Cost-Effectiveness Using Decision-Analytic Models

Kee Chan, PhD

Assistant Professor, Boston University
VA Center for Health Quality, Outcomes and Economic Research (CHQOER), Edith Nourse Rogers Memorial Veterans Hospital, in Bedford, Massachusetts

August 15, 2012
HERC Seminar Series
Speaker Contact Information

Kee Chan, PhD
VA Center for Health Quality, Outcomes and Economic Research (CHQOER)
Bedford, Massachusetts

Assistant Professor
Department of Health Sciences
Boston University
Email: keechan@bu.edu
Overview

• This presentation will focused on the decision-making process and fundamental models used in cost-effectiveness analysis.
• Examples of Cost-Effectiveness Analysis
• Limitations and strengths will be discussed.
• Resources for further discussion.
Learning Objectives

• At the end of the presentation, you will learn the following for your own study design:
 – the decision-making process.
 the framework used in decision-analytic model.
 – the application in cost-effectiveness analysis.
Outline of Presentation

1. Concept of “PROACTIVE” in Modeling.
2. Structure of Decision Analysis
3. Components of Cost-Effectiveness Analysis
4. Research Studies
5. Limitation and Strengths
6. Resources
Decision Analysis

“A good decision is a logical decision – one based on uncertainties, values, and preferences of a decision-maker.”

Ronald Howard
Professor, Stanford University
PROactive

Step 1: Defining the problem

P: Problem
R: Reframe the perspective
O: Objectives of interest
proACTive

Step 2: What are the alternatives, consequences and trade-offs?

A: Consider Alternatives.
C: Model Consequences
T: Identify Trade-offs.
proactive

Step 3: Integration and exploration

I: Integrate evidence
V: Optimize Expected Value
E: Evaluate Uncertainty.
PROACTIVE

P: Problem
R: Reframe
O: Objectives
A: Alternatives
C: Consequences
T: Trade-offs
I: Integrate
V: Value
E: Evaluate
A Decision Tree

A visual representation of all the possible options and the consequence that may follow each option.
Decision Analysis Tree

Step 1: **PROactive**

Step 2: **proACTive**

Step 3: **proactIVE**

Chance node

- Treatment A
 - live
 - Cost per Health Benefit
 - die
 - Cost per Health Benefit

Decision node

- No Treatment
 - Cost per Health Benefit

Terminal node
Cost-Effectiveness

• Using decision-analytic models to consider the economics costs of health care.

• Health resources are consumed in order to produce health benefits.
Research Questions

• What is the most efficient use of this health resources, given the alternative uses?
 – Time
 – Resources
 – Cost
Time-effectiveness

An hour of a physician’s time spent with one patient is unavailable for another patient.
Resource-effectiveness

• Health resources are consumed in order to produce health benefits.
• Resources used for one program cannot be spent to increase the program use of another or invest in new program.
Cost-Effectiveness Graph

- Superior
- Trade-Off
- Effect
- Costs

Superior vs. inferior
Trade-Off vs. ?
Cost-effectiveness

- Common measure of costs & health effectiveness.
- Measure can be expressed as
 - Cost
 - Case of disease prevented
 - Lives saved
 - Years of life saved
 - Quality adjusted life year
Perspective

• A range of decision-makers confront these decisions.
 – Societal perspective
 Patient
 – Provider
 – Organizational
Different Types of Cost

• *Total Resource Use* includes different types of cost
 – Health care resource
 Nonhealth care resource
Cost Calculation

• Laying out the cost
• Categorize the cost in term health vs. non-
• Organize the sequence of event
 – Initial cost
 – Induced cost
 – Adverted cost
• Consider short or long-run resource cost
Probabilities

- Probability is the chance of the event.
- Range in 0 to 1.0
- 0 = event is impossible
- 1 = event is certain
- 0.5 = the event is equally as likely to occur as not to occur
Preferences

• Preference-based measures reflect the values an individual has for a particular health states or the relative desirability of health outcome.
Effectiveness

• Health benefits in CEA can be expressed as
 – Single measure of health outcome
 • Number of Cases Prevented
 • Number of Cases of Cancer Detected
 • Number of Hospital Days Reduced
 – Combined measures
 • Quality Adjusted Life Years (QALYs)
Using cost-effectiveness analysis

- Cost-effectiveness using decision-analytic modeling
 - summarize large amount of information.
 - clarify the decision-making process.
 - compare the different scenarios in complex system.
Incremental Cost-effectiveness ratio (ICER)

Incremental cost-effectiveness ratio (ICER)
-- costs to benefits and is expressed as $ per life saved or the cost per QALY saved.

\[
\frac{\text{Cost}_{\text{intervention A}} - \text{Cost}_{\text{intervention B}}}{\text{Effectiveness}_{\text{intervention A}} - \text{Effectiveness}_{\text{intervention B}}}
\]
Decision Analysis Tree

Decision node

Chance node

Treatment A

live

0.9

$400K/10 life years

0K/0 life years

0K/8 life years

Decision node

No Treatment

Terminal node

$50K/0 life years

$0K/0 life years

Components of CEA
Incremental Cost-Effectiveness Ratio (ICER)

Question: Is the extra health benefit worth the extra cost?

\[
\frac{\$400K_{\text{intervention A}} - \$100K_{\text{intervention B}}}{10 \text{ life years}_{\text{intervention A}} - 8 \text{ life years}_{\text{intervention B}}}
\]

\[\text{ICER} = \frac{\$300 \text{ K per 2 life years}}{} = \frac{\$150K}{\text{life year}}\]

Answer: If intervention A is chosen, the additional investment of $150K results in one additional life year, relative to Intervention B.
Handling Uncertainty

Parameter and Model structure uncertainty addressed using sensitivity analyses.

- One-Way
 - Two-Way
- Multi-way
- Probabilistic
Examples
Cost-effectiveness Studies Registry

https://research.tufts-nemc.org/cear4/
Limitations

• Availability of Data
• Modeling vs. Real-time Experiment
• Assumption
• Uncertainty
Strengths

- Illustrate a Visual Aid.
- Formulate Objective.
- Evaluate Complex System.
- Inform Policy and Guidelines.
- Guide Research.
References and Resources

- Software: TreeAge
HERC resources

http://www.herc.research.va.gov/home/default.asp
Research Societies

- SMDM (Society for Medical Decision Making)
- ISPOR (International Society for Pharmacoeconomics and Outcomes Research)
- Decision Sciences Institute
- INFORMS (Institute for Operations Research and the Management Sciences)
Summary

• Use “PROACTIVE” modeling in your design.
• Construct a decision analysis tree.
• Use cost-effectiveness analysis.
• Compare research studies.
• Understand the limitations and strengths.
• Find resources and references.
Contact Information

If you have any questions or would like to collaborate, please contact me:

Kee Chan, PhD
Assistant Professor
Department of Health Sciences
Boston University
Tel: 617-358-6025
Email: keechan@bu.edu