#### Decision Analysis: an Overview

#### Liam Rose, PhD

#### January 2024

Acknowledgement: Risha Gidwani-Marzowski, DrPH





**U.S. Department of Veterans Affairs** 

Veterans Health Administration Health Services Research & Development Service

## Today

- Why to use decision analysis
- Overview of different types of decision analysis
  - -CEA, CBA, CCA, BIA
  - Introduce concepts used in upcoming HERC lectures

#### HERC Cost Effectiveness Analysis Series

| Date    | Title                                                                                     |
|---------|-------------------------------------------------------------------------------------------|
| 1/17/24 | An Overview of Decision Analysis                                                          |
| 1/24/24 | Introduction to Effectiveness, Patient Preferences, and Utilities                         |
| 1/31/24 | Estimating the Cost of an Intervention                                                    |
| 2/7/24  | Estimating the Cost of Treatment Using VA and DoD Data                                    |
| 2/14/24 | Introduction to Markov models for cost-effectiveness analysis – Part 1                    |
| 2/21/24 | Use and Cost of Low-Value Health Services by Veterans in VA and non-VA Settings (Seminar) |
| 2/28/24 | Introduction to Markov models for cost-effectiveness analysis – Part 2                    |
| 3/6/24  | Advanced Decision Science Methods                                                         |
| 3/13/24 | Budget Impact Analysis for Implementation Science                                         |
| 4/27/24 | CEA Alongside a Clinical Trial                                                            |
| 4/3/24  | Budget Impact Analysis                                                                    |

## Don't forget to submit your questions throughout!

#### What is decision analysis?

- A broad definition for making tough decisions
- Ever write down a pro and con list? Like that but with numbers!
- Bring in all available information, even if it is best guesses about relative unknowns

## Why engage in decision analysis?

- Trying to solve a problem
- Have a number of interventions to choose from
- No clear answer on which is best
  - With one clearly superior option, decision analysis may be unneeded or trivial
- Inefficiencies and limited resources
  - Cannot simply try every intervention
  - Example: Should I take a new job? Should I buy a new car? Should we expand the ICU? Costly to reverse course!

## Why engage in decision analysis?

- Not all "pros" and "cons" are equal:
  - Don't want to just count up the pros and cons
  - Consequences of each pro/con
  - Probability of each pro/con
    - Variation in probability
  - Weigh the pros and cons of each intervention to make an informed decision
    - Logical
    - Transparent
    - Quantitative

#### Pros and cons

- Option A:
  - 80% probability of cure
  - 2% probability of serious adverse event
- Option B:
  - 90% probability of cure
  - 5% probability of serious adverse event
- Option C:
  - 98% probability of cure
  - 1% probability of treatment-related death
  - 1% probability of minor adverse event

## Opportunity costs

Choosing one option means forgoing another
 Due to funding/resources/profit motive
 Due to mutual exclusivity

#### Examples:

- Should we hire more staff or engage in more contracting? (limited resources)
- Operative or nonoperative management for condition X? (mutually exclusive)

#### Recap, Why to use Decision Analysis

- Allocation of limited resources
- Each intervention has pros and cons
- Each intervention is different:
  - Condition/population
  - Cost
  - Health outcome

#### Advantages of Decision Analysis

- Evaluates each intervention using the same measure(s)
- Compare results using the same metric:
   Costs
  - -Cost per Life Year Saved
  - -Cost per Quality-Adjusted Life Year (QALY)

## Decision Analysis can be applied to...

- Drugs
- Procedures
- Health programs
- Screening
- Vaccines
- Reimbursement decisions
- Etc.

## Types of decision analysis





**U.S. Department of Veterans Affairs** 

Veterans Health Administration Health Services Research & Development Service

## Types of decision analysis

- Cost-effectiveness analysis (CEA)
- Cost-benefit analysis (CBA)
- Cost-consequence analysis (CCA)
- Budget impact analysis (BIA)

#### Decision Analyses are comparative

- CEA, CBA, CCA, and BIA evaluate one option in relation to another
- That other option can be:
  - standard of care
  - -"do nothing"
  - another active intervention

#### Cost-Effectiveness Analysis (CEA)

#### Ratio of Costs to Health effects

- Health effects can be anything
  - Life-years, cancer cases, number of infections, etc.
- Costs

What implementation would cost over a time frame

#### CEA and ICERs

- Cost-Effectiveness Analyses compare the impact of <u>2 or more</u> interventions
- Result is an Incremental Cost-Effectiveness Ratio (ICER):

$$ICER = \frac{Cost_B - Cost_A}{Health \ Effect_B - Health \ Effect_A}$$

## Cost-Utility Analysis

- A particular form of cost-effectiveness analysis
- It isn't immediately obvious how "health effect" should be measured
  - If you had a cold this winter, how much less health were you then versus now?
- Here, "health effect" is a Quality-Adjusted Life Year (QALY)

