs)</th>
<th>Gender</th>
<th>Diagnosis</th>
<th>History</th>
<th>Vestibular Symptoms/Complaints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>BL</td>
<td>IMB, LP</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>BL</td>
<td>IMB, LP, LH, VERT</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>M</td>
<td>PTSD</td>
<td>BL</td>
<td>IMB, LP, LH, VERT</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>BL</td>
<td>IMB, LP, LH, VERT</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>BL + C</td>
<td>IMB, LP</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>BL</td>
<td>IMB</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>BL</td>
<td>IMB, LP, LH</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>C</td>
<td>IMB, LP, LH, VERT</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>BL + C</td>
<td>IMB, LP, LH, VERT</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>BL</td>
<td>IMB, LP</td>
</tr>
<tr>
<td>11</td>
<td>63</td>
<td>M</td>
<td>mTBI, PTSD</td>
<td>BL</td>
<td>IMB, LP, LH</td>
</tr>
</tbody>
</table>
Vestibular Related Symptoms/Complaints

- Imbalance: 100%
- Lateropulsion: 91%
- Light Headed: 64%
- Vertigo: 46%
Demographics (Control Group)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Age (yrs)</th>
<th>Gender</th>
<th>Diagnosis</th>
<th>History</th>
<th>Vestibular Symptoms/Complaints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>M</td>
<td>Normal</td>
<td>N/A</td>
<td>None</td>
</tr>
</tbody>
</table>
Anatomical Coordinates and Planes-of-Reference

- Coronal
- Axial
- Saggital

Right side Left side
Results of Voxel-Based Morphometry
Reduced gray matter volume in anterior frontal and orbitofrontal regions.
Reduced gray matter volume in mesial frontal lobe and insula
Reduced gray matter volume in frontal and fronto-midline structures on the left side
Decreased gray matter volume in the temporal lobe
Increased white matter volume in the area of the precentral gyrus on the left.

Coronal

Sagittal

Axial

- Value
Summary

• Reductions in gray matter volume found in:
 – Orbitofrontal and middle frontal gyrus
 – mesial frontal lobe, and
 – insular area in the left mesial temporal lobe

• Increased white matter volume found in:
 – precentral gyrus on the left side
Diffusion Tensor Imaging
Conclusions

• These preliminary VBM analyses show:
 – Distributed gray matter changes in key frontal and temporal areas of the brain associated with \(mTBI \), PTSD, and vestibular-related dysfunction
 – A single area of increased white matter volume was noted in the precentral gyrus localized to the left side of the brain
Conclusions

- These VBM data starting to show a pattern of results including changes in:
 - Frontal lobe structures (e.g., orbitofrontal and DLPF cortices) represent integration hubs for distributed and highly processed sensory, polysensory, and emotion-related (psychological and psychiatric) information
 - These new data represent areas-of-interest to explore in future studies
Diffusion Tensor Imaging (DTI)

• A contemporary imaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain

• Relatively unexplored imaging modality in the study of vestibular and balance related dysfunctions
Diffusion Tensor Imaging

- Measures the magnitude and orientation of water in brain tissue
- For each voxel, DTI estimates diffusion in terms of the axes of the eigenvectors of an ellipsoid
- Fractional anisotropy (FA), is a normalized metric (or scalar) that represents the fraction of the tensor that can be assigned to the anisotropic diffusion
DTI

- Terms to know: isotropic and anisotropic
- The FA metric ranges between 0 and 1, where:
 - “0” (zero) represents perfectly “isotropic” diffusion, such as is found in the cerebrospinal fluid where diffusion is equivalent in all directions.
 - “1” is the extrema for “anisotropic” diffusion, indicating maximum difference between directional components, such as is found in coherent white matter tracts which consist of long tubes.
Diffusion Tensor Imaging

Restricted - Diffusion perpendicular to long axis

Diffusion parallel to long axis

\[\lambda_1 > \lambda_2 > \lambda_3 \]
Effect of Diffuse Axonal Injury on Fractional Anisotropy

- TBI causes DAI
- Axonal injury creates barriers for diffusion along the axon
- TBI can also result in membrane permeability changes
Secondary Axotomy Stages

