Econometrics with Observational Data

Introduction and Identification Todd Wagner January 2023

U.S. Department of Veterans Affairs

leterans Health Administration Health Services Research & Development Service

Goals for Course

- VA researchers have access to large datasets (millions and billions of records)
- Turning these data from information to wisdom requires careful analyses
- In this course, we will
 Describe econometric tools and their strengths and limitations
 - -Use examples to reinforce learning

Course Schedule

Date	Title	Presenter(s)
1/11/23	Econometrics Seminar Series: Introduction & Identification	Todd Wagner, Ph.D.
1/18/23	Research Design	Laura Graham, Ph.D., M.P.H.
1/25/23	Propensity Scores	Todd Wagner, Ph.D.
2/1/23	Instrumental Variables	Kritee Gujral, Ph.D.
2/15/23	Regression Discontinuity	Liam Rose, Ph.D.
2/22/23	Natural Experiments & Difference-in-Difference	Jean Yoon, Ph.D.
3/1/23	Interval regression	Clara Dismuke-Greer, Ph.D.
3/8/23	Quantile regression	Diem Tran, Ph.D., M.P.P.
3/15/23	Multipart models of continuous outcomes	Peter Veazie, PhD
3/22/23	Right-hand Side Variables	Ciaran Phibbs, Ph.D.
3/29/23	Limited Dependent Variables	Ciaran Phibbs, Ph.D.
4/5/23	Fixed Effects and Random Effects	Josephine Jacobs, Ph.D.
4/19/23	Empirical Bayes	David Chan, M.D., Ph.D.
4/26/23	Cost as the Dependent Variable	Mark Bounthavong, Pharm.D., Ph.D.

https://www.herc.research.va.gov/include/page.asp?id=course-econometrics

Goals of Today's Class

- Are there ways to think about causation with observational data?
- Describe elements of an equation with an example
- Assumptions of the classic linear model

Terminology

- Confusing terminology is a major barrier to interdisciplinary research
 - Multivariable or multivariate
 - Endogeneity or confounding
 - -Interaction or Moderation
 - Hierarchical models or clustering
 - Maciejewski ML, Weaver ML and Hebert PL.
 (2011) Med Care Res Rev 68 (2): 156-176

Understanding Causation: Randomized Clinical Trial

- RCTs are the gold-standard research design for assessing causality
- What is unique about a randomized trial? - The treatment / exposure is randomly assigned
 - The exposure is exogeneous
- Benefits of (good) randomization: Causal inferences

Randomization

- Random assignment distinguishes experimental and non-experimental design
- Random assignment should not be confused with random selection
 - Selection can be important for generalizability (e.g., randomly-selected survey participants)
 - Random assignment is required for understanding causation

Limitations of RCTs

- RCTs are expensive and slow
- Generalizability to real life may be low <u>https://www.precis-2.org/</u>
- Hawthorne effect (both arms)
- Can be unethical to randomize people to certain treatments or conditions
- Quasi-experimental design can fill an important role

One Perspective:

₂7

Real-world studies no substitute for RCTs in establishing efficacy a 🔁

Hertzel C Gerstein, John McMurray and Rury R Holman Lancet, The, 2019-01-19, Volume 393, Issue 10168, Pages 210-211, Copyright © 2019 Elsevier Ltd

"In the absence of randomisation, analyses of most observational data from the real world, regardless of their sophistication, can only be viewed as hypothesis generating."

Can secondary data be used to understand causation?

Study: Coffee may make you lazy ^{Eeffee} nat linked ta psariasis

U.S. Department of Veterans Affairs

/eterans Health Administration Health Services Research & Development Service

Observational Data

- Widely available (especially in VA)
- Permit quick data analysis at a low cost
- May be realistic/ generalizable

Key covariate may not be exogenous – it may be endogenous

Endogeneity

 A variable is endogenous when it is correlated with the error term (assumption 4 in the classic linear model)

If there exists a *plausible* loop of causality between the independent and dependent variables, then there is endogeneity Example of Endogeneity: Testosterone Injections

- Research has correlated bone density and testosterone in men.
- Men generate different levels of testosterone.
 This is endogenous testosterone.
 - There may be many reasons why a man's internal testosterone is low/high
- Giving men exogenous testosterone (an injection) may lead to very different effects from those studies that examine endogenous testosterone.

Testosterone

- Endogeneity isn't necessarily a problem if you observe everything and can control for it.
- Different approaches
 - Control for observables as best we can (propensity scores)
 - Focus on variation that is exogenous (instrumental variables, regression discontinuity)
- But, there is no way to control for everything

Endogeneity

- Endogeneity can come from:
 - -Measurement error
 - -Autoregression with autocorrelated errors
 - -Simultaneity
 - -Omitted variables
 - -Sample selection

Econometrics vs Statistics

- Often use different terms
- Cultural norms
 - In health economics if it seems endogenous, it probably is
 - Underlying data generating model is economic.
 Rational actors concerned with
 - Profit maximization
 - Quantity maximization
 - Time minimization
 - Random and fixed effects
 - Propensity scores

Elements of an Equation

U.S. Department of Veterans Affairs

Health Services Research & Development Service

Veterans Health Administration

Terms

- Univariate— the statistical expression of one variable
 - Bivariate the expression of two variables
- Multivariate the expression of more than one variable (can be dependent or independent variables)

Dependent variable Outcome measure

Error Term

Note the similarity to the equation of a line (y=mx+B)

 $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

"i" is an index.