#### QALY is derived from Utility

#### CUA

Both compare 2 or more interventions, CUA defines "health effect" QALY

| Method  | Cost-Effectiveness<br>Analysis         | Cost-Utility<br>Analysis      |
|---------|----------------------------------------|-------------------------------|
| Outcome | $\Delta$ Cost / $\Delta$ Health Effect | $\Delta$ Cost / $\Delta$ QALY |

#### QALYs and Utilities

QALY = # of years of life \* Utility of life

Example:

- -# of years of life lived = 5
- Utility = 0.8
- -QALY = 5 \* 0.8 = 4.0
- An (imperfect) method of standardizing the value of life across health states and preferences

#### Utilities

#### Preference for health

- Not just a measure of health!

#### Combine:

- Health state a person is in
- Valuation of health state

#### Conventionally range from 0-1

- -0 = death
- 1.0 = perfect health
- One QALY is one hear in perfect health

More info in upcoming HERC lecture (April 27)

#### **Utility Calculations**

| Variable                | Jane's<br>health<br>(0-1) | Jane's<br>valuation<br>(sum to 1) |       | Joe's<br>Health<br>(0-1) | Joe's<br>valuation<br>(sum to 1) |       |
|-------------------------|---------------------------|-----------------------------------|-------|--------------------------|----------------------------------|-------|
| ADL                     | 0.8                       | 0.15                              | 0.12  | 0.8                      | 0.50                             | 0.40  |
| Exercise                | 0.2                       | 0.40                              | 0.08  | 0.2                      | 0.10                             | 0.02  |
| Mental<br>Clarity       | 0.4                       | 0.40                              | 0.16  | 0.4                      | 0.25                             | 0.10  |
| Emotional<br>well-being | 0.9                       | 0.05                              | 0.045 | 0.9                      | 0.15                             | 0.135 |
| Total                   |                           | 1.0                               | 0.405 |                          | 1.0                              | 0.655 |

## Utility $\rightarrow$ QALY

Jane's utility is 0.405

 Jane lives for 10 years
 0.405 \* 10 = 4.05
 QALYs

 Jane lives for 12 years

 0.405 \* 12 = 4.86
 QALYs

-Joe lives for 5 years - 0.655 \* 5 = 3.275 QALYs

Joe's utility is 0.655
 Joe lives for 10 years
 - 0.655 \* 10 = 6.55
 QALYs

## Advantages of Utilities/QALYs

- Incorporate morbidity and mortality into a single measure
- Allows for comparison across disparate strategies
  - Newborn screening versus prostate cancer treatment
  - Early childhood education versus community health centers
  - Programs/interventions being considered may otherwise have very different outcome goals

#### Disadvantages of Utilities/QALYs

- Eliciting preferences is very hard
  - -Time varying
  - -Context dependent
  - -Information asymmetry
  - -Future uncertainty
- Assumptions can be made clear, but it does not make them stable or correct

#### ICERs in a CUA, Example

$$ICER = Cost_{B} - Cost_{A}$$

$$\overline{QALY_{B} - QALY_{A}}$$

|              | Program A                                         | Program B                 |
|--------------|---------------------------------------------------|---------------------------|
| Intervention | Mobile text messaging for<br>medication adherence | Diabetes care coordinator |
| Cost         | \$40,000                                          | \$150,000                 |
| QALYs        | 25                                                | 35                        |

$$ICER = \frac{\$150,000 - \$40,000}{35 - 25} = \frac{\$110,000}{10} = \frac{\$11,000}{Cost-Effective}$$

## Cost saving

#### Cost-effective ≠ cost-saving!!

| Cost-Saving                        | Cost-Effective                                  |
|------------------------------------|-------------------------------------------------|
| Cost less, provides greater health | Costs more, provides proportionally more health |
|                                    | Costs less, provides proportionally less health |

#### **Cost-Effective**

Cost-Effective:

Program B costs more than Program A, but
 Program B provides proportionally more health
 benefit than Program A

- Proportional?
  - ICER is < Willingness to Pay Threshold
  - This could be what society is willing to pay, the government, the insurance company, etc.

## Willingness to Pay (WTP)

- U.S. -\$50,000/QALY stated, but not used for much
  - Willing to pay up to \$50,000 for one <u>additional</u> QALY

Arbitrary, heavily criticized
 Not an empirically-derived threshold

#### Thresholds for WTP

- Panel on Cost-Effectiveness in Health and Medicine does not endorse any WTP threshold
- Recommend to compare your results to a range of thresholds
- NICE (U.K.) does not have an explicit threshold for reimbursement
  - Recommended results are presented using WTP of £20,000 and £30,000

## Example in VA

- ICER analysis of Leqembi (lecanemab) for Alzheimer's
- Found to be cost effective if priced between \$8,900-\$21,500
- List price at the time of \$26,500, reports it was negotiated below \$21,500
- Similar drug (Aduhelm) listed at more than 50k turned down for formulary

## Cost-Benefit Analysis





**U.S. Department of Veterans Affairs** 

Veterans Health Administration Health Services Research & Development Service

#### **Cost-Benefit Analysis**

- Costs and Effects are expressed entirely in dollar terms
  - Convert health effect  $\rightarrow$  cost

#### Net social benefit =

Incremental Benefit (cost) – Incremental costs

If Net social benefit is positive, then program is worthwhile

## Assigning a dollar value to life

- Willingness to Pay (WTP)
  - Examine revealed WTP or elicit WTP
  - Framing effects, loss aversion, age-related effects, varying levels of disposable income, risky behavior
  - Human Capital Approach
    - Use projected future earnings to value a life
    - Commonly used in disability cases

#### Cost-Benefit Analysis in Healthcare/Medicine

- Very rarely used:
  - Discomfort of assigning a dollar value to life
  - -Very hard to encapsulate all costs even in small interventions
    - Patient time, transportation, informal caregiving, etc
  - Problems with evaluating quality of life and converting to dollar amounts

## Cost Consequence Analysis





**U.S. Department of Veterans Affairs** 

Veterans Health Administration Health Services Research & Development Service

#### **Cost-Consequence** Analysis

- Compare the costs and consequences (health outcomes) of multiple interventions
- Different from CEA and cost-benefit analysis because each cost and consequence is listed separately

| Cost components                    | Drug A |       | Drug B |       |
|------------------------------------|--------|-------|--------|-------|
|                                    | units  | costs | units  | costs |
| Direct medical care use/costs      |        |       |        |       |
| Drug A/B                           |        |       |        |       |
| Other drugs                        |        |       |        |       |
| Physician visits                   |        |       |        |       |
| Hospital stays                     |        |       |        |       |
| Home care                          |        |       |        |       |
| Other medical care (e.g. dialysis) |        |       |        |       |
| Direct nonmedical care use/cos     | sts    |       |        |       |
| Transportation                     |        |       |        |       |
| Crutches and other equipment       |        |       |        |       |
| Paid caregiver time                |        |       |        |       |
| Indirect resource use/costs        |        |       |        |       |
| Time missed from work for          |        |       |        |       |
| patient                            |        |       |        |       |
| Time missed from work for          |        |       |        |       |
| Time missed from other activities  |        |       |        |       |
| for patient                        |        |       |        |       |
| Time missed from other activities  |        |       |        |       |
| for unpaid caregiver               |        |       |        |       |
| Total direct and indirect costs    |        |       |        |       |
| Symptom impact                     |        |       |        |       |
| Patient distress days              |        |       |        |       |
| Patient disability days            |        |       |        |       |
| Quality-of-life impact             |        |       |        |       |
| Quality-adjusted life-years        |        |       |        |       |
| decrement                          |        |       |        |       |
| Quality-of-life profile measure    |        |       |        |       |

scores

Masukopf et al. Cost-Consequence Analysis in Decision Making. *Pharamcoeconomics*. 1998. 13 (3): 277-288.

#### Benefits and Drawbacks of CCA

#### Advantages

 Draws attention to specific aspects of cost or health outcomes that are most impacted

#### Disadvantages

- Does not indicate relative importance of various items
- Users may reach different conclusions about which intervention to pursue

# Budget-Impact Analysis





**U.S. Department of Veterans Affairs** 

Veterans Health Administration Health Services Research & Development Service

#### **Budget Impact Analysis**

Estimate the financial consequences of adopting a new intervention.

- Usually performed in addition to a cost-effectiveness analysis
  - CEA: does the intervention provide good value?
  - -BIA: can we afford it?
  - Can make it easier to say this in two parts: health effects, then costs

## BIA, example

Drug A has an ICER of \$28,000 per QALY compared with Drug B. It is cost-effective.

Drug B costs \$70,000.

Therefore, Drug A costs \$98,000. There are 10,000 people eligible for Drug A, resulting in a total cost of \$980 million dollars.