Pre-injury

Stretch and Shear

Seconds post

(Reversible disruption of cytoskeletal elements)

Minutes-to-hours post

Poration and depolarization with NMDA initiated Ca^{2+} influx, increased Na^{+} influx-induced swelling

Days-to-weeks

Ca^{2+} influx \rightarrow activation of cysteine proteases \rightarrow degradation of cytoskeletal elements \rightarrow interruption of axonal transport \rightarrow detachment from distal stump \rightarrow bulb formation
Fractional Anisotropy (FA)

Fractional Anisotropy is calculated from the eigenvalues λ_1, λ_2, λ_3 of the diffusion tensor:

- λ_1 is the principle eigenvector
- λ_2 is the intermediate eigenvector
- λ_3 is the minor eigenvector

$$FA = \frac{\sqrt{3}}{\sqrt{2}} \frac{\sqrt{(\lambda_1 - \lambda)^2 + (\lambda_2 - \lambda)^2 + (\lambda_3 - \lambda)^2}}{\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

FA values scale from 0-1
Susceptibility-Weighted Imaging (SWI)

- SWI exploits the *susceptibility* differences between tissues and uses the phase image to detect these differences.
- Magnitude and phase data are combined to produce an enhanced contrast magnitude image which is exquisitely sensitive to venous blood, hemorrhage and iron storage.
- The imaging of venous blood with SWI is a *blood-oxygenation-level dependent* (BOLD) technique which is why it was (and is sometimes still) referred to as BOLD venography.
- Due to its sensitivity to venous blood SWI is commonly used in TBI and for high resolution brain venographies but has many other clinical applications.
Case Reports

- Four Veterans, aged 29–46 years, complaints of chronic dizziness and/or postural instability following blast exposures.
- Comprehensive vestibular, balance, gait, audiometry and neuroimaging procedures were performed.
- Based on the neuroimaging and vestibular and balance test results, it was found that all individuals had DAI and all had one or more micro-hemorrhages or vascular anomalies.
- alone.
Case 1

1. Calorics, rotary chair, cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs) were WNL; normal peripheral function.
2. Low Sensory Organization Test (SOT) score suggests abnormal balance function.
1. Vestibular and balance function tests revealed a right unilateral weakness on the caloric test and low gain on rotary chair, suggesting right horizontal semicircular canal dysfunction.

2. Bone conduction cVEMPs and oVEMPs revealed normal otolith organ function and the SOT revealed normal balance function.
Regional Areas of Lower FA Values

Case 1.

Case 2.

Case 3.

Case 4.
Case 1: Micro-hemorrhages above the ventricle in the ACR of frontal white matter region.

Case 2: Micro-hemorrhage in the left posterosuperior cerebellar hemisphere.

Case 3: An abnormally dark signal in the veins draining into the left septal vein.

Case 4: Micro-hemorrhage in the superior frontal region of the CR.
Magnetic Resonance Imaging (MRI)

- Often stated that MRI is “insensitive” to TBI
 - Broad generalized statements need to be qualified and updated
- This statement depends on type of imaging paradigm being employed (pulse sequence)
- Methodologies described herein have many advantages and few disadvantages
- Ideal for:
 - biomarker development
 - drug discovery and development
 - longitudinal experimental designs requiring repeated measures over time
The use of contemporary neuroimaging studies in conjunction with comprehensive vestibular and balance assessment is starting to provide a better understanding of the pathophysiology and pathoanatomy of dizziness following blast exposures than standard vestibular and balance testing alone.
THANK YOU
Neuroimaging & Rehabilitative Options in Vestibular & Balance-Related Dysfunction Following Noise & Blast

Courtney D. Hall, PT, PhD
Research Health Scientist
Auditory and Vestibular Research Enhancement Award Program
James H Quillen VAMC

Associate Professor
Department of Physical Therapy
East Tennessee State University
Consequences of blast/mTBI

• Complex pathophysiological process affecting the brain, induced by traumatic biomechanical forces
 – Concussion/mTBI often used interchangeably
• Resolution of post-concussion symptoms generally quick, but prolonged in some individuals
 – 80-90% resolve in 7-10 days
 – Poor prognosis for dizziness/imbalance that lasts for six months or longer

