Cdw-090816audio

Session date: 9/08/2016
Series: VIReC Corporate Data Warehouse
Session title: Using Stat Tools to Access CDW
Presenter: Elliott Lowy

This is an unedited transcript of this session. As such, it may contain omissions or errors due to sound quality or misinterpretation. For clarification or verification of any points in the transcript, please refer to the audio version posted at www.hsrd.research.va.gov/cyberseminars/catalog-archive.cfm.
Cheryl:
Good afternoon. Welcome to VIReC's CDW series. Today's session is entitled, Using Stata Tools to Access CDW. Thank you to Cyber [?] for providing technical and promotional support for this series. Today's speaker is Dr. Elliott Lowy, a data analyst at VA Puget Sound. Dr. Lowy was among the earliest end users with access to CDW. He is also a clinical assistant professor at the University of Washington School of Public Health. Questions for Dr. Lowy will be monitored during the talk as Molly said, so please submit the questions as they occur to you. And we will pause at a few places during the talk to address your questions. As a reminder, a brief evaluation questionnaire will pop up when we close this session. If possible, please take a few minutes to complete this questionnaire. I am pleased to welcome today's speaker, Dr. Elliot Lowy.
Female Voice 1:
Thank you and Dr. Lowy should—there we go, perfect.

Dr. Elliott Lowy:
Okay, let's see—sorry. Is this right, poll first?

Female Voice 1:
Yeah, we can go ahead and kick right off with the poll. So we'd like to get an idea from our audience members, what is your role that led you to join today's presentation on VA Data. So the answer options are: research investigator, data manager, project coordinator, program specialist or analyst, or other. And you can specify in the feedback survey at the end of the survey. There will be more extensive lists of job titles that you can refer to. Cheryl, can I get you to mute your telephone line real quick.

Cheryl:
Oh, sure.

Female Voice 1:
Thank you.

Cheryl:
Let's see.

Female Voice 1:
Okay, and it looks like we've had about 80% of our attendees vote, so I'm going to go ahead and close the pole now. And I'll share those results. So one third of our audience are research investigators, 11% data managers, 15% project coordinators, another third of our audience—program specialists or analysts, and 8% listed as other. So thank you to those who responded. And before we get to the meat and bone of the presentation, we are going to do just one more poll real quick. So we want to get an idea of what your level of experience with CDW Data is. So you, one, have not worked with it at all—two, three, four, five, and five being very experienced with CDW Data. So go ahead and take just a moment. These are anonymous responses and we're not grading you, so feel free to answer honestly. It'll help Dr. Lowy present the right level of detail. Okay, and it looks like we've had 85% response rate, and that's great. Cheryl just shared those results. It is spread right across the board. Roughly, 23% are rated at 1; 33%—2; 24%—3; 13%—4; and 8% feel very experienced. So thank you to those respondents and it looks like you've got a wide-variety of skill levels to work with Dr. Lowy. I'll turn it back to you.