#### BIA tells us

- The true "unit" cost of the intervention
- The number of people affected by the intervention
- An understanding of the total budget required to fund the intervention

#### CEA versus BIA

|         | CEA                                        | BIA                              |
|---------|--------------------------------------------|----------------------------------|
| Purpose | Does this intervention provide high value? | Can we afford this intervention? |
|         |                                            |                                  |
|         |                                            |                                  |

#### Lecture on BIA on April 3<sup>rd</sup>!

# Approaches to Decision Analysis





**U.S. Department of Veterans Affairs** 

Veterans Health Administration Health Services Research & Development Service

#### Methods for decision analysis

Modeling

#### Measurement alongside a clinical trial

#### Types and Methods for Decision Analysis

|                                | Measurement alongside<br>a clinical trial | Modeling |
|--------------------------------|-------------------------------------------|----------|
| Cost-Effectiveness<br>Analysis | X                                         | X        |
| Cost-Benefit<br>Analysis       | X                                         | X        |
| Budget Impact<br>Analysis      |                                           | X        |

#### Measurement alongside a trial

"Piggyback" onto an existing RCT

- Collect extra information from patients enrolled in the trial
  - -Utilization (use this to assign costs)
  - -Utilities
  - -(Efficacy and AEs are already being collected)

More on using CEA with an RCT in lecture on April 27<sup>th</sup>!

## Modeling

- No real-world experiment exists
- Build a mathematical framework to understand the relationship between inputs and outputs
- Build model structure in software, populate it with inputs (from literature). Run model to derive outputs
- You decide on the boundaries of the analysis
  - Time frame, population, interventions of interest

## Modeling versus Measurement

|                       | Measurement                                                                                                                                                                                     | Modeling                                                                  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Treatments considered | • Only the ones in the RCT (which may include placebo)                                                                                                                                          | • Any of interest – But data also come from RCTs                          |
| Advantage             | <ul> <li>Design case-report forms</li> <li>Individual-patient data<br/>(subgroup analysis)</li> <li>Utilities may be more accurate<br/>(treatment and health condition<br/>specific)</li> </ul> | • Don't need to wait for a trial to be funded to do your analysis         |
| Disadvantage          | <ul> <li>Short time frame – will still have<br/>to project beyond the trial</li> <li>Will not provide all of your<br/>inputs</li> </ul>                                                         | • Inputs need to come from similar studies on your population of interest |
|                       | • Utilities come from patient perspective, rather than community                                                                                                                                |                                                                           |

## **Cost-effectiveness** Analysis for Resource Allocation





**U.S. Department of Veterans Affairs** 

eterans Health Administration Health Services Research & Development Service

#### How is CEA used for decision making?

- Ex-US: Used by NICE (U.K.), PBAC (Australia), CADTH (Canada) for regulatory/market access purposes
- US: Medicare has historically not used costeffectiveness to drive coverage decisions, ACA
   Home / News / Business News

#### Medicare Limits Coverage of \$28,000-A-Year Alzheimer's Drug

Medicare says it will limit coverage of a \$28,000-a-year Alzheimer's drug whose benefits have been widely questioned.

By Associated Press Jan. 11, 2022, at 8:45 p.m.



#### U.S. Cost-Effectiveness Analysis

- Pharmaceutical companies international markets
- Academia
- Veterans Health Administration

NOT used by FDA or CMS

#### Summary

- Major types of decision analysis:
  - Budget Impact Analysis
  - Cost-Benefit Analysis
  - Cost-Consequence Analysis
  - Cost-Effectiveness Analysis
    - <u>Cost-Utility Analysis QALYs</u>, a measure of morbidity and mortality
- Operationalize your decision analysis:
   Measurement alongside a clinical trial, or
   Modeling
- Cost-effective ≠ cost-saving!

#### Resources: Decision Analysis and CEA

- Neuman PJ, Saunders GD, Russell LB, Siegel JE, Ganiats TG, eds. Cost-Effectiveness in Health and Medicine. Second Edition. New York: Oxford University Press; 2017.
- Gold MR, Siegel JE, Russell LB, Weinstein MC, eds. Cost-Effectiveness in Health and Medicine. New York: Oxford University Press; 1996.
- Hunink M, Glasziou P, Siegel J, et al. Decision Making in Health and Medicine: Integrating Evidence and Values. Cambridge, UK: Cambridge Press; 2004.
- Muennig P. Designing and Conducting Cost-Effectiveness Analyses in Medicine and Health Care. San Francisco, CA: Jossey-Bass; 2002.

## Questions?

#### liam.rose@va.gov





**U.S. Department of Veterans Affairs** 

Veterans Health Administration Health Services Research & Development Service