(Hoffer, 2004; McCrory, 2013)
Post-Concussion Symptoms/Management

Somatic Symptoms
- Headache*
- Fatigue*
- Dizziness*
- Light sensitivity*
- Imbalance*
- Visual problems
- Nausea

Emotionality
- Anxiety
- Lability
- Sadness
- Irritability

Cognitive Symptoms
- Cognitive slowing*
- Difficulty concentrating*
- Mentally “foggy”*
- Difficulty remembering*

Sleep Disturbance
- Trouble falling asleep
- Sleeping more/less than usual

Neuro-ophthalmology/optometry

Psychology/Counseling

Neurology/Neuropsychology

Psychology/Counseling

Physical Therapy

Social Work/Case manager

Audiology

Neurology/Neuropsychology

(Lovell, 2006)
Oculomotor abnormalities

- Convergence impairments – decreased positive fusional vergence with near target
 - ~50% of combat-injured personnel (blast and non-blast)
 - May contribute to dizziness because of diploplia, impact on vestibulo-ocular reflex
 - Vision therapy can improve convergence insufficiency

(Barnett, 2015; Brahms, 2009)
Prevalence of dizziness

• Up to 77% of cases immediately after sports-related injury (Marshall, 2015)
• Most common symptom in blast-related mTBI (Hoffer, 2010)
 – 98% acute; 84% chronic
• In non-sports, non-military adults 51% at injury and persistent in 28.5% up to one year (Theodom, 2016)
Vestibular consequences of blast/mTBI

- Cause(s) of dizziness unclear: brain injury vs. peripheral vestibular dysfunction
 - symptom-based questionnaires
 - limited assessment of vestibular system (horizontal semicircular canals, SCC)

- Post-traumatic BPPV common (5-28%) (Alsalaheen, 2010; Hoffer, 2004)

- Otolith organs may be more vulnerable to blast exposure or head injury (Kerr & Byrne, 1975; Akin & Murnane, 2011)

- Conventional vestibular assessment excludes tests of otolith organ
 - vestibular evoked myogenic potentials (VEMPs)
Functional consequences of blast/mTBI

• Abnormal visual acuity with head turns
• Impaired integration of sensory input for balance
• Gait impairments
 – Conservative gait strategy: increased medial-lateral sway and slower speed
 – Difficulty dividing attention

(Akin, 2015; Zhou & Brodsky, 2015; Parker, 2005, 2006)
Prevalence of vestibular dysfunction

• 90% of adolescents with sports-related concussion and dizziness (n=42) had vestibular/balance abnormalities
 – Spontaneous nystagmus (24%)
 – Caloric tests (21%)
 – Subjective visual vertical (13%)
 – Dynamic visual acuity (57%)
 – Computerized dynamic posturography (56%)

(Zhou, 2015)
Prospective case-controlled study of Veterans with blast exposure/mTBI

Research funded by VA Rehabilitation R&D Merit Review Grant (Akin, PI)

Summary of Descriptive Statistics for Group Demographics

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Age (years) X ± SD</th>
<th>Range</th>
<th>MMSE X ± SD</th>
<th>DHI X ± SD</th>
<th>Time since onset (mos) X ± SD</th>
<th>PTSD N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>31</td>
<td>31 ± 10</td>
<td>20 - 59</td>
<td>30 ± 0.5</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>mTBI/Blast</td>
<td>56</td>
<td>37 ± 10</td>
<td>22 - 67</td>
<td>29 ± 2</td>
<td>50 ± 23</td>
<td>88 ± 44</td>
<td>53 (95)</td>
</tr>
<tr>
<td>Blast</td>
<td>17</td>
<td>40 ± 11</td>
<td>26 - 63</td>
<td>29 ± 2</td>
<td>49 ± 25</td>
<td>119 ± 87</td>
<td>10 (59)</td>
</tr>
<tr>
<td>mTBI</td>
<td>8</td>
<td>40 ± 12</td>
<td>22 - 57</td>
<td>29 ± 0.5</td>
<td>41 ± 17</td>
<td>91 ± 96</td>
<td>3 (38)</td>
</tr>
</tbody>
</table>