Dr. Lowy:
Okay, I'm so I'm going to be running through examples of using some add-on commands—Stata that are focused on working with CDW. I was thinking that to get the full benefit, you should be familiar with Stata, SQL, and CDW. Although, I think two out of three will probably work as long as you're forewarned and interested enough. You can download all the stuff that I'm going to demonstrate at either of the two ways listed on the screen. But I'm going to strongly recommend the pulse [?] side at this point, because I think there's going to be problems updating the external site with SSD [?]. Okay, and let's see. Everything that I'm going to show is stuff that I wrote to make my work easier, so I'm not making any claims of universal appeal or utility. The course of the talk is going to be—I'll go over four areas—setting the connection to the remote database, so the server, database, and the schema. I'll run over several simple commands that just do one thing, and then some commands for getting descriptions of the database. And then, finally, I'll get to the main command, sql that's for composing and running more complicated sql. I'll show you the documentation. Everything that I'm going to talk about has Stata's regular documentation, included—oh, Lord, let's see. Okay. That's showing up right. So help lowy brings up contents to all the commands—that's more than the ones that I'll be talking about. Help sql is an index to just the sql commands. That's just—is what I'll be talking about. There's a couple other things I'll go over that are outside the sql command. They're all documented. All right, so start off with sql path. This is the command to set the connection to the database, so you could specify a data source name, or a server name. And then a database and a schema. The idea is that this is [unintelligible] _____ [00:05:49] to the local file path, so you can—let's see. You can change parts of it. You don't have to change the whole thing. So here's an example, setting it using a data source name. Just like the local path, it shows you the settings—sorry, when it's done. Here's one to—this is the raw server. This is just a short cut for switching back to a previous path. So like the local path, I can change just the schema—the database and schema. If you execute the command without a path, it shows you the current settings just like the regular path command. Once you've used this command, the path is remembered going forward. Even if you quit and restart Stata, it still remembers the last path. So the rest of the commands implicitly use this path. If you don't specify anything else, it's going to use the database and schema that you set with this command that it remembers. Okay, so the first command that I'll talk about is sqli. It's just a general purpose command for executing any Stata that you like, so the command is [unintelligible] _____ [00:07:09] sqli. Everything after it is just sql. You could just type whatever you want and it will execute it. Here's just another example. One of the benefits over Stata's ODBC [?] command is that there's no quotes—everything's just straight sql. You can use sql quotes. There's no quotes within quotes. And if you notice on the command line I specified the table here, ICD9. But when it executed the code, it used [unintelligible] _____ [00:07:46] it used the current database and schema that I've set in the schema path. So I don't have to specify that stuff. I just specify the table that I want—switch to another path. It works for anything—pretty much anything. You can use semicolons and include compound statements. They don't have to be data use commands. We create tables, drop [?] tables—the I is supposed to be like Stata's other immediate commands, so you just sqli, then just type your sql. Okay, next command up is sql put. Oh, I could stop for questions, all right. Yes, there's a name—nope. Okay.
Female Voice 1:
None pending at this time, thank you.

Dr. Lowy:
Great. So sql put is a command for just taking the data that's in Stata and putting it on their own server. So I'll use example data. So here the data browsers open. As I go along, you can get a view of the data and memory. This is a description, so this is just an example file. Sql put allows if, in, and keep as options. And they affect the data that's put on the server. They don't affect the data in memory, so I can put just some records and some variables from the current data. So if I pull the data back, it's just 50 [?] variables—just some of the data. I'm going to go ahead and put the entire data file out on the server to demonstrate the other commands sql get. That's the counterpart of sql put. It takes data from one table and loads it into Stata. So it has where [?] and distinct options that work just like the regular sql clauses—distinct and where. Inside the where option, you put sql code—put sql quotes. It's not Stata code. It has two other options that are more beneficial. There's a keep option and a quick option. Keep lets you specify column names like a Stata varlist, so instead of having to type out every column. You do it just like you do in Stata, so this will get all of the columns that end in flag [?]. So we downloaded all these variables. The quick option is mostly equivalent to sql top, but it has the added advantage, if you're using a CDW fact table like visits [?] or basically anything that's not in the dimension schema. Quick will use the most recent complete quarter instead of the top of the database. So if we look—I'll show you. Here's schema that was—oh, sorry, sql that was executed. It did select the top 100, but it did it where visit daytime is greater than April of 2016. So it actually looked up the relevant date column itself, and then by day to pick the most recent quarter that's finished. So this way, you say "quick 100," and you don't get the trash that's at the beginning and end of the entire fact tables. All right, I'm going to get the table that we put up just a moment ago. And you could see that as usual, I put the data up and I brought it back. And I don't have the labels and formats, and everything that were in Stata of course. But the next command is for saving that meta data. Sql get can retrieve labels and formats if you put them up with this command, sql finish. So this is the data as it was on the server. I'm going to reload the example file from the local directory, execute this command sql finish. What this is going to do is put all the—everything that's in Stata except the data. So labels, formats—there's other things that you could potentially use. It puts everything up there except the data and it's associating it with a table name partial, which I put the data up there as. So it's separate. If I just use sqli to get everything from partial, I'm still going to get just the regular sql results—no formats, no labels. But now if I use sql get, it's going to automatically see everything is formatted, labeled—everything came back. So all that meta data that's in Stata is potentially savable on the server. And mainly for use with the tables that you're pretty much done with. That's why it's called sql finish. All right, sql move is just a shortcut for renaming or moving a table to another schema. That's kind of awkward to begin with directly in sql, so just give the existing table name. Say where you want to move it to. It could be just a name, or a different schema and different name. It also has the advantage that it preserves all that extra meta data—anything that's associated with the table gets properly moved, so I can get it from the new location, and it still has all the meta data. All right, I'm going to go onto a couple of other commands that don’t start with sql, but they're useful after you've downloaded data. First, I'll just download some dates. Dates are a pain, because they seem to come off the server in a whole rainbow of different formats. Here I've got daytimes that are in America. I've got string dates. DDT for date daytime is—it's just a quick utility to convert everything into Stata dates, and formatted kind of in one go. So these are the numeric daytimes. These are string dates. If you execute the command without any options, it's going to give you a preview first, so you can look in which of the example rows. And see that the dates are doing what you wanted them to do, and then if you add the go option, it'll actually convert everything. So now it changed everything into Stata numeric dates formatted in this year, month, day format, which is what CDW typically uses. The command has many options, so you can actually specify which field you want to include and how you want them formatted, and how you want them to end up. But by default, it just does this. It takes all things that end in data daytime, and turns them into these variables, so I find that very handy. One other utility for downloaded data is sometimes in CDW you end up with a numeric column, and a string column that are basically the same data. In this case, I—let's see if I can get to the [inaudible] _____ [00:15:56]. I downloaded STA3M and STA3M name, so this command pair takes two command variables—one string and one numeric—and it creates value labels for the numeric label from the string data, and then drops the string data. So if I could get this—it went to one variable. It's now a label numeric variable. It's just listing the number and the label. All right, I guess onto the description command, so again, if there's any questions.

