Introduction to Markov models for cost-effectiveness analysis

14 February 2024

DISCLOSURES AND DISCLAIMERS

The author has no relevant financial or nonfinancial relationships to disclose.

During the development, analysis, and preparation of this presentation, the author was an employee of the Veterans Health Administration, U.S. Department of Veterans Affairs.

The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the official policy or position of any agency of the U.S. government.

DOWNLOAD FILES FROM GITHUB

Makov-model-tutorials / Excel files / Markov model.xlsx	
mbounthavong Updates files 2	6f0e305 · 2 months ago 🕚 History
Code Blame 101 KB 🔀 Code 55% faster with GitHub Copilot	Raw (🖵 🗶 🖌 🗸
View raw	

Right-click and save link as on your computer

Link to GitHub page

OUTLINE

Limitations of decision trees Markov model description Markov model features Markov chain versus process Discounting and Inflation

LIMITATIONS OF DECISION TREE (1)

Chronic diseases have long time horizons

Can't possibly capture all the re-entry points in a decision tree (becomes repetitive)

Markov re-entry nodes are convenient; decision branches are messy

Markov models are good alternatives to decision trees

LIMITATIONS OF DECISION TREE (2)

LIMITATIONS OF DECISION TREE (3)

This part of the decision tree is a repeat of the Illness node.

When a subject has an illness, they can live or die. If they live and have another illness, they can live or die once again.

This cycle repeats itself over and over.

LIMITATIONS OF DECISION TREE (4)

LIMITATIONS OF DECISION TREE (5)

Well \rightarrow Well Well \rightarrow Illness Well \rightarrow Death

Illness \rightarrow Illness Illness \rightarrow Well Illness \rightarrow Death

Death \rightarrow Death

MARKOV MODEL STRUCTURE

MARKOV MODEL - DESCRIPTION

Markov models are state-transition models Useful when modeling chronic diseases Each state represents a disease stage (or process) Costs and benefits are assigned to each state Can apply discounting Individual subject can only be in one state at any cycle

MARKOV MODEL – DISEASE STATES

Asymptomatic state Disease state Absorbing state

MARKOV MODEL – TRANSITION PROBABILITIES (1)

Death \rightarrow Death tp7

MARKOV MODEL – TRANSITION PROBABILITIES (2)

If you have tp2 and tp3, then tp1 = 1 - tp2 - tp3

Death \rightarrow Death tp7

MARKOV MATRIX

From / To	Well	lliness	Dead
Well	tp1 (1 – tp2 – tp3)	tp2	tp3
lliness	tp5	tp4 (1 – tp5 – tp6)	tp6
Dead	0	0	tp7

MARKOV MODEL – FEATURES

One iteration = Cycle X-iterations = Time horizon

Markov chain – static transitions Markov process – dynamic transitions

MARKOV CHAIN VERSUS PROCESS (2)

Markov chain – static transitions

Markov process – dynamic transitions

Transition probabilities remain static If tp1 = 0.90 is cycle 1, then tp1 = 0.90 in cycle 2

Markov chain - static transitions

Markov process – dynamic transitions

Transition probabilities change from cycle to cycle Although tp1 = 0.90 is cycle 1, tp1 = 0.85 in

cycle 2

Markov chain – static transitions

Markov process – dynamic transitions

This is useful when the cohort will have a lower survival over a long period of time

COHORT VERSUS MICROSIMULATIONS (1)

Cohort simulation

Model a group of hypothetical patients at the same time Time horizon is fixed Computationally less intensive Individual or microsimulations (Monte Carlo) Individuals are modeled through the Markov models one at a time Time for each patient can be short or long **Computationally intensive**

COHORT VERSUS MICROSIMULATIONS (1)

Cohort simulation Individual or microsimulations

COHORT VERSUS MICROSIMULATIONS (2)

COHORT VERSUS MICROSIMULATIONS (3)

Cohort simulation

COHORT VERSUS MICROSIMULATIONS (4)

Cohort simulation

COHORT VERSUS MICROSIMULATIONS (5)

Cohort simulation

COHORT VERSUS MICROSIMULATIONS (6)

Cohort simulation

Individual or microsimulations

Tunnel states are used to force the model to consider the previous state

COHORT VERSUS MICROSIMULATIONS (7)

COHORT VERSUS MICROSIMULATIONS (8)

Cohort simulation

COHORT VERSUS MICROSIMULATIONS (9)