(Akin, 2015)
Symptom Frequency (%) Reported for Each Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Vertigo</th>
<th>Imbalance</th>
<th>Lateropulsion</th>
<th>Lightheadedness</th>
<th>Oscillopsia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mTBI/Blast</td>
<td>29 (52)</td>
<td>52 (93)</td>
<td>31 (55)</td>
<td>43 (77)</td>
<td>10 (18)</td>
</tr>
<tr>
<td>Blast</td>
<td>12 (71)</td>
<td>12 (71)</td>
<td>10 (59)</td>
<td>14 (82)</td>
<td>8 (47)</td>
</tr>
<tr>
<td>mTBI</td>
<td>3 (38)</td>
<td>8 (100)</td>
<td>3 (38)</td>
<td>7 (88)</td>
<td>4 (50)</td>
</tr>
</tbody>
</table>
Cervical Vestibular Evoked Myogenic Potentials

INTER-EAR AMPLITUDE ASYMMETRY (%)

CONTROL mTBI/BLAST BLAST mTBI

(Akin, 2016)
Sensory Organization Test

(Akin, 2016)
Dynamic Gait Index
Gait Speed

![Gait Speed Chart]

- VELOCITY (cm/s)
- CONTROL, mTBI/BLAST, BLAST, mTBI

Legend:
- Black circles: mTBI/BLAST
- Red circles: BLAST
- White circles: CONTROL

Note: The blue rectangle highlights a specific range of velocities.
Summary of Vestibular/Balance Findings

- Significant differences between CON (n=31) and EXP (n=81) for otolith function, balance and gait
- 48% with mTBI and/or blast had abnormal vestibular function
 - Frequency of abnormalities of otolith organ > semicircular canal
- 22-71% with mTBI and/or blast had abnormal balance and/or gait function
Case 1

(Gattu, 2016)
Efficacy of Vestibular Rehabilitation Therapy (VRT)

• Consensus statement on concussion in sport:
 – Persistent symptoms should be managed by multidisciplinary team of healthcare providers
 – Therapies including cognitive, physical, psychological and vestibular should be considered

• A systematic review suggests that VRT is beneficial in mTBI/concussion with evidence of earlier return to sport
 – Weak evidence (level 3): high risk of bias in 7 of 10 studies
 – Need for high quality randomized controlled trials!

(McCrory, 2013; Murray, 2017)
Primary outcomes for VRT

- **Dizziness**
 - Dizziness handicap inventory, vertigo symptom scale, motion sensitivity quotient, dizziness analog scale

- **Gaze stabilization**
 - Dynamic visual acuity or gaze stabilization

- **Balance and gait**
 - Activities-specific balance confidence scale, functional gait assessment, timed up and go, dynamic gait index, high-level mobility assessment tool

- **Return to work/sport**
Components of VRT

• Habituation exercises
 – Gradual increase in exposure to provoking stimuli (8 of 10 studies)
 – Optokinetic stimulation and gaze stabilization challenges

• Gaze stability exercises
 – Vestibulo-ocular exercises (8 of 10 studies)

• Balance exercises
 – Challenging exercises for balance and function (9 of 10 studies)

• Aerobic exercises
 – Muscle conditioning (3 of 10 studies)

(Al salaheen, 2010; Gottshall, 2010; Hoffer, 2004; Moore, 2016; Schneider, 2014)
Prescription of VRT

• Frequency
 – 1-2x/week supervised PT sessions
 – Daily home exercise program

• Intensity
 – Increased as tolerated (Hoffer, 2004)
 – Encouraged to work at maximum tolerance (Gottshall, 2010)

• Time
 – 2 weeks to 16 weeks
Progression of VRT

Progression

• Rest followed by graded exertion, cervical spine PT and VRT (Schneider, 2014)
 • Use symptoms to guide progression

• Modifiers manipulated to increase challenge: (1) posture, (2) surface, (3) base of support (BOS), (4) trunk position, (5) arm position, (6) head movement, (7) whole body movement, (8) visual input, (9) cognitive dual task (Al salaheen, 2010)
References

• Kerr AG, Byrne JET. Concussive effects of bomb blast on the ear. J Laryngol Otol. 1975; 89:131-144.
References