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Outline

• Risk adjustment

• Overview of Nosos

• Incorporating clinical memory



Risk Adjustment and the VA

• What is risk adjustment?

• Why use risk adjustment?
– Operations/payment

– Health services research



Risk Adjustment Systems

• Non-VA Systems
– Verisk Risk Smart/Risk Solutions (DxCG)

– Charlson comorbidity index

– Elixhauser

– CMS Risk Adjustment Model (V21)

• VA systems
– CAN score

– Nosos



Poll

What is your role in the VA? 

(Select all that apply)
A. Operations

B. Clinical

C. Research



Poll

Which of these have you worked with?

(Select all that apply)
A. Charlson comorbidity index

B. Elixhauser

C. CMS Risk Adjustment Models

D. CAN score

E. Nosos



Nosos

• Nosos is the Greek word for ‘chronic disease’

• Borrows from CMS risk adjustment
– Uses CMS V21/V22 Hierarchical Condition 

Category (HCC) risk score

– ICD 9/10 codes, age, gender to compute a single 
risk score

• Adds additional variables, and outperformed 
CMS risk adjustment models



Nosos Components

• Demographic information 
• CMS V21 HCC risk score
• Mental health conditions
• Pharmacy records
• Insurance status
• VA priority status
• VA registry information
• Nosos only uses information from one single 

fiscal year



Nosos: Two Versions

• Concurrent
– E.g. Uses 2015 FY info to predict 2015 FY costs
– Explanatory
– Can be used to measure health system 

performance

• Prospective
– E.g. Uses 2015 FY info to predict 2016 FY costs
– Predictive
– Can be used to allocate future payments



Interpretation of Nosos

• Nosos produces a single risk score

• Risk scores are centered at 1

• Interpretation
– Nosos = 1: Annual cost expected to be the 

national average for VA patients

– Nosos = 3: Annual cost expected to be three times 
the national average for VA patients



Can we do better?

• Why rely only on diagnostic information from 
one fiscal year alone?

• Does adding prior years of diagnostic 
information improve risk prediction?



Why Clinical Memory Might Help Risk 
Adjustment?

• Mechanism 1: Additional years may predict 
intensity of disease

• Mechanism 2: Additional years may fill in 
“coding gaps”

• Some evidence it may modestly improve risk 
adjustment for mortality
– Preen J Clin Epid 2006, Zhang Med Care 1999, 

Dobbins J Clin Epid 2015



VA coding fidelity

• Peabody et al. Medical Care 2004
– Standardized patients visited 3 sites

– Primary diagnosis incorrect for 43% of visits
• 15% physician made incorrect diagnosis

• 22% data entered incorrectly



Coding Gaps

• Patients with diagnostic info 2011-2015

• We labeled HCCs as chronic and identified 
coding gaps

• Conditions that were coded in two end years 
but not the middle year(s)

• E.g. Patient has HIV coded in 2011, 2012, and 
2014 but NOT in 2013



Examples of coding gaps

HCC Indicator % Patients with Coding Gap

HIV/AIDS 5%

Parkinsons/Huntingtons Dz 8%

Dialysis status 11%

Cirrhosis 15%

Congestive Heart Failure 15%

Paraplegia 16%

COPD 17%
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Analytic overview

• Two Models
– Concurrent model
– Prospective model

• Two Approaches
– Aggregated HCC risk score
– Individual HCC risk indicators

• Three Comparisons
– Base year clinical info (e.g. 2015)
– Expanded clinical memory (e.g. 2011-2015)
– Expanded clinical memory with coding gaps imputed

• 5-fold cross-validation used



Results: Concurrent Model

Aggregated HCC risk score

Individual HCC risk indicators
Model R2 MSPE

2015 0.7059 1966

2011-2015 0.7033 1831

2011-2015, gaps imputed 0.7074 1805

Model R2 MSPE

2015 0.6811 1966

2011-2015 0.6794 2144

2011-2015, gaps imputed 0.6790 2147



Results: Concurrent Model

Aggregated HCC risk score

Individual HCC risk indicators
Model R2 MSPE

2015 0.7059 1966

2011-2015 0.7033 1831

2011-2015, gaps imputed 0.7074 1805

Model R2 MSPE

2015 0.6811 1966

2011-2015 0.6794 2144

2011-2015, gaps imputed 0.6790 2147



Results: Concurrent Model

Aggregated HCC risk score

Individual HCC risk indicators
Model R2 MSPE

2015 0.7059 1966

2011-2015 0.7033 1831

2011-2015, gaps imputed 0.7074 1805

Model R2 MSPE

2015 0.6811 1966

2011-2015 0.6794 2144

2011-2015, gaps imputed 0.6790 2147



Results: Concurrent Model

Aggregated HCC risk score

Individual HCC risk indicators
Model R2 MSPE

2015 0.7059 1966

2011-2015 0.7033 1831

2011-2015, gaps imputed 0.7074 1805

Model R2 MSPE

2015 0.6811 1966

2011-2015 0.6794 2144

2011-2015, gaps imputed 0.6790 2147



Results: Prospective Model

Aggregated HCC risk score

Individual HCC risk indicators
Model R2 MSPE

2014 0.3508 4181

2011-2014 0.3634 4307

2011-2014, gaps imputed 0.3734 4032

Model R2 MSPE

2014 0.3336 4295

2011-2014 0.3475 4414

2011-2014, gaps imputed 0.3482 4419
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Conclusions

• Adding additional years did NOT improve risk 
adjustment. Why?
– Past clinical information is not useful for 

predicting costs (whereas it may be for predicting 
outcomes)

– For newer adjustment tools (Medicare HCC), the 
marginal gain is small

– Heterogeneity in disease progression renders 
historical ICD data a suboptimal predictor



Conclusions

• Further improvements may require new 
variables:
– Socioeconomic status

– Markers of disease severity (e.g. cancer staging, 
heart failure/COPD staging)

– Measures of frailty



Thank You
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Poll

What models have you used for cost risk adjustment? 
(Select all that apply)

A. Linear regression of Log-transformed costs

B. Linear regression of Square-root-transformed costs 

C. GLM with logarithm link function for mean cost

D. GLM with square-root link function for mean cost

E. Other models

3



Generalized Linear Models

4

With the 
ight glasses

it looks 
linear.

r , 



Generalized Linear Model

( ( | ))h E y X Xβ ′=

~ ( ; ( ))y f y Xθ

h = Link function that connects conditional mean to 
linear combination of predictors.

f = Distribution family.