Female Voice 1:
Yes. Cheryl, we do still have you on mute. If you want to interject with the question, that'd be great. Cheryl, is your line still—oh, it looks like she might have gotten kicked out of the meeting. I'll go ahead and read it. "Does this operate on the sql server itself, or does it need to download the data to the local environment? If it does download to the local environment, does it download the entire table to the work space before it begins to apply filters in programming statements?

Dr. Lowy:
Shoot, let's see. I'm not sure that I completely get the context. These commands are running in Stata, so they're running on—you will have Stata running. It could be on your computer. It could be on a server that you're using. But it's not sql server. So—oh, I see. Oh, like filtering, like the column names and so forth. It's a mix, so some of the information, like in order to get the date column for the Quick 100. It gives a query to the server to find out what the correct data column and then it uses that. That all happens on sql server. Some of the—like to use the varlist syntax to get the variable names, it downloads all the column names. And then filters them locally, and then sends them back. That's just the list that you want. Mostly—yeah, okay.
Female Voice 1:
If they need further clarification, they can write back in.

Dr. Lowy:
Yeah, okay. So onto the descriptive commands. Sql tables lists a selection of tables from a schema, and again it uses Stata varlist notation to specify the tables you're interested in. So a star is everything—it's all the tables of the schema, but this one I list the tables as CO*FY* [?]. That's just going to give me the tables that begin with CO or FY—the schema I want. And then sql columns is sort of an equivalent command for giving a list of columns in a table. This is the table. You specify the table. The columns again, you state a varlist notation. That means you can also use ranges, like I did here—ALC [inaudible] _____ [00:19:29]. Columns has an additional trick, so it lists the relevant columns sort of as usual in a paragraph. Then it does a second copy with commas, and it's for copying and pasting. So you cannot see the entire line, but that's because there are no line breaks in it. So if I copy it and then paste it somewhere, like into code. I can paste it without having to backspace over the odd line breaks and so forth. And one additional trick is it has this option to specify a table alias. If I do it this way, then the second copy prefixes each column name with the table name that I asked for—table alias. Again, so I can paste it into code without having to type all that. Okay. Now I'm going to —to set up for the next command, I'm just going to create dates from dummy tables. Because we have just put in sqli in a ordinary Stata loop. We made some tables. Sql clear is a command for dropping a bunch of tables and possibly a schema. Again, Stata varlist notation to specify the table, so I'll ask to drop all the tables that start with T. And it's going to list, actually, all the tables in the schema. Put this white mark by the ones that it'll drop. And if I say yes, I say yes and it drops. Okay. Finally, sql dbdescription produces a comprehensive report on the entire database, or selected schemas. In this case, it's going to be the whole database, because I didn't ask for specific schemas. It shows all the schemas, and their tables, and columns, and some other info. And it puts it in this HTML page, and opens in a browser, so each of these white areas is one schema in the database. We've been looking for the demo using demo and demo [?] and demo2 [?]. You can expand, and collapse. And in each schema it shows the tables that are in that schema. Each one shows the number of rows in the table—megabytes, which for these demos is too small—and the modification date. If you click on a table, you get another display showing the column names, types, and sizes. And you can do however many you want. You can go back and forth. It's very handy for checking columns across tables, and so forth. To close the table display, you can either click on the—you can click either place. If it's open, it'll close. All right, one other thing about—oh, sorry, let's see. So when sql dbd runs—I don't know what—this is some weird thing with the server _____ [00:23:01]. It creates a file. So when I ran that command, it created this file in the local file system. There's options for making a name, but usually it names it with the name of the database. So this file is just saved. Any later time I can just open it up again, yeah. Now I still have that database reference. So one other thing that's not documented is that if I run the command again—oh, sorry. Just in the last day or two, the server's been doing something very weird. But luckily, relatively easy to fix. If I run the command again, what it's going to do is instead of overriding this already existing file, it'll rename the old one and show you the date that it became obsolete—the date that there was a newer file created on. So, here, the old one got renamed. It's got the date and time that it was made obsolete and then the current one always lacks that suffix. So you can have a whole series of these going back, and then whenever they're too old you just delete them. So it's not documented, because it's not specific to this command. It's a general feature of all the HTML output, and I haven't found any reasonable place to document it. But I love that feature. All right, let's see—questions, again?