If we are analyzing people, then this typically refers to the person

There may be other indexes

Error Term

Error Term

Error term

- Error exists because
 - 1. Other important variables might be omitted
 - 2. Measurement error
 - 3. Human indeterminacy
 - Your goal
 - Understand error structure
 - minimize error

See Kennedy, P. <u>A Guide to Econometrics</u>

Example: is height associated with income?

 $Y_i = \beta_0 + \beta_1 X_i + \mathcal{E}_i$

Y=income; X=height

 Hypothesis: Height is not related to income (B₁=0)

If
$$B_1=0$$
, then what is B_0 ?

Height and Income

How do we want to describe the data?

Estimator

- A statistic that provides information on the parameter of interest (e.g., height)
- Generated by applying a function to the data
- Many common estimators
 - -Mean / median of income (univariate)
 - -Mean of income and by height (bivariate)
 - Mean of and by height controlling for other variable (multivariate)

Ordinary Least Squares (OLS)

We are using this line to represent a relationship between height and income

Is this linear relationship correct?

Other estimators

- Least absolute deviations
- Maximum likelihood
- Non-linear

Choosing an Estimator

- Least squares
- Unbiasedness
- Efficiency (minimum variance)
- Asymptotic properties
- Maximum likelihood
- Goodness of fit
- We'll talk more about identifying the "right" estimator throughout this course.

How is the OLS fit?

What about gender?

- How could gender affect the relationship between height and income?
 - -Gender-specific intercept
 - –Interaction

Gender Indicator Variable

 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \varepsilon_i$

income

height

Gender Intercept

Gender-specific Indicator

Interaction

Gender Interaction

Identification

- Is an association meaningful?
- Should we change behavior or make policy based on associations?
- For many people, associations are insufficient evidence, and we need to identify the <u>causal</u> relationship
- Identification requires that we meet all 5 assumptions in the classic linear model

Questionable science can lead to questionable policy

- Example: Bicycle helmet laws
- In laboratory experiments, helmets protect the head
- This may not translate to the real road
 - Do bikers behave differently when wearing a helmet?
 - Do drivers behave differently around bikers with/without helmets?
 - Do helmet laws have unintended consequences? (low uptake of bike share)

Classic Linear Regression (CLR)

Assumptions

U.S. Department of Veterans Affairs

Veterans Health Administration Health Services Research & Development Service

Classic Linear Regression

- No "superestimator"
- CLR models are often used as the starting point for analyses
- 5 assumptions for the CLR
- Variation in these assumptions will guide your choice of estimator (and happiness of your reviewers)

Assumption 1

- The dependent variable can be calculated as a linear function of a specific set of independent variables, plus an error term
- For example,

 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + \varepsilon_i$

Violations to Assumption 1

- Omitted variables
- Non-linearities

 Note: by transforming independent variables, a nonlinear function can be made from a linear function

Testing Assumption 1

- Theory-based transformations (e.g., Cobb-Douglas production)
- Empirically-based transformations
- Common sense
- Ramsey RESET test
- Pregibon Link test

Ramsey J. Tests for specification errors in classical linear least squares regression analysis. *Journal of the Royal Statistical Society.* 1969;Series B(31):350-371.

Pregibon D. Logistic regression diagnostics. *Annals of Statistics.* 1981;9(4):705-724.

Assumption 1 and Stepwise

- Statistical software allows for creating models in a "stepwise" fashion
- Don't use it
 - -Little penalty for adding a nuisance variable
 - BIG penalty for missing an important covariate
- There are better methods for model building

Bias if Gender is Ignored

Assumption 2

Expected value of the error term is 0

E(u_i)=0

- Violations lead to biased intercept
- A concern when analyzing cost data (Smearing estimator when working with logged costs)

Assumption 3

- IID– Independent and identically distributed error terms
 - Autocorrelation: Errors are uncorrelated with each other
 - Homoskedasticity: Errors are identically distributed

Heteroskedasticity

Violating Assumption 3

Effects

- OLS coefficients are unbiased
- OLS is inefficient
- Standard errors are biased
- Plotting is often very helpful
- Different statistical tests for heteroskedasticity
 - -GWHet--but statistical tests have limited power

Fixes for Assumption 3

Transforming dependent variable may eliminate it

Robust standard errors (Huber White or sandwich estimators)

Assumption 4

- Observations on independent variables are considered fixed in repeated samples
- $E(x_i u_i | x) = 0$
- Violations
 - -Errors in variables
 - -Autoregression
 - -Simultaneity

- Endogeneity

Assumption 4: Errors in Variables

- Measurement error of dependent variable (DV) is maintained in error term
- OLS assumes that covariates are measured without error

Error in measuring covariates can be problematic

Common Violations

- Including a lagged dependent variable(s) as a covariate
- Contemporaneous correlation
 Hausman test (but very weak in small samples)
- Potential solutions: instrumental variables, regression discontinuity (discussed in future classes)

Assumption 5

- Observations > covariates
- No multicollinearity
- Solutions
 - -Remove perfectly collinear variables
 - -Increase sample size

Regression References

- Kennedy <u>A Guide to Econometrics</u>
- Greene. <u>Econometric Analysis</u>.
- Wooldridge. <u>Econometric Analysis of</u> <u>Cross Section and Panel Data</u>.

Any Questions?

herc@va.gov Todd.wagner@va.gov twagner@Stanford.edu