Cohort simulation

COHORT VERSUS MICROSIMULATIONS (10)

COHORT VERSUS MICROSIMULATIONS (11)

Cohort simulation

COHORT VERSUS MICROSIMULATIONS (12)

Cohort simulation

Estimating transition probabilities

Using existing studies to estimate probabilities for decision models

ESTIMATING TRANSITION PROBABILITIES (1)

Rate – Instantaneous likelihood of transition at any point in time (e.g., 5 events per 100 Person Years)

Probability – Proportion of a cohort that experiences the event over a specific period (e.g., 90% of patients had the event)

To get the transition probabilities in a Markov model using an existing study, estimate the rate, then estimate the probability for the time of interest using the rate

Estimating the probability from a study: Probability from study \rightarrow Rate \rightarrow Probability for model

$$Rate = \frac{-\ln(1-p)}{t}$$

 $Probability = 1 - e^{-rt}$

p probability t time r rate

ESTIMATING TRANSITION PROBABILITIES (3)

If the 5-year probability of achieving a cure is 90%, what is the 1-year probability?

You can't divide the 5-year probability by 5 (e.g., 90% / 5 = 18% to get the annual rate)

Probability
from study
$$\implies Rate = \frac{-\ln(1-p)}{t} \implies P(t) = 1 - e^{-rt}$$
$$P(5 \text{ years}) = 90\% \implies Rate = \frac{-\ln(1-0.90)}{5 \text{ years}} = 0.46 \implies P(1 \text{ year}) = 1 - e^{-(0.46)(1 \text{ year})} = 0.37$$

ESTIMATING TRANSITION PROBABILITIES (4)

ESTIMATING TRANSITION PROBABILITIES (5)

Suppose you had data from a meta-analysis where the relative risk of cure is 2.0 with a drug

What is the 1-year probability of cure using an annual rate of cure that is 0.47? (Hint: Is it not 2 x 0.47)

RR * rate $P(t) = 1 - e^{-rt}$ 2.0 X 0.47 = 0.94 $P(1 \text{ year}) = 1 - e^{-(0.94)(1 \text{ year})} = 0.61$

Discounting and inflation

Adjusting costs and outcomes for long time horizons

DISCOUNTING AND INFLATION

Net Present Value: Current purchasing power of currency

What is today's value of \$1 10 years from now using a 3% discount rate?

$$V_0 = \frac{V_t}{(1+r)^t} \qquad \Longrightarrow \quad \$0.74 = \frac{\$1}{(1+0.03)^{10}}$$

 V_0 = Value in today's term V_t = Value at time t in the future r = Discount rate t = Time in the future

What is today's value of \$1 from 10 years ago using the Consumer Price Index?

CPI Inflation Calculator
\$ 1.00 in January \checkmark 2012 \checkmark has the same buying power as \$1.24 in January \checkmark 2022 \checkmark Calculate

Use the <u>CPI inflation calculator</u> on the BLS website

Markov models using Excel Tutorial on building Markov models in Excel

FILE LOCATION

You can download the Excel file from the workshop's <u>GitHub</u> site

Makov-model-tutorials Public				⊙ Unwatch 1
🐉 main 👻 🐉 1 Branch 🛇 0 Tags		Q Go to file	t Add file 🔻	<> Code -
mbounthavong Update README.md				17 Commits
Excel files	update files			last week
Presentations	Delete ~\$H	ERC - Markov models.pptx		3 months ago
Readings	update files			last week
University of Pittsburgh tree builder	update files			last week
README.md	Update REA	ADME.md		last week
C README				

Introduction to Markov models in Cost-Effectiveness Analysis

SETTING UP THE MARKOV MODEL

List all the transitions

Transition states	<u>Variable</u>	Probability	Description
Well> Well	1 - tp(well_illness) - tp(well_dead)	0.83	Remain in the Well state
Well> Illness	tp(well_illness)	0.15	Transition from Well to Illness
Well> Dead	tp(well_dead)	0.02	Transition from Well to Death
Illness> Illness	1 - tp(illness_well) - tp(illness_dead)	0.65	Remain in the Illness state
Illness> Well	tp(illness_well)	0.30	Transition from Illness to Well
Illness> Dead	tp(illness_dead)	0.05	Transition from Illness to Death
Dead > Dead	tp(dead)	1.00	Remain in Death (Absorbing state)

MARKOV MATRIX

From / To	Well	Illness	Dead
Well	0.83	0.15	0.02
Illness	0.30	0.65	0.05
Dead	0	0	1.00

ASSIGN COSTS AND UTILITIES TO THE STATES

Since the costs and utilities are specific to each state you can list them in a table

Transition states	Costs	Utility	<u>Description</u>
Well	\$500.00	1.00	These parameers are fictional
Illness	\$2,000.00	0.50	These parameers are fictional
Dead	\$0.00	0.00	These parameers are fictional

Each cycle is 1 year Simulate for 100 years (or 100 cycles) Apply an annual discount rate of 3% on costs and outcomes

MATHEMATICAL MODEL

Cohort size

1

We start at cell E12

1	. cycle = 1 year	Expected pro	babilities		
	Cycle	Well	Illness	Dead	Total
	0	1.0000	0.0000	0.0000	1
	1	0.8300	0.1500	0.0200	1
	2	0.7339	0.2220	0.0441	1
	3	0.6757	0.2544	0.0699	1
	4	0.6372	0.2667	0.0961	1
	5	0.6089	0.2689	0.1222	1
	6	0.5860	0.2661	0.1478	1
	7	0.5663	0.2609	0.1728	1
	8	0.5483	0.2545	0.1972	1
	9	0.5314	0.2477	0.2209	1
	10	0.5154	0.2407	0.2439	1

MATHEMATICAL MODEL

At cycle 0, all subjects will start at the "Well" state. In the cell, the formula is: =\$G\$6 * 1 The "\$" denotes that the column / row does not change. Cohort size 1

The size of the cohort. We'll set this at 1. The cell is G6.

Cycle Well Illness Dead Total 0 1.0000 0.0000 0.0000 1 1 0.8300 0.1500 0.0200 1 2 0.7339 0.2220 0.0441 1 3 0.6757 0.2544 0.0699 1 4 0.6372 0.2667 0.0961 1	1 cycle = 1	year	Expected pro	babilities		
0 1.0000 0.0000 0.0000 1 1 0.8300 0.1500 0.0200 1 2 0.7339 0.2220 0.0441 1 3 0.6757 0.2544 0.0699 1 4 0.6372 0.2667 0.0961 1	Cvcle		Well	Illness	Dead	Total
1 0.8300 0.1500 0.0200 1 2 0.7339 0.2220 0.0441 1 3 0.6757 0.2544 0.0699 1 4 0.6372 0.2667 0.0961 1		0	1.0000	0.0000	0.0000	
2 0.7339 0.2220 0.0441 1 3 0.6757 0.2544 0.0699 1 4 0.6372 0.2667 0.0961 1		1	0.8300	0.1500	0.0200	1
3 0.6757 0.2544 0.0699 1 4 0.6372 0.2667 0.0961 1		2	0.7339	0.2220	0.0441	1
4 0.6372 0.2667 0.0961 1		3	0.6757	0.2544	0.0699	1
0.0072 0.2007 0.0001		4	0.6372	0.2667	0.0961	1
5 0.6089 0.2689 0.1222 1		5	0.6089	0.2689	0.1222	1
6 0.5860 0.2661 0.1478 1		6	0.5860	0.2661	0.1478	1
7 0.5663 0.2609 0.1728 1		7	0.5663	0.2609	0.1728	1
8 0.5483 0.2545 0.1972 1		8	0.5483	0.2545	0.1972	1
9 0.5314 0.2477 0.2209 1		9	0.5314	0.2477	0.2209	1
10 0.5154 0.2407 0.2439 1		10	0.5154	0.2407	0.2439	1

At cycle 0, zero subjects will start at the "Illness" and "Dead" states. In these cells, the formulas are: =\$G\$6 * 0

Based on probability theory the sum of the expected number of subjects should be equal to cell G6. In this case, that will be 1.

CALCULATING EXPECTED PROBABILITIES (1)

LIMITATIONS OF DECISION TREES (2)

CALCULATING EXPECTED PROBABILITIES (1)

CALCULATING EXPECTED PROBABILITIES (2)

CALCULATING EXPECTED PROBABILITIES (3)

CALCULATING EXPECTED PROBABILITIES (4)

sum to 1

1 cycle = 1 yearExpected probabilities Cycle Well Dead Total Illness 1.0000 0.0000 0.0000 0 1 0.8300 0.1500 0.0200 1 0.7339 1 2 0.2220 0.0441 1 3 0.6757 0.2544 0.0699 0.6372 0.2667 0.0961 1 4 5 0.6089 0.2689 0.1222 1 6 0.5860 0.2661 0.1478 0 1729 7 0 2609 0.5663 1 0.5483 8 0.2545 0.1972 1 1 9 0.5314 0.2477 0.2209 10 0.5154 1 0.2407 0.2439

