Performance of Statistical Models to Predict Mental Health and Substance Abuse Cost

Maria Montez-Rath¹,²
Cindy L Christiansen²,³, Susan L Ettner⁴, Susan Loveland²,³, and Amy K Rosen²,³

HERC Cyber Seminars
Nov 8, 2006

¹ BU SPH, Department of Biostatistics
² Center for Health Quality, Outcomes and Economic Research, Bedford VAMC
³ BUSPH, Health Services Department
⁴ UCLA, Division of General Internal Medicine and Health Services Research

Supported by VA HSR&D Service, Grant # IIR 20-035-2
Population in the Department of Veterans Affairs (VA) is highly comorbid

- 29% of patients seen during fiscal year 1999 (FY99) had mental health and substance abuse (MH/SA) disorders
- Average of 14 diagnoses (medical and psychiatric) compared to 9 in the general VA population

No risk-adjustment model developed specifically for patients with psychiatric disorders
MH Project

- **Subjects:**
 - 914,225 veterans
 - who used VA healthcare services during FY'99
 - with any MH/SA diagnosis

- **Goal:** develop and validate a case-mix classification system: “PsyCMS”
 - for predicting concurrent and prospective MH/SA costs and utilization
Ordinary least squares with risk adjustment generally used to model cost in health services research

Why do economists use other models?

Make sure that case-mix system developed does not depend on statistical model used
Data

- **Sample:** individuals on development sample (60%) with positive MH/SA costs (n=525,620)

- **Adjusters:** 20 age/sex + 12 MH/SA categories

- **Outcome:** total MH/SA costs (does not include outpatient pharmacy)
• **Robust** regression to take into account patients clustered within facilities
 • each patient assigned to last facility where care was received

• **Weighted** regression to adjust costs of patients who died during the FY

Stata: `glm y_wt x [aweighted=wt], f(modeldist) l(modellink) robust cluster (sta3n)`

• Forced mean predicted = mean observed
• Cost data characteristics guided choice of model
 - non-negative and right skewed
Model's Description

- **Model Name**
- **Dependent Variable**
- **Model Specification**
 - **Family**
 - **Link**
 - **V(µ)**
 - **Description**

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Dependent Variable</th>
<th>Model Specification</th>
<th>V(µ)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal with identity link</td>
<td>Cost</td>
<td>Normal</td>
<td>1</td>
<td>E(µ) = xb</td>
</tr>
<tr>
<td>Log Normal</td>
<td>Log(cost)</td>
<td>Normal</td>
<td>1</td>
<td>E(µ) = xb</td>
</tr>
<tr>
<td>Sqrt Normal</td>
<td>Sqrt(cost)</td>
<td>Normal</td>
<td>1</td>
<td>E(µ) = xb</td>
</tr>
<tr>
<td>Gamma with log link</td>
<td>Cost</td>
<td>Gamma</td>
<td>m^2</td>
<td>ln{E(µ)} = xb</td>
</tr>
<tr>
<td>Gamma with sqrt link</td>
<td>Cost</td>
<td>Gamma</td>
<td>m^2</td>
<td>sqrt{E(µ)} = xb</td>
</tr>
</tbody>
</table>

Note: µ=E(µ) and V(µ) is variance function

- OLS + 2 transformation models + 2 GLMs
- Distribution family identifies variance function
 - Park test
Normal with Identity Link (OLS)

- Additive effects on original scale
 \[E\{Y\} = \mathbf{X}\beta \]
 where \(Y \) iid Normal with constant variance

- Predictions given in original scale: \(\hat{y} = \mathbf{X}\hat{\beta} \)
- mean predicted = mean observed
- Does not deal with cost data characteristics:
 - non-negative and right-skewed

Stata: `glm y x, f(gaussian) l(identity)`
Log Normal (1)

- Additive effects on log scale:
 \[E\{\ln(Y)\} = X\beta \]
 where \(\ln(Y) \) iid Normal with constant variance

- Predictions given in log scale => retransformation

- Direct transformation gives biased estimates
 - assumes \(E\{\ln(Y)\} = \ln\{E(Y)\} \)
Log Normal (2)

- Bias correction at population level by
 - forcing mean predicted = mean observed
 - assuming homoscedastic error

- Final predictions: \(\hat{y} = s \times \exp(x \hat{\beta}) \)
 where \(s = \sum y / \sum \exp(x \hat{\beta}) \)

Stata: gen lny=ln(y)
 glm lny x, f(gaussian) l(identity)
Square-root Normal

- Additive effects on sqrt scale
 $$\mathbb{E}\{\text{sqrt}(Y)\} = X\beta$$
 where $\text{sqrt}(Y)$ iid Normal with constant variance

- Similar problems to log transformation

- Final predictions:
 $$\hat{y} = s \ast (x \hat{\beta})^2$$
 where
 $$s = \frac{\Sigma y}{\Sigma (x \hat{\beta})^2}$$

- Squaring $x \hat{\beta}$ implicitly introduces two-way interactions
Generalized Linear Models (GLMs)

- Models of the form
 \[g(E(Y)) = X\beta \]
 where \(g \) is the link function and \(Y \sim \) distribution
- Well defined by specifying mean and variance
- No retransformation problems
- Predictions are given directly by \(\hat{y} = g^{-1}(x\hat{\beta}) \)
Gamma Models

- **Gamma distribution:**
 - always positive
 - long tail

- **Two links: log and square-root**
 Stata: glm y x, f(gamma) l(log)
 glm y x, f(gamma) l(“power .5”)

- **Final predictions:** \(\hat{y} = s \times g^{-1}(x \hat{\beta}) \)
 where \(s = \sum y / \sum g^{-1}(x \hat{\beta}) \)
 g is either log or square-root function
Methods – Model Selection

- Measures of predictive ability:
 1. $RMSE = \sqrt{\frac{1}{n} \sum (y_i - \hat{y}_i)^2}$
 2. $MAPE = \frac{1}{n} \sum |y_i - \hat{y}_i|$
 3. Predictive ratios of decile of predicted cost
 \[
 PR_j = \frac{\bar{\hat{y}}_j}{\bar{y}_j}
 \]

- Bias-corrected bootstrap confidence intervals
Methods - Sample size study

- Objective: study effect of analyzing random sample
 - Run specified models on subsamples starting at 5,000 patients (~1% of total sample)
 - 100 samples for each sample size
 - Re-compute statistics
 - Generate 95% percentile intervals for each statistic at each sample size
Results

- **MH/SA cost**
 - mean = $2,602
 - SD = $11,052
 - median = 385
 - skewness = 14

- **Park test** gives $\hat{\gamma} = 1.6$ => **Gamma variance**

- **Box-Cox** gives $\hat{\lambda} = -0.12$
 (hard to know what it means)
RMSE and MAPE results on total sample

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>MAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>95% Conf. Int.*</td>
</tr>
<tr>
<td>Gaussian with identity link (OLS)</td>
<td>10,397</td>
<td>10,130 10,657</td>
</tr>
<tr>
<td>Log Normal</td>
<td>13,974</td>
<td>13,585 14,352</td>
</tr>
<tr>
<td>Sqrt Normal</td>
<td>9,860</td>
<td>9,644 10,070</td>
</tr>
<tr>
<td>Gamma with log link</td>
<td>21,374</td>
<td>20,246 22,552</td>
</tr>
<tr>
<td>Gamma with square-root link</td>
<td>10,434</td>
<td>10,193 10,708</td>
</tr>
</tbody>
</table>

*Bias-corrected bootstrap confidence interval

Note: RMSE = root mean square error
MAPE = mean absolute prediction error
Predicted ratios and bootstrap bias-corrected CIs per decile of predicted cost in full sample

- Normal with identity link (OLS) predicted 19.6% negative values
 => First two deciles in the negative range
Previous graph without PRs for 1st two deciles of OLS

- Gamma with square-root link (range .9 to 1.2)
 - PRs close to 1.0 across all 10 deciles
 - 5/10 intervals include 1.0
- OLS extremely well at top decile (range .5 to 1.5)
 - 2/10 intervals include 1.0
- Square-root Normal (range .7 to 1.3)
 - 0/10 intervals include 1.0
- Log Normal well only at 1st decile (range .3 to 1.7)
 - either under or overpredicts by 25% in 9/10 intervals
- Gamma with log link a complete disaster!
Simulation Results

- Gamma with square-root link had convergence problems for small samples.
- Frequency of samples for which models did not converge ranged (out of 100):
 - 1 sample in simulation for 55,000 patients
 - 50 samples in simulation for 5,000 patients
- Problems occurred with 3 female categories.
- Other models had no problems converging for those same samples.
95% RMSE percentile intervals per model at each simulation of various sample sizes

- Log-Normal PI only overlaps for sample with 5,000 patients
- Gamma with log link always above mean values
- OLS and Gamma with square-root link have very similar results
- Interval overlap with Square-root Normal decreases with increasing sample size
95% MAPE percentile intervals per model at each simulation of various sample sizes

- Bigger overlap between all models
- Square-root Normal with:
 - consistent smallest lower bound
 - upper bound lower than other mean values starting at samples with 15,000 patients
- Log Normal and Gamma with square-root link closest
95% PR10 percentile intervals per model at each simulation of various sample sizes

- OLS intervals
 - always include 1.0

- Gamma with square-root link intervals
 - only include 1.0 for samples with 5,000 patients

- Square-root Normal intervals:
 - are the smallest
 - overlap only for the smallest sample sizes

- Gamma with log link and Log Normal intervals
 - are always higher
Gaussian with identity link (OLS)
 + does well overall
 - predicts negative values 20% of time
 + peforms the best for top decile

Gamma with log link was worse

Log Normal model does reasonably well but overpredicts in top decile
 - multiplicative effect after retransformation
Discussion (2)

- Gamma with Square Root link performs very well in general but has convergence problems for small samples
 + forces interactions between independent variables
 + deals with long tail

- Sqrt Normal model performs very well
 + sqrt transformation forces two-way interactions between independent variables
 - normal distribution does not deal with long tail
Limitations

• More advanced methods proposed:
 - Basu and Rathouz 2005 introduced method that directly estimates link in a GLM model
 - Manning, Basu, and Mullahy 2005 introduced generalized Gamma model
 • use 3 parameters instead of 2

• Only one risk-adjustment system used
Models with square-root transformation or link are best in full sample
- function helps to deal with high comorbidity of population

Gamma distribution models variance better

OLS suitable if correct transformation used
- still does best for top decile

GLMs with Gamma distribution need more data
Thank you!

for additional information email montez@bu.edu
Main References

Maria Montez-Rath, Cindy L Christiansen, Susan L Ettner, Susan Loveland, Amy K Rosen. Performance of statistical models to predict mental health and substance abuse cost. BMC Medical Research Methodology 2006, 6:53
on the web at: http://www.biomedcentral.com/bmcmedresmethodol/

on the web at: http://www.lww-medicalcare.com/pt/re/medcare/abstract.00005650-200606000-00012.htm;jsessionid=F1

pubmed:

pubmed:
Bootstrap code Stata v8.2

program drop _all
set more off
capture log close
version 8

** MAIN PROGRAM **

capture program drop main_pgm
program define main_pgm

xi: glm y_an i.age_sex mh01-mh12 [aweight=factor99], robust
cluster(sta3n) f($modeldist) l($modellink)

predict yhat1
quietly summarize y_an [aweight=factor99]
gen y_an_mean=r(mean)
quietly summarize yhat1 [aweight=factor99]
gen yhat1_mean=r(mean)
gen sm=y_an_mean/yhat1_mean

gen yhat2=sm*yhat1

*RMSE after smearing
gen diff_sq=(y_an-yhat2)^2
quietly summarize diff_sq [aweight=factor99]
gen rmse=sqrt(r(mean))

*MAPE after smearing
gen adiff=abs(y_an-yhat2)
quietly summarize adiff [aweight=factor99]
gen mape=r(mean)

*PR
*create deciles
sort yhat2
gen predcat1 = int(10*_n/(_N+1))
gen predcat=predcat1+1

quietly summarize y if predcat==1
gen y_pred_m=r(mean)
quietly summarize yhat2 if predcat==1
gen yhat2_pred_m=r(mean)
gen pr1=yhat2_pred_m/y_pred_m

...
quietly summarize y if predcat==10
replace y_pred_m=r(mean)
quietly summarize yhat2 if predcat==10
replace yhat2_pred_m=r(mean)
gen pr10=yhat2_pred_m/y_pred_m

end

*** BOOTSTRAPPING ***

capture program drop mainboot
program define mainboot, rclass

*CALL THE PROGRAM TO GET POINT ESTIMATES
main_pgm

tempname y1
sum rmse, meanonly
scalar `y1'=r(mean)
return scalar y1=`y1'

...
tempname y12
sum pr10, meanonly
scalar `y12'=r(mean)
return scalar y12=`y12'

end
Bootstrap code (2)

*** FULL ANALYSIS ***

capture program drop full_analysis
program define full_analysis

Enter the name of your dataset here
global dataset develop_set

*** RUN BOOTSTRAPPING TO GET CI FOR THE PREDICTIVE MARGINS
notes drop _all
note: TS Starting boot
notes

*SET THE SEED
set seed 374585038

use $dataset, clear

*CALL THE BOOTSTRAP PROGRAM, SPECIFYING THE NUMBER OF REPETITIONS
bootstrap "mainboot" rmse=r(y1) mape=r(y2) pr1=r(y3) pr2=r(y4) pr3=r(y5) pr4=r(y6) pr5=r(y7) pr6=r(y8) pr7=r(y9) pr8=r(y10) pr9=r(y11) pr10=r(y12), reps(1000) level(95) dots strata(sta3n)

drop _all
note: TS End boot
notes

end

global modeldist gamma
global modellink "power 0.5"
full_analysis

global modeldist gaussian
global modellink identity
full_analysis