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Poll #1: Data User Role

What 1s your role?

Research Investigator

Methodologist

Data Manager, Analyst or Programmer
Project Coordinator

Other — please describe via the Q&A function



Poll #2: Familiarity with VA weight
data

How would you rate your expertise in VA
weight data?

High — Others regard me as an “expert”

Progress — I have experience but am still
learning

Little/no expertise
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OBJECTIVES

1) Compare algorithms for extracting and
processing clinical weight measures from CDW
databases.

2) Provide guidance and recommendations for

choosing algorithms in research and evaluation.
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BACKGROUND

- Rapid increase in the use of EHRs has made vast
amounts of clinical information available for use.

- But, issues associated with utilizing EHR data for
research & evaluation.

- Lack of control over data definitions and data collection processes.

- Methodological challenges associated with processing and transforming raw, messy EHR data.

- Calls for increased transparency regarding data
cleaning efforts, methods to assess EHR data quality,
and 1ncreased reporting and sharing of methods.




- Patient weight 1s an important clinical measure.

- Frequently measured resulting in many entries per patient over
time.

- Weight can vary substantially within patient, may have differing
units, and may be subject to data entry errors.

- No standard for processing and cleaning EHR weight.

- Researchers are left to develop their own algorithms to define
welght, resulting in many different definitions in the published
literature.

- Range from simple cut-offs for implausible values to more
computationally complex algorithms requiring significant coding
and processing capacity, as well as difficulties in replicating.




Unknown how resulting weight measures may
vary based on how researchers process and
clean the data, and subsequently, the impact of
algorithm choice on results and research
findings is unknown.
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Data Collection — Cohort

Collect all

Collect Select 1t PCP Randomly weights from

CDWWork veterans with Include visit in 2016 Select 2 years prior
Database ~ atleast 1 PCP Age =18 ~ (Clinic Stop 100,000 to 2 years

visit in 2016 Code 323) Patients post 1st PCP

visit




Data Collection — Cohort

- SELECT patients FROM Outpat.Workload with a
VisitDateTime 1n 2016 and WHERE Primary or

Secondary clinic Stop Code = 323.

- DROP those where the Date of Birth on the Workload
record calculates Age < 18.

- Randomly selected 100,000 of resulting patients.

- For each patient, SELECT their first (earliest) visit in
the year. This 1s their Index Date.




Data Collection — Weight Data

- SELECT weight data FROM Vital.VitalSign, WHERE
VitalType="Weight’ AND VitalSignTakenDateTime is

BETWEEN two years before and two years after the
Index Date.

This 1s the “Raw Weight Data”.




Data Collection — Exclusions

- Identified women who may have been pregnant
during the 4 year time frame by searching for
Pregnancy related diagnosis codes 1n
Outpat.VDiagnosis and Inpat.InpatientDiagnosis.

These patients were excluded from the analysis.




Data Collection — Diabetes

- Identified Diabetes Status both 2 years before and 2
years after the index date by searching for diagnosis
codes 1n Outpat.Vdiagnosis and
Inpat.InpatientDiagnosis.

- Patients were required to have 2 or more outpatient
or 1 imnpatient diagnoses to be considered diabetic.
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ALGORITHMS

- Our team conducted a systematic literature review

to 1dentify studies that utilized patient weight outcome
measures from the VHA CDW.

- We 1dentified 39 published studies that used the CDW
to define patient weight outcomes.

- Of the 39 studies, 33 included a weight cleaning
algorithm that could be implemented and replicated 1n
the current work.




ALGORITHMS

We present 12 representative algorithms here and
provide details about the remaining algorithms in the
Supplement and within our GitHub repository

( ).



https://github.com/ccmrcodes/WeightAlgorithms

ALGORITHMS

We divided the 12 algorithms into two conceptual groups:

1) Those that include all weight measurements during a
specified timeframe

2) Those that are time-period specific

- Time-period specific algorithms selected “baseline, 6-month,
and 12-month” time-periods and included weight
measurements during specified windows around those dates.

- Note not all algorithms fit exactly into these groups. For
instance, we classified the algorithm utilized in Noel et al. 2012
as a “time-period specific” algorithm since it is based on fiscal
quarters, but 1t utilizes all data within each quarter to define
median weights.




Table 1. Conceptual Description of Main Exclusions After Applying Each Algorithm

All Weight Measures

Time-Period Specific

Algorithm Exclusion Algorithm Exclusion
Buta 2018 Patients with < 1 weight value Rosenberger 2011 Patients with < K number of weight measures, K
BMI <11 0or>70 chosen by researcher
Weights outside of 6-month time points
Chan 2017 Weights < 50 Ib. or > 750 Ib. Noel 2012 Weights < 70 Ib. or 2 700 Ib.
Weights > 3 SD from mean Patients with too few values to compute median
within fiscal quarters
Maguen 2013 Weights < 70 Ib. or > 700 Ib. Kazerooni 2016 Weights outside of windows around 3 time periods

Breland 2017

Maciejewski 2016

Littman 2012

Weight values where absolute value of conditional
residual from linear mixed model = 10

Weights < 75 Ib. or > 700 Ib.
Weight values that fall outside of specific ratios
calculated within patient over time

Weight values associated with large SDs calculated
on a rolling basis

Weights < 75 Ib. or > 600 Ib.
Weights where difference from mean > SD
Weights where SD was > 10% of the mean

Jackson 2015

Goodrich 2016

Janney 2016

Patients missing data in any of the 3 time periods

Weights < 75 Ib. or > 700 Ib.
Weights outside of 90-day windows of each time-
point

Weights < 80 Ib. or > 500 Ib.

Patients with > 100 Ib. change between time
periods (baseline, 6- and 12-months) Weights
outside of 30-day windows for each time point

Weights < 91 Ib. or > 600 Ib. at baseline

Weights outside of 30-day windows of baseline, 60-
day windows of 6- and 12-months

Weights resulting in > 100 Ib. change during study




ALGORITHMS in Github

CCMRcodes (VA Center for Clin
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METHODS & RESULTS

Common use of weight measures in research & evaluation
- Descriptive

- As a Predictor in studies that seek to adjust for the effect of baseline
welght when examining the association between another variable and
an outcome

- Weight Change in studies examining the effects of an independent
variable on patient weight or weight change over time

- Patient weight Trajectories

- Facility-Level Effects in studies examining performance measures
across facilities, groups, clusters.




- Background
- Data Collection

- Algorithms
- Methods & Results

- Descriptives
- Weight as a Predictor
* Weight Change
* Weight Trajectories
« Facility-Level Measures

- Findings & Recommendations
- Limitations
- Works in Progress

. Discussion/Q&A




METHODS
DESCRIPTIVE STATISTICS

All algorithms were applied to the data for each of the
two cohorts and compared based on descriptive
statistics, including the number of measures and
patients retained, the mean, standard deviation,
median, and range of weight values.

For comparison, we also included the descriptives

based on the raw, unprocessed weight data during the
timeframe.




RESULTS: DESCRIPTIVES

Algorithm N pts. Retained N Weights Retained Mean Range

9 (% of Raw) (% of Raw) (SD) (Min, Max)
Raw Weights 98,958|(100) 1,175,995 (100) 207.82 (48.60) (0, 2423)
Utilize All Data

Buta (2018)

Chan (2017)
Maguen (2013)
Breland (2017)
Maciejewski (2016)

Littman (2012)

Time-Period Specific

Rosenberger (2011)
Kazerooni (2016)
Goodrich (2016)
Janney (2016)
Jackson (2015)

Noel (2012)

90,159|(91.1)
96,132((97.4)
98,352/(99.4)
98,958 (100)
98,958 (100)

96,130/(97.1)

63,405|(64.1)
23,987((24.2)
95,748/(95.7)
95,742/(96.8)
96,559|(97.6)

98,958|(100)

1,131,996 (96.3)
1,170,114 (99.5)
1,037,293 (88.2)
1,175,177 (99.9)
1,146,995 (97.5)

1,161,661 (98.8)

227,215 (19.3)
71,961 (6.1)
199,803 (17.0)
199,830 (17.0)
251,501 (21.4)

683,008 (58.1)

207.91 (48.29)
207.86 (48.27)
205.58 (46.37)
207.85 (48.25)
208.08 (48.13)

207.97 (48.14)

207.80 (46.23)
209.00 (47.95)
206.13 (45.42)
206.15 (45.46)
206.31 (45.52)

207.25 (46.13)

(60, 540)
(54, 727)
(70, 541)
(75, 694)
(62, 546)

(75, 546)

(0, 1314)
(0, 1233)
(80, 500)
(78, 546)
(76, 553)

(70, 588)




RESULTS: DESCRIPTIVES (CONT.)