CALCULATING EXPECTED COSTS AND UTILITIES (1)

1 cycle = 1 year	Expected p	obabilities			Total Expected	l Costs	=	\$31,128.64	Total Expected	I QALYs	=	27.
Cycle	Well	Illness	Dead	Total	Well	Illness	Dead	Total	Well	Illness	Dead	T
0	1 0000	0.0000	0.0000	1	\$500.00	\$0.00	\$0.00	\$500.00	1.0000	0.0000	0.0000	
1	0.8300	0.1500	0.0200	1	\$415.00	\$300.00	\$0.00	\$715.00	0.8300	0.0750	0.0000	
2	0.7 39	0.2220	0.0441	1	\$ 6.95	\$444.00	\$0.00	\$810.95	0.7339	0.1110	0.0000	(
3	0.675.	0.2544	0.0699	1	\$337.87	\$508.77	\$0.00	\$846.64	0.6757	0.1272	0.0000	(
4	0.6372	0.2667	0.0961	1	\$318.59	\$533.42	\$0.00	\$852.01	0.6372	0.1334	0.0000	(
5	0.6089	0.2689	0.1222	1	\$304.44	\$537.88	\$0.00	\$842.31	0.6089	0.1345	0.0000	(

Expected costs at cycle 1 is 0.83 * \$500 = \$415

CALCULATING EXPECTED COSTS AND UTILITIES (2)

1 cycle = 1 year	Expected p	robabilities			Total Expected	d Costs	=	\$31,128.64	Total Expected	d QALYs	-	27.909
Cycle	Well	Illness	Dead	Total	Well	Illness	Dead	Total	Well	Illness	Dead	Total
0	1.0000	0.0000	0.0000	1	\$500.00	\$0.00	\$0.00	\$500.00	1.0000	0.0000	0.0000	1.00
1	0.8300	0.1500	0.0200	1	\$415.00	\$300.00	\$0.00	\$715.00	0.8300	0.0750	0.0000	0.9
2	0.7339	0.2220	0.0441	1	\$366.95	\$444.00	\$0.00	\$810.95	0.7339	0.1110	0.0000	0.84
3	0.6 57	0.2544	0.0699	1	5 7.87	\$508.77	\$0.00	\$846.64	0.6757	0.1272	0.0000	0.80
4	0.6372	0.2667	0.0961	1	\$318.59	\$533.42	\$0.00	\$852.01	0.6372	0.1334	0.0000	0.7
5	0.6089	0.2689	0.1222	1	\$304.44	\$537.88	\$0.00	\$842.31	0.6089	0.1345	0.0000	0.74

Expected costs at cycle 2 is 0.7339 * \$500 = \$366.95

CALCULATING EXPECTED COSTS AND UTILITIES (3)

cycle = 1 year	Expected p	robabilities			Total Expecte	d Costs	=	\$31,128.64	Tota	I Expected	QALYs	=	27
Cycle	Well	Illness	Dead	Total	Well	Illness	Dead	Total		Well	Illness	Dead	1
0	1 0000	0.0000	0.0000	1	\$500.00	\$0.00	\$0.00	\$500.00		1.0000	0.0000	0.0000	
1	0.8300	0.1500	0.0200	1	\$415.00	\$300.00	\$0.00	\$715.00		0.8300	0.0750	0.0000	
2	0.79	0.2220	0.0441	1	\$366.95	\$444.00	\$0.00	\$810.95			0.1110	0.0000	
3	0.6757	9.2544	0.0699	1	\$337.87	\$508.77	\$0.00	\$846.64		0.6757	0.1272	0.0000	
4	0.6372	0.2667	0.0961	1	\$318.59	\$533.42	\$0.00	\$852.01		0.6372	0.1334	0.0000	
5	0.6089	0.2689	0.1222	1	\$304.44	\$537.88	\$0.00	\$842.31		0.6089	0.1345	0.0000	

Expected utility at cycle 1 is 0.83 * 1 = 0.83 QALYs

CALCULATING EXPECTED COSTS AND UTILITIES (4)

1	cycle = 1 year	Expected p	robabilities		
	Cycle	Well	Illness	Dead	Total
	0	1.0000	0.0000	0.0000	1
	1	0.8300	0.1500	0.0200	1
	2	0.7339	0.2220	0.0441	1
	3	0.67	0.2544	0.0699	1
	4	0.6372	0 2667	0.0961	1
	5	0.6089	0.2689	0.1222	1

Total Expected	d Costs	=	\$31,128.64
Well	Illness	Dead	Total
\$500.00	\$0.00	\$0.00	\$500.00
\$415.00	\$300.00	\$0.00	\$715.00
\$366.95	\$444.00	\$0.00	\$810.95
\$337.87	\$508.77	\$0.00	\$846.64
\$318.59	\$533.42	\$0.00	\$852.01
\$304.44	\$537.88	\$0.00	\$842.31

Т	otal Expected	I QALYs	=	27.9098
	Well	Illness	Dead	Total
	1.0000	0.0000	0.0000	1.0000
	0.8300	0.0750	0.0000	0.9050
	0.7339	0.1110	0.0000	0.8449
	. 6757	0.1272	0.0000	0.8029
	0.6372	0.1334	0.0000	0.7705
	0.6089	0.1345	0.0000	0.7433

Expected utility at cycle 2 is 0.7339 * 1 = 0.73 QALYs

CALCULATING EXPECTED COSTS AND UTILITIES (5)

Sum the costs to get the total expected costs

Sum the QALYs to get the total expected QALYs

1 c	ycle = 1 year	Expected p	robabilities		
	Cycle	Well	Illness	Dead	Total
	0	1.0000	0.0000	0.0000	1
	1	0.8300	0.1500	0.0200	1
	2	0.7339	0.2220	0.0441	1
	3	0.6757	0.2544	0.0699	1
	4	0.6372	0.2667	0.0961	1
	5	0.6089	0.2689	0.1222	1

APPLYING DISCOUNTING

1	cycle = 1 year	E	Expected p	robabilities		
	Cycle		Well	Illness	Dead	Total
	0		1.0000	0.0000	0.0000	1
	1		0.8300	0.1500	0.0200	1
	2		0.7339	0.2220	0.0441	1
	3		0.6757	0.2544	0.0699	1
	4		0.6372	0.2667	0.0961	1
	5		0.6089	0.2689	0.1222	1

 V_0

r is the annual discount rate at 3%

DISCOUNT EXPECTED COSTS AND UTILITIES (1)

1 cycle = 1 year Expected probabilities								
Cycle	Well	Illness	Dead	Total				
0	1.0000	0.0000	0.0000	1				
1	0.8300).1500	0.0200	1				
2	0.73 9	0.2220	0.0441	1				
3	0.6757	0.2544	0.0699	1				
4	0.6372	0.2667	0.0961	1				
5	0.6089	0.2689	0.1222	1				

Т	otal Expected	Costs	=	\$16,238.55
	Well	Illness	Dead	Total
	\$500.00	\$0.00	\$0.00	\$500.00
	\$402.91	291.26	\$0.00	\$694.17
	Ş₹ <mark>5.8</mark> 9	\$418.51	\$0.00	\$764.40
	309.20	\$465.60	\$0.00	\$774.79
	\$283.06	\$473.94	\$0.00	\$757.00
	\$262.61	\$463.98	\$0.00	\$726.59

Total Expe	ted QALYs	=	15.0816
Well	Illness	Dead	Total
1.0000	0.0000	0.0000	1.0000
0.8058	0.0728	0.0000	0.8786
0.6918	0.1046	0.0000	0.7964
0.6184	0.1164	0.0000	0.7348
0.5661	0.1185	0.0000	0.6846
0.5252	0.1160	0.0000	0.6412

Expected costs at cycle 1 with discounting is $402.91 = (0.83 * 500) / (1 + 0.03)^{1}$

MARKOV MODEL RESULTS (1)

Strategy	<u>Total Cost</u>	Total QALYs	Incremental Costs	Incremental QALYs	<u>ICER</u>
Without Discounting	\$31,128.64	27.9098	\$14,890.09	12.8282	\$1,160.73
With Discounting	\$16,238.55	15.0816			

MARKOV MODEL RESULTS (2)

	File Home In	ert Draw Page Layout	Formulas Data	Review View Auto	nate Developer	Help			
	ProstTable Recorrected - DestTables Tables	Table Pintures Dages Inter	n 10 Models - Notations	hannerstender (200	sater	Mar - Santine	C E E C	Consents	E Stop 2: Incort o
	111 * A B C	K ✓ Å Cycla 0 E F 0		J K L M		with Sensorth Lines and Marker		w x	chart using the X-Y
	4 5 6 7	Cohort size			Bubble Use it of	cheet type to: or at least two sets of values or data. hars	ounting		Scatter and the Scatter with
	8 9 10 11	Lowle - Looy - Francisco Cycle - Well	notestilleine Hiness Dead Tr	-	More Scatter Charts.	er the data points to represente a set of cyrpain a tormula. Teital	Total Expected QAC Well alloc	n : <mark>27.9098</mark> ss Dead Total	Markers
	12 14 15 16	1 0.000 1 0.6300 2 0.7339 3 0.6757 4 0.6372	0.0000 0.0000 0.1500 0.0200 0.2220 0.0441 0.2544 0.0009 0.2967 0.0961	1 500 1 541 1 530 1 533 1 533	5.00 \$200.00 5.00 \$200.00 5.55 \$444.00 7.87 \$508.77 5.59 \$513.42	90.00 500.00 90.00 \$715.00 90.00 \$810.95 90.00 \$846.64 \$0.00 \$852.01	1,0000 0, 0,8300 0, 0,7339 0, 0,6757 0, 0,6372 0,	0000 0.0000 1.0000 0750 0.0000 0.9050 1110 0.0000 0.8449 1272 0.0000 0.8029 1334 0.0000 0.7705	
	17 18 19 20	5 0.009 6 0.500 7 0.560 8 0.560	0.2609 0.1222 0.2661 0.3478 0.2609 0.1728 0.2545 0.3972	1 530 1 529 1 528 1 527	L44 5517.88 L02 5532.28 L33 5521.80 L33 5509.05	\$8.00 \$842.11 \$8.00 \$825.30	0.6099 0. 0.3090 0. Chart Title	1345 0.0000 0.7433 1331 0.0000 0.7291 167 2755	
Step 1: Select the	22 22 23	5 0.5154 10 0.5154 11 0.5000 12 0.4051 13 0.4207	0.2677 0.2209 0.2407 0.2439 0.2338 0.2003 0.2209 0.2879 0.2209 0.3090	1 5,55 1 525 1 524 1 524 1 524	5.71 9405.36 7.69 \$481.41 3.99 \$407.53 2.55 \$453.89 5.36 \$440.56			157	Step 3: A chart will
data from cycle 0 - to 100	77 28 29	14 0.4568 15 0.4433 16 0.4302 17 0.4174	0.2138 0.3294 0.2075 0.3493 0.2034 0.3665 0.1934 0.3672	1 522 1 522 1 521 1 523	1.39 5427.38 1.60 5434.96 5.08 5402.71 1.72 5390.81	\times		9 87 870 908 151	appear; make changes to match
	10 31 32 32	18 0.4051 19 0.3931 20 0.3835 21 0.3702	0.1896 0.4053 0.1840 0.4229 0.1756 0.4399 0.1733 0.4565	1 520 1 519 1 519	2.35 \$779.25 6.36 \$368.64 0.75 \$357.36 5.11 \$346.60	2 4	40 80 Well Briess	100 120 150 Send 700	the figure
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	22 0.3593 23 0.3486 24 0.3383 25 0.3283	0.1682 0.4726 0.1612 0.4881 0.1584 0.5033 0.1537 0.5180	1 513 1 513 1 516 1 516	Add 5336.36 4.32 \$326.41 4.37 \$336.76 4.37 \$307.40	58.00 5515.99 58.00 5508.79 58.00 5475.50 58.00 5471.56	0.3593 0. 0.3488 0. 0.3383 0. 0.3283 0.	0841 0.0000 0.4434 0835 0.0000 0.4302 0792 0.0000 0.4175 0768 0.0000 0.4052	
	79 40	27 0.3092 28 0.3001	0.3407 0.3409 0.3405 0.3595	1 \$15 1 \$15 1 \$15	1.60 \$289.49 1.60 \$289.49 1.60 \$280.90	\$6.00 \$444.09 \$6.00 \$430.96	0.3092 0. 0.3091 0.	0724 0.0000 0.3636 0702 0.0000 0.3703	

MARKOV MODEL RESULTS (2)

Questions

Ø	
\bigcirc	

email: mark.bounthavong@va.gov GitHub: https://github.com/mbounthavong

REFERENCES

Briggs and Sculpher - Introduction to Markov Models

GitHub site for Markov model

Online Markov model tutorial (link)