Female Voice 1:
Yeah, we do have some pending questions. "Are these functions available in the Stata programs on Vince [?] or do we need to request to have them installed?"
Dr. Lowy:
Let's see. They're not there in Vince. You can get them in Vince one way or another. You can do it yourself. There's instructions at the Pulse [?] site. The Pulse site has all the commands as a zip archive, and you can move that archive onto Vince, and I have instructions for how to set it up. I'm not sure, or you could ask them to do it I suppose.
Female Voice 1:
Okay, that sounds good. Thank you. And we'll go ahead and hold the rest of the questions for now. Thanks. I'm sorry. One more did just come in. "I am unsure of how to connect my Stata to CDW."
Dr. Lowy:
How to connect it? Well, you can use—you either—that first command that I showed, sql path, if you use that command and use the actual server address instead of a data source name. That's all you need to do. If you execute that sql path command with a server name, you'll be connected. Using a data source name takes one more step that you have to set up the data source in the operating systems. So if you know what you're doing with that, you could do it. It doesn't really matter. I guess I can't see if that's good or not. All right, let's see. Oh, no, I'm right. So at this point, we're onto the main event pretty much—sql do. That's the command that'll execute more complicated sql code and useful for composing it. This first example I'm going to show is very simple. It's just to look at the way that the sql code interacts with the Stata code, so one of my main goals in writing this one was that I wanted to look at everything all together. I wanted the sql code and the Stata codes together, so I could look at the entire conceptual process at once. So this example is just going to look at that piece of it. So sql do executes code from a file on disc. That's exactly the [inaudible] _____ [00:27:37] that I want something else to go in. And then in the parenthesis, the table name that I want to use. I'll just do these previews, and see that it worked. ICD [?] codes is now using all the codes instead of ICD codes. Again, I can fiddle with things as I'm running it. I don't have to remember to change the sql code. And then, there's a priority to the way that the tags are resolved. So anything that you specify on a command line is first, and then anything that matches an existing table uses that. And lastly, it gets subbed out to be the current schema. So you can actually specify another tag on the command line, and that will still get resolved. So if I specify, T colon all codes instead of ICD codes—no, it won't. Ah, this never happened before. Hmm, that's basically the problem. It puts in all the codes and then it still resolves it in this case to the current schema, which of course I changed to be demo2, so it's got demo2. Now I want to return to sql dbd, because sql do also creates some more metadata that shows up in sql dbd. I'll show you another existing thing. So if you create a table with sql do, the table listing has another line. And that shows the run time—how long it took to create the table. And this data's the same, but if you click on that line, you get a popup that shows you the actual sql code that ran that created the table. You see all the references are resolved. This is an actual common table expression. And at the bottom, it's got the file path of the local file that the code was in when you ran it, so this is the place that the code lived on your computer. This is the code that created the table. [inaudible] _____ [00:30:49] another example code file path. Anything you do with sql do, it just gets this. And then just to possibly avoid confusion, the reason for these other symbols is that you can merge data into an existing table. So I could use several different queries and have the data end up in the same table. That's why—I'm not necessarily recommending it, but that's why things are set up like this. So in that case, each query gets its own name, run time, the size of the data from that query, and when it was run. And if I look at the table, each field has the name of the query that that field came from. So just mainly to avoid confusion, I'm [inaudible] _____ [00:31:55] other symbols are. All right, let's see. I'm about out of time. Is that right?
Female Voice 1:
We are getting close. We do have a few pending questions, so we'll want to leave a few minutes at the end.