Algorithm N pts. Retained N Weights Retained Mean Range

9 (% of Raw) (% of Raw) (SD) (Min, Max)
Raw Weights 98,958 (100) 1,175,995 (100) 207.82 (48.60) (0, 2423)
Utilize All Data

Buta (2018)

Chan (2017)
Maguen (2013)
Breland (2017)
Maciejewski (2016)

Littman (2012)

Time-Period Specific

Rosenberger (2011)
Kazerooni (2016)
Goodrich (2016)
Janney (2016)
Jackson (2015)

Noel (2012)

90,159 (91.1)
96,132 (97.4)
98,352 (99.4)
98,958 (100)
98,958 (100)

96,130 (97.1)

63,405 (64.1)
23,987 (24.2)
95,748 (95.7)
95,742 (96.8)
96,559 (97.6)

98,958 (100)

1,131,996 (96.3)
1,170,114 (99.5)
1,037,298 (88.2)
1,175,177 (99.9)
1,146,995 (97.5)

1,161,661 (98.8)

227,215 (19.3)
71,961 (6.1)
199,803 (17.0)
199,83( (17.0)
251,501 (21.4)

683,008 (58.1)

207.91 (48.29)
207.86 (48.27)
205.58 (46.37)
207.85 (48.25)
208.08 (48.13)

207.97 (48.14)

207.80 (46.23)
209.00 (47.95)
206.13 (45.42)
206.15 (45.46)
206.31 (45.52)

207.25 (46.13)

(60, 540)
(54, 727)
(70, 541)
(75, 694)
(62, 546)

(75, 546)

(0, 1314)
(0, 1233)
(80, 500)
(78, 546)
(76, 553)

(70, 588)




RESULTS: DESCRIPTIVES (CONT.)
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RESULTS: DESCRIPTIVES (CONT.)
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KEY TAKEAWAYS
SIMPLE DESCRIPTIVE STATISTICS

- Despite cleaning efforts, implausible values
remain in the data.

- For large cohorts of patients, the loss of data due to
algorithm choice does not appreciably change the
overall mean and variance.
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METHODS
WEIGHT AS A PREDICTOR

- To compare algorithms in this context, we present an example showing the
association between baseline weight and “new-onset” diabetes.

- We excluded patients with diabetes prior to the study index date and we defined
new-onset diabetes as the presence of two or more diabetes diagnosis codes after the
patient’s index date.

- We applied each of the 12 algorithms to create baseline weight measures
for the patients in our four cohorts, using weight measurements that occurred
during a 60-day window on or before the index date.

- The resulting baseline weight measure was the measurement that occurred on the
closest day to the index date.

- We used separate logistic regression models to obtain odds ratios for the effect
of patient weight on new-onset diabetes.




RESULTS: WEIGHT AS A PREDICTOR
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KEY TAKEAWAYS
WEIGHT AS A PREDICTOR

- Relatively small differences in effect size.

- Across algorithms, 95% Cls overlap substantially;
however, some of the time-period specific
algorithms have greater variation.
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METHODS
WEIGHT CHANGE OUTCOME

- A common metric used in weight loss studies involves one-year
weight loss > 5%.

- Similarly, we examined > 5% weight gain.

- To compare algorithms on this metric, we applied each algorithm to
our cohorts.

- We used a 60-day window to definite initial weight values and
included the weight measurement taken on the closest day to the
index date. To define one-year follow-up weights, we again used a 60-
day window around the date one year after baseline, keeping the
closest weight measurement.




RESULTS: WEIGHT CHANGE OUTCOME

Raw Weights

Utilize All Data

Buta 2018

Chan 2017
Maguen 2013
Breland 2017
Maciejewski 2016
Littman 2012

Time-Period Specific

Rosenberger 2011
Noel 2012
Kazerooni 2016
Jackson 2015
Goodrich 2016
Janney 2016

Patients Retained*

Weight loss 2 5% from baseline

Weight gain 2 5% from baseline

N (%) N (%) N (%)
60,286((60.9) 8,162 (13.5) 6,977 (11.6)
57,014/(57.6) 7,762 (13.6) 6,642 (11.6)
60,175/(60.8) 8,069 (13.4) 6,902 (11.5)
52,642((53.2) 4,933 (9.4) 4,088 (7.8)
60,225((60.9) 8,124 (13.5) 6,936 (11.5)
58,457((59.1) 7,985 (13.7) 6,810 (11.6)
59,773((60.4) 7,851 (13.1) 6,787 (11.4)
38,875/(39.3) 5,425 (14.0) 4,725 (12.2)
58,525((59.1) 7,786 (13.3) 6,624 (11.3)
23,987((24.2) 3,355 (14.0) 2,503 (10.4)
59,770((60.4) 7,973 (13.3) 6,494 (10.9)
58,142|(58.8) 7,828 (13.5) 6,668 (11.5)
58,171((58.8) 7,842 (13.5) 6,679 (11.5)

* Number of patients retained after applying the algorithm. Denominator = 98,958 (number of veterans in 2016 cohort)



RESULTS: WEIGHT CHANGE OUTCOME

Patients Retained* Weight loss 2 5% from baseline Weight gain 2 5% from baseline

N (%) N (%) N (%)
Raw Weights 60,286 (60.9) 8,162 (13.5) 6,977 (11.6)
Utilize All Data
Buta 2018 57,014 (57.6) 7,762 (13.6) 6,642 (11.6)
Chan 2017 60,175 (60.8) 8,069 (13.4) 6,902 (11.5)
Maguen 2013 52,642 (53.2) 4,938 (9.4) 4,088 (7.8)
Breland 2017 60,225 (60.9) 8,124/ (13.5) 6,936 (11.5)
Maciejewski 2016 58,457 (59.1) 7,985 (13.7) 6,810 (11.6)
Littman 2012 59,773 (60.4) 7,851/ (13.1) 6,787 (11.4)
Time-Period Specific
Rosenberger 2011 38,875 (39.3) 5,425 (14.0) 4,725 (12.2)
Noel 2012 58,525 (59.1) 7,786 (13.3) 6,624 (11.3)
Kazerooni 2016 23,987 (24.2) 3,355 (14.0) 2,503 (10.4)
Jackson 2015 59,770 (60.4) 7,973 (13.3) 6,494 (10.9)
Goodrich 2016 58,142 (58.8) 7,828 (13.5) 6,668 (11.5)
Janney 2016 58,171 (58.8) 7,842 (13.5) 6,679 (11.5)

* Number of patients retained after applying the algorithm. Denominator = 98,958 (number of veterans in 2016 cohort)
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58,525 (59.1) 7,786 (13.3) 6,624((11.3)
23,087 (24.2) 3,355 (14.0) 2,503((10.4)
59,770 (60.4) 7,973 (13.3) 6,494((10.9)
58,142 (58.8) 7,828 (13.5) 6,668|(11.5)
58,171 (58.8) 7,842 (13.5) 6,679|(11.5)

* Number of patients retained after applying the algorithm. Denominator = 98,958 (number of veterans in 2016 cohort)




RESULTS: WEIGHT CHANGE OUTCOME

Raw Weights

Utilize All Data

Buta 2018

Chan 2017
Maguen 2013
Breland 2017
Maciejewski 2016
Littman 2012

Time-Period Specific

Rosenberger 2011
Noel 2012
Kazerooni 2016
Jackson 2015
Goodrich 2016
Janney 2016

Average Weight Change from Baseline (lbs.)

Mean (SD) [Min, Max]
-0.29 (16.10) [-1006, 1069]
-0.60 (12.01) [-245, 278]
-0.58 (11.95) [-510, 278]
-0.37 (7.78) [-73, 98]
-0.60 (11.54) [-259, 207]
-0.61 (11.26) [-117, 195]
-0.49 (10.76) [-118, 108]
-0.68 (14.14) [-1002, 298]
-0.57 (11.48) [-245, 1995]
-0.95 (12.44) [-534, 299]
-0.70 (11.31) [-245, 230]
-0.60 (11.51) [-117, 205]
-0.61 (12.03) [-291, 281]




KEY TAKEAWAYS
WEIGHT CHANGE

- Weight gain and loss proportions are fairly
consistent across algorithms.

- Implausible values remain even after applying a
- possibly complicated - algorithm.
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METHODS
LONGITUDINAL WEIGHT TRAJECTORY

- Researchers may be interested in assessing weight trajectories within patient
over time, and potentially classifying patients according to their trajectory, or
examining whether types of patients respond differentially to interventions.

- Algorithm choice may impact the trajectory of individuals and their
measurements collected over time, especially for algorithms that severely reduce
the number of measurements left to analyze.

- Instead of aggregating patient weight over a specific time period, studies analyzing

welght measures utilize repeated measures designs, such as (generalized) linear
mixed models (LMM) or ANOVA/ANCOVAs for estimation.

- To compare algorithms in this context, we used a latent class mixed model that
assumes the population 1s heterogeneous and composed of some selected number of
latent classes characterized by specific trajectories.
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KEY TAKEAWAYS
LONGITUDINAL WEIGHT TRAJECTORY

- Algorithms that use all data to clean weight
measures appear to be more appropriate when
analyzing longitudinal trajectories.
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METHODS
FACILITY-LEVEL MEASURES

- Researchers and evaluators are often interested in comparing facilities
according to the percent of patients meeting a metric of interest.

- We used the raw data and each of the 12 algorithms to calculate the percent of
patients at each facility with:

- one-year weight loss > 5%
- one-year weight gain > 5%

- Our objective was to understand the impact of algorithm choice on calculated
facility level metrics therefore we examined unadjusted facility rates.

- We rank ordered facilities based on the percent of patients meeting each
metric.

- Compared the differences in the facility level percent of patients based on each
algorithm, grouping by those that use all data and time-period specific
algorithms.
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KEY TAKEAWAYS
FACILITY-LEVEL MEASURES

- With some exceptions, algorithms using all data
exhibit less variation 1n measurement.
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PRINCIPAL FINDINGS

- Differences between algorithms are minor, implying that
for many studies, a simpler algorithm design may be
computationally more efficient.

- In some cases, the results are not different than using
raw, unprocessed data, despite algorithm complexity.




RECOMMENDATIONS

- Studies using point estimates of weight and weight
change may benefit from a simple cleaning rule based on
cut-offs of implausible values.

- For trajectory analyses, time-period specific algorithms
may not be appropriate.

- For facility-level measures, all time-period specific
algorithms result in inconsistent results compared to
algorithms that use all data.




RECOMMENDATIONS

- We recommend including detailed information on how
measures are constructed in publications and/or share code
via open source repositories.
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LIMITATIONS

- Algorithms were reconstructed from published methods.
- Potential for misinterpretation.

- Lack of a gold standard to assess accuracy of algorithms.

- VA data, non-intervention/clinical sample
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WORKS IN PROGRESS

-Simulation study to address the lack of a gold
standard and large sample biases.




- Background
- Data Collection

- Algorithms
-« Methods & Results

« Descriptives
- Weight as a Predictor

* Weight Change
* Weight Trajectories
 Facility-Level Effect

- Findings & Recommendations
- Limitations

- Works in Progress

- Discussion/Q&A




Poll #3: How usetful are these
recommendations for your work?

Extremely useful
Very

Moderately
Slightly

Not at all useful



THANK YOU!

ADDITIONAL QUESTIONS OR
COMMENTS?

Contact Rich Evans at
Richard.Evans8@va.gov



mailto:Richard.Evans8@va.gov

Additional
Resources



VIReC Options for Specific Questions

HSRData Listserv HelpDesk

- Community knowledge * Individualized support

sharing

- ~1,400 VA data users _
virec@va.qov

- Researchers, operations,
data stewards, managers

(708) 202-2413

* Subscribe by visiting
http://vaww.virec.research.va.gov/Support/
HSRData-IL.htm (VA Intranet)



http://vaww.virec.research.va.gov/Support/HSRData-L.htm
mailto:virec@va.gov

Quick links for VA data

resources

Quick Guide: Resources for Using VA Data
http://vaww.virec.research.va.gov/Toolkit/QG-Resources-for-Using-VA-Data.pdf (VA Intranet)

VIReC: http://vaww.virec.research.va.gov/Index.htm (VA Intranet)

VIReC Cyberseminars: htip://www.virec.research.va.gov/Resources/Cyberseminars.asp

7

\

VHA Data Portal: http://vaww.vhadataportal.med.va.gov/Home.aspx (VA Intranet)

7

\

VINCI: http://vaww.vinci.med.va.gov/vincicentral/ (VA Intranet)

7

\

Health Economics Resource Center (HERC): htip://vaww.herc.research.va.gov (VA Intranet)

CDW: nhttps://vaww.cdw.va.gov/Pages/CDWHome.aspx (VA Intranet)

Archived cyberseminar: What can the HSR&D Resource Centers do for you?
http://www.hsrd.research.va.gov/for researchers/cyber seminars/archives/video archive.cfim?Session|D=101



http://vaww.virec.research.va.gov/Toolkit/QG-Resources-for-Using-VA-Data.pdf
http://vaww.virec.research.va.gov/Index.htm
http://www.virec.research.va.gov/Resources/Cyberseminars.asp
http://vaww.vhadataportal.med.va.gov/Home.aspx
http://vaww.vinci.med.va.gov/vincicentral/
http://vaww.herc.research.va.gov/
https://vaww.cdw.va.gov/Pages/CDWHome.aspx
http://www.hsrd.research.va.gov/for_researchers/cyber_seminars/archives/video_archive.cfm?SessionID=101

Next session:
May 4th at 1 pm Eastern

Database & Methods Cyberseminar Series

Ascertaining Veterans’ Vital Status:
Data Sources for Mortality
Ascertainment and Cause of Death

Charles Maynard, PhD

Register at
https://www.hsrd.research.va.gov/cyberseminars/
catalog-upcoming-session.cfm?UID=3783



https://www.hsrd.research.va.gov/cyberseminars/catalog-upcoming-session.cfm?UID=3783
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