5

Estimation by Maximum Likelihood.



Generalized Linear Model

Example—Log-link function, Gamma family:

ln( ( | ))E y X Xβ ′=

( | ) XE y X eβ ′=

~ ( , )y Gamma α β
6



Gamma Distribution

 Shape parameter α > 0  Scale parameter β > 0

0
.0

2
.0

4
.0

6

0 20 40 60 80 100
y

f_2_6 f_4_6

0
.0

2
.0

4
.0

6

0 20 40 60 80 100
y

f_2_6 f_2_8

7



Mean and Variance

( )E y α β= ⋅ 2( )V y α β= ⋅

21( ) ( )V y E y
α

= ⋅ ( ) ( )V y E yβ= ⋅

Variance proportional Variance directly 
to the mean squared: proportional to the 

mean :
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Conditional mean (Regression function)

Regressors influence through the scale parameter

( | ) ( )E y x xα β= ⋅

( | ) ( ) ( )E y x x xα β= ⋅

( | ) ( )E y x xα β= ⋅
Regressors influence through the shape parameter

Regressors influence through both parameters
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Standard Model
(e.g. SAS and STATA GLM programs)

Regressors influence through the scale parameter

( | ) ( )E y x xα β= ⋅

21( | ) ( | )V y x E y x
α

= ⋅

Variance proportional to the mean squared
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Different Specifications

Standard (e.g. SAS, STATA) Alternative

( | ) ( )E y x xα β= ⋅

21( | ) ( | )V y x E y x
α

= ⋅

( | ) ( )E y x xα β= ⋅

( | ) ( | )V y x E y xβ= ⋅

11



Poll

Is misspecification a problem? 

A. Yes

B. No

C. Not sure
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Different Specifications

Standard (e.g. SAS, STATA) Alternative

( | ) ( )E y x xα β= ⋅

21( | ) ( | )V y x E y x
α

= ⋅

( | ) ( )E y x xα β= ⋅

( | ) ( | )V y x E y xβ= ⋅

The Problem
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Why is this the problem?

 Maximum Likelihood Estimation

 Will adjust the parameter 
estimates to match the 
moment condition (Variance 
proportional to the Mean 
squared)

14



Why is this the problem?

 Maximum Likelihood Estimatio

 Will adjust the parameter 
estimates to match the 
moment condition (Varianc
proportional to the Mean 
squared)

 Standard errors will be 
affected by misspecification

n

e 

SESE
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Monte Carlo Sample
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60 Monte Carlo Samples

Average of standard Average of coefficient errorsestimates

N     true     bshape bscale seshape sescale
60   0.20        0.20         0.22          0.056        0.158
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60 Monte Carlo Samples

Average of standard Average of coefficient errorsestimates

N     true     bshape bscale seshape sescale
60   0.20        0.20         0.22          0.056        0.158

Z = 3.0 Z = 1.39
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FY2017 VA Cost Data
GECDAC Core file: VA data from inpatient, outpatient and fee-basis files, cleaned 
Managerial Cost Accounting costs, enrollment and vital status for 2017. Medicare 
inpatient, Carrier and certain outpatient claims supplemented VA diagnoses. 

Dependent variable: Total CPI adjusted VA cost.

Predictors: Nosos score variables--comprising age, age squared, indicators of being 
white, being male, having insurance, and being married, priority status group 
indicators, drug class indicators, mental health CMS hierarchical condition 
categories (HCC) indicators, and the HCC indicators from the V21 HCC score.

Never institutional in FY2017

Overall GEC 
Cohort

HBPC JFI < 6 JFI ≥6

R2 GLM-Scale -19.72 0.38 0.45 -1.98 0.07

GLM-Shape 0.49 0.60 0.60 0.34 0.36

Max 
Error

GLM-Scale 56,250 45,850 24,818 17,217 46,152

GLM-Shape -8,353 -9,505 -11,892 -1,059 -9,214
21
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Negative R2?
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misspecification



Poll

Do you use STATA as statistical analysis software?

A. Yes

B. No
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How to estimate?
STATA Code

program mlfgamma_beta
version 14
args lnf xmean xbeta
quietly {

tempvar m a b
g double `m' = exp(`xmean') 12 lines of code
g double `b' = exp(`xbeta')
g double `a' =`m'/`b'
replace  `lnf' = 
ln(gammaden(`a', `b', 0, $ML_y1))

} //endquietly
end

ml model lf mlfgamma_beta (mean: DEPV = INDV) (beta:)
ml max

25



Conclusions

 The alternative Gamma GLM model can outperform the 
standard Gamma GLM

 Of course, other models may perform better in any given 
situation—need to check.

 NOTE: The alternative implies variance proportional to 
mean, therefore cannot infer “Not Gamma” from 
Modified Park Test (lnr2 = a + b*lnyhat: 2 implies 
Gamma, 1 implies Poisson)

26
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Thank you!
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