Dr. Lowy:
Yeah, well, let's see. I'll just—so if I have time, there's another kind of tag. You could use this G colon. That doesn't get resolved as a table. It's pretty much just like a regular variable. It gets subbed [?] up for anything you want. So if you don't specify anything, it gets resolved as itself. It just takes of the G colon and gets resolved. After that, you can substitute anything else. The usual way to use that though would be for, like, dates and so forth. Right, if I'm specifying dates in the sql code, I can put the G colon date one, date two, and then on the command line, I would put in the dates I want to use. Then I don't have to run through and change everything through all the code. I think that's good. I'll go for questions.

Female Voice 1:
Cheryl, are you on the call? Cheryl, you may be on the call, but you are muted, so please unmute your telephone.

 Cheryl:
Okay, can you hear me now?

Female Voice 1:
Yes.

Cheryl:
Okay, first question, "are these functions available in the Stata programs on Vince or do we need to request to have them installed?"

Dr. Lowy:
Oh, didn't I do that one.

Cheryl:
I'm sorry. Okay, sorry about that. Second question, "I tried to install your commands on Stata on the CDW workspace—the Vince workspace—however, I get the error. 'The following files already exist and are different Lowy Seattle dot M-L-I-B.'"

Dr. Lowy:
You need to—I think that happens if you're using SS—just tell it to go ahead and replace everything. If you're using SSD, just say, "replace." Whatever the option is for overwrite, then. I think that works. Otherwise, you may just delete the old stuff if you can find it.

Cheryl:
Okay, this is a related question. It may be redundant. "I also cannot use any of the commands. DDT is not found. How can in install these commands?"

Dr. Lowy:
DDT, to install them, you've got to go to preferably—let's see. Let's see if I can—so those are the two ways to get the commands, and again, I'm going to recommend Pulse. You can look at the VA Pulse site and there's instructions there. If they look doable to you, then I would do it that way. Yeah, so none of this stuff is built into Stata, yeah.

Cheryl:
Okay, "I am unsure of how to connect my Stata to CDW."

Dr. Lowy:
Yeah, so using this method, using these commands, it would just be the sql p command. And if you haven't done anything else, then you would need to use the one with an explicit server address.

Cheryl:
Okay, essentially, "does it pass the commands to a sql server outside of the Stata environment and only return the column requests with their filtering logic. SAS does this and it is called sql pass through, and it is an enormous time memory, and IO saver."

Dr. Lowy:
I can't compare it to SAS. I don't know. But, I mean, I ran this stuff. I don't know what to say. It takes as long as it took to run. Generally, it's pretty quick in requesting that metadata from the sql server.

Cheryl:
Okay, "when you call sql do, sql do X1, the code knows to execute the text in between the blue purple text?" That's a question.

Dr. Lowy:
Yeah, that's a good—let me—let's see if I can—let's see. Yeah, so when you call sql do, it's going to read this—what it's doing is reading this whole file off a disc, and it looks for these two tags. And in fact, you can have more than one section in the file, but it's only going to—it's going to strip out everything and only use the text between the sql tags. Is that—I'm not sure if I got that right. Could you tell me the question?

Cheryl:
Yes. "When you call sql do, sql doX1, does the code know to execute the text in between the purple text?"

Dr. Lowy:
Yes, exactly, right.

Cheryl:
Okay, "how can I get the codex—that zip file from you?

Dr. Lowy:
That's also on the Pulse site at the same place as the rest of the stuff.

Cheryl:
Okay. "How does one find the sql server to specify in the initial commands to connect?" Oh, okay.

Dr. Lowy:
Oh, how do you find the server name?

Cheryl:
Yes.

Dr. Lowy:
That's on—somewhere—you can—I don't know—start at VIReC. I'm trying to bring up their thing here. It's on the—server names are on CDW help website somewhere.
Cheryl:
Okay, great. That was our last question.

Dr. Lowy:
All right. I guess that's it then.

Cheryl:
Okay.

Female Voice 1:
Thank you. Do you have any concluding comments you'd like to make, Dr. Lowy?

Dr. Lowy:
No. I don't know. I didn't cover—sql do has a few more tricks, but, yeah, that's it.

Cheryl:
Okay. Well, Dr. Lowