
Erika G. Martin, PhD MPH

Rockefeller College of Public Affairs & Nelson A. Rockefeller Institute of Government, SUNY-Albany

Health Economics Resource Center (HERC) Seminar
September 21, 2011
Poll 1: Why are you attending this cyber-seminar?

• I am interested in the methods (budget impact analysis)
• I am interested in the topic (HIV screening)
• I am interested in both the methods and topic
• At the time it seemed like a good idea to attend, but I’m not sure why I am here
Poll 2: What is your comfort level with cost analysis?

• I take primary responsibility for conducting cost analyses
• I work on collaborative teams that conduct cost analysis, but I don’t do the number crunching
• I understand the main concepts but I do not conduct this type of research
• I am a newbie!
Research paper details

• Funding sources: NIDA (R01DA015612), NIAID (R37AI042006), AHRQ (T32HS017589), NIMH (R01MH65869, R01MH073445), Doris Duke Charitable Foundation (Clinical Scientist Development Award)
Cyber-Seminar Objectives

• By the end of this session, you should be able to...

 – Articulate the major national policy initiative to expand HIV screening, and its rationale
 – Explain the difference between cost effectiveness and budget impact analysis
 – Identify how you could apply this tool to your own research area
Are current HIV screening practices working?

• 1 in 5 HIV+ Americans unaware of serostatus

• 2 in 5 of newly identified HIV+ cases receive an AIDS diagnosis within a year of HIV detection
The majority of “late testers” receive an HIV test because of illness, not through routine care.

Fig. 1. Percentage of late and early testers, by reason for testing, United States, 2000–2003. Late Testers are persons who had their first positive HIV test <1 year of diagnosis of AIDS. Early Testers are persons who either had their first positive HIV test >5 years before the diagnosis of AIDS or had >5 years without a diagnosis of AIDS after their first positive HIV test.

Revised CDC HIV screening guidelines (September 2006)

• Key revisions
 – Testing in general populations (previous: high-risk populations and high-prevalence areas)
 – Opt-out testing (previous: signed opt-in consent)

• Public health motivations
 – Earlier detection and referral to care saves lives
 – Cost effectiveness
 – Potential way to reduce secondary transmission
Common misconceptions

- “Cost effective” = “cheap” = “saves money”
 - Cost effectiveness analysis compares relative value

- If a policy intervention is “cost effective,” then we should be willing to pay for it
 - Cost effectiveness analysis considers societal perspective; ignores issue of who pays and who benefits
Affordability ≠ efficiency

• Under-funding HIV programs may yield large numbers of newly-identified cases who are unable to receive care

• Fragmented US healthcare system makes it difficult to apply societal perspective used in cost effectiveness analysis
HIV treatment is financed through a fragmented system of care

Figure 1: Federal Funding for HIV/AIDS Care by Program, FY 2008

- Medicare $4.5 (39%)
- Medicaid (federal share only) $4.1 (35%)
- Other $0.8 (7%)
- Ryan White $2.2 (19%)

Total = $11.6 Billion

Figure reproduced from Kaiser Family Foundation, The Ryan White Program Factsheet, 2009
HIV treatment is financed through a fragmented system of care

Figure 1: Federal Funding for HIV/AIDS Care by Program, FY 2008

- Low-income and disabled
- Entitlement program

Figure reproduced from Kaiser Family Foundation, The Ryan White Program Factsheet, 2009
HIV treatment is financed through a fragmented system of care

- Permanent disability
- Age 65+
- Entitlement program
- Low-income and disabled
- Entitlement program

Figure reproduced from Kaiser Family Foundation, The Ryan White Program Factsheet, 2009
HIV treatment is financed through a fragmented system of care

- “Payer of last resort” for un(der)insured, especially those who have not progressed to AIDS
- Includes AIDS Drug Assistance Program (ADAP)
- Discretionary program, with state flexibility
- Flat-funded since 2000

- Permanent disability
- Age 65+
- Entitlement program
- Low-income and disabled
- Entitlement program

Figure reproduced from Kaiser Family Foundation, The Ryan White Program Factsheet, 2009
Budget impact analysis

• Payer perspective
• Budget outlays of policy/technology uptake
• Assesses affordability (not efficiency)
• Tailor analyses to interests and needs of decision-maker:
 – Time horizon - Assumptions
 – Data - Scenarios
 – Costs (undiscounted)

Research questions

• How much will expanded HIV screening cost public payers over 5 years?

• What will be the budget impact to:
 – Discretionary programs (e.g., Ryan White HIV/AIDS Program, $2.2 billion, “flat-funded”)
 – Entitlement programs (e.g., Medicaid/Medicare, $8.6 billion federal share)
 – Prevention programs (CDC, local health departments)
Budget impact analysis methods

• Computer simulation model of HIV screening and clinical HIV disease (CEPAC model)

• Extrapolate costs to public programs based on national data on program enrollment and eligibility pathways

• Forecast costs to different programs and compare to current budgets
Cost-effectiveness of Preventing AIDS Complications (CEPAC)

- Simulation model of HIV disease that captures immune status (CD4 cell count), HIV viral load, HIV treatment, opportunistic infections
- HIV testing module simulates screening program
- Data sources: public use datasets, published observational cohorts, clinical trials
- Model outcomes: life expectancy, quality-adjusted life expectancy, cost, cost-effectiveness
- Recent analyses using the CEPAC model:
 - Pre-exposure prophylaxis: Paltiel et al., *CID*, 2009
 - Test and treat in DC: Walensky et al., *CID* 2010
CEPAC Investigators: US

Massachusetts General Hospital/ Harvard Medical School

Aima Ahonkai, MD, MPH
Ingrid Bassett, MD, MPH
Jessica Becker
Melissa Bender, MD, MPH
John Chiosi
Jennifer Chu
Andrea Ciaranello, MD, MPH
Kenneth Freedberg, MD, MSc
Julie Levison, MD, MPhil
Ben Linas, MD, MPH
Sarah Lorenzana
Elena Losina, PhD
Zhigang Lu, MD
Bethany Morris
Farzad Noubary

June Park
Mai Pho, MD
Mary Pisculli, MD, MPH
Lynn Ramirez, MD
Erin Rhode, MS
Narayan Sampath, MBA
Paul Sax, MD
Callie Scott, MSc
Adam Stoler, MA
Lauren Uhler
Rochelle Walensky, MD, MPH
Bingxia Wang, PhD
Angela Wong

Harvard School of Public Health

Kara Cotich
Sue Goldie, MD, MPH
George Seage, III, DSc, MPH
Milton Weinstein, PhD

Cornell

April Kimmel, PhD
Bruce Schackman, PhD, MBA

Yale

A. David Paltiel, PhD

Lille and Bordeaux, France

Yazdan Yazdanpanah, MD, PhD
Delphine Gabillard
Sylvie Deuffic-Burban

Supported by NIAID, NIMH, CDC, DDCF, EGPAF
CEPAC disease model

Enter:
Age, Sex, CD4, RNA

CHRONIC

ACUTE

DEATH
State space

- stage of disease
 chronic / acute / death
- HIV-1 RNA (current / “set point”)
 >100,000 / 30,001-100,000 / 10,001 - 30,000 / 3,001-10,000 / 500-3,000 / <500
- CD4 (current / nadir)
 >500 / 301-500 / 201-300 / 101-200 / 51-100 / 0-50
- acute infections
 PCP / toxoplasmosis / *Mycobacterium avium* Complex / CMV / fungal / “other”
- history of each acute event type
- time on therapy / time to treatment failure
- cause of death
 acute OI / chronic AIDS / non-AIDS
Patient trace

CD4 count (cells/μl) vs. Time (years)

- 1st-line ART
- 2nd-line ART
- 3rd- and 4th-line ART

Viral load (copies/ml)

- >100,000
- 30,001-100,000
- 10,001-30,000
- 3,001-10,000
- 501-3,000
- 21-500
- <20

- Start Therapy
- Start PCP prophylaxis
- Start MAC prophylaxis; CMV infection
- Pneumonia
- Death from chronic AIDS

Time (years): 0 5 10 15 20 25

CD4 and HVL values:
- 900
- 800
- 700
- 600
- 500
- 400
- 300
- 200
- 100
- 0

- CMV infection
- Death from chronic AIDS
Mechanisms of HIV detection

Undiagnosed HIV-infected patient

Detection via development of an opportunistic infection

Screening Module (HIV counseling, testing, and referral program)

HIV therapy (ART and OI prophylaxis)
Three cohorts

• “Prevalent aware” cases
 – Aware of infection at start of simulation
 – Immediately eligible for linkage to care
 – Modeled in disease module only

• “Prevalent unaware” cases
 – Unaware of infection at start of simulation
 – Only eligible for linkage to care upon diagnosis
 – Modeled in screening module and disease module

• Incident cases
 – Only eligible for linkage to care upon diagnosis
 – Modeled in screening module and disease module
Three cohorts

• “Prevalent aware” cases
 – Aware of infection at start of simulation
 – Immediately eligible for linkage to care
 – Modeled in disease module only

• “Prevalent unaware” cases
 – Unaware of infection at start of simulation
 – Only eligible for linkage to care upon diagnosis
 – Modeled in screening module and disease module

• Incident cases
 – Only eligible for linkage to care upon diagnosis
 – Modeled in screening module and disease module
Pathway of care

Discretionary
Ryan White
Uncompensated care

Entitlement
Medicare
Medicaid
Pathway of care

Discretionary
Ryan White
Uncompensated care

Disability
Age 65

Entitlement
Medicare
Medicaid
Pathway of care

Some prevalent cases currently aware of infection

Discretionary
Ryan White
Uncompensated care

Disability
Age 65

Entitlement
Medicare
Medicaid

Some prevalent cases currently aware of infection
Pathway of care

Some prevalent cases currently aware of infection + All newly diagnosed cases

Discretionary
Ryan White
Uncompensated care

Disability
Age 65

Entitlement
Medicare
Medicaid

Some prevalent cases currently aware of infection
Key input parameters

• Number eligible for discretionary and entitlement programs
 – National HIV epidemiology data; ages 19+
 – National data on health insurance coverage

• Demographic and clinical characteristics of cases
 – HIV Research Network (HIVRN), MACS cohort, published studies of individuals with primary infection
Key input parameters

- **Costs**
 - Undiscounted $2009
 - Pharmaceuticals: Average wholesale prices, adjusted for average state Medicaid discount
 - Laboratory monitoring: CMS Clinical Laboratory Fee Schedule
 - HIV test costs: Adapted from Farnham et al. 2008

- **HIV test characteristics**
 - Sensitivity pre-seroconversion 0.1%
 - Specificity pre-seroconversion 99.6%
 - Specificity post-seroconversion 99.9%
 - Rapid test return rate: HIV+ 97%; HIV- 97%
 - ELISA test return rate: HIV+ 75%; HIV- 67%
Key input parameters

• Screening strategies
 – Current practice: every 10 years
 – Expanded screening: every 5 years
 – Sensitivity analysis: no screening – annual screening

• Base case
 – Rapid test, 80% linkage to care, % return for results based on national data, no pre-test counseling

• High cost scenario
 – Rapid test, 100% linkage to care, 100% return for results, pre-test counseling included

• Low cost scenario
 – Laboratory test (ELISA), 50% linkage to care, 50% return for results, no pre-test counseling
Overview of main findings

• $2.7 billion five-year costs to government testing, discretionary, and entitlement programs

• Testing costs a small fraction of budget increase

• Important budget concerns:
 – Downstream care costs (esp. to discretionary budgets)
 – Cost shifting between discretionary and entitlement programs
Expanded screening identifies individuals earlier in their infections

• Better immune status (higher mean CD4 cell count) at detection under expanded screening
 – Prevalent cases: 122 (current practice); 140 (expanded)
 – Incident cases: 251 (current practice); 312 (expanded)

• Fewer cases detected due to opportunistic infection
 – Prevalent cases: 68.3% (current practice); 57.8% (expanded)
 – Incident cases: 49.0% (current practice); 32.3% (expanded)

• Fewer cases undetected over lifetime
 – Prevalent cases: 12.0% (current practice); 9.1% (expanded)
 – Incident cases: 11.7% (current practice); 7.5% (expanded)

• Improved quality-adjusted survival
 – Prevalent cases: 2.0 QALYs
 – Incident cases: 3.2 QALYs
Total five-year budget impact of $2.7 billion, with most costs due to downstream care

- Total incremental costs $2.7 billion
 - Sensitivity analysis: $1.9 – $3.4 billion

- Testing costs ($503 million) less than one-fifth of total cost
 - Sensitivity analysis: $383 – $697 million

- Largest budget impact ($2.9 billion) to discretionary programs
 - Sensitivity analysis: $1.9 – $3.4 billion

- Slight short-term cost savings ($624 million) to entitlement programs
 - Sensitivity analysis: $421 – $742 million
Incremental cost of expanded screening versus current practice: Discretionary programs will be disproportionately affected by expanded screening
Pharmaceutical costs of expanded screening versus current practice: Pharmaceutical costs, particularly those financed by discretionary programs, will be the main driver of budget increases.
Limitations

• Assumptions
 – No new drugs or technologies
 – Constant % of individuals with private or VA health insurance coverage
 – No dropping out of care/treatment discontinuation
 – No financial benefits of preventing secondary infections

• Data limitations: number with VA insurance estimated, HIVRN not nationally representative

• National aggregation ignores interstate variation

• Does not incorporate Medicaid expansion as part of health reform
Budget challenges

• Largest impact to discretionary programs, which have less capacity to expand

• President Obama’s pledged $53 million increase to CDC for HIV prevention and surveillance unable to cover testing costs

• Although health reform expands Medicaid services to <133% FPL, many HIV-infected individuals will still need additional services

• Important to consider downstream care costs
Current HIV policy questions that could benefit from budget impact analysis

• Health reform and shift in payers for HIV care
 – Medicaid expansion
 – Insurance exchange; high-risk pools

• Recent clinical findings on “treatment as prevention” (HPTN 052)
Whiteboard: Are there research questions (from your area) that could be addressed using budget impact analysis techniques?
Questions?

If you have any follow-up questions about the methods or the topic, feel free to email me at emartin@albany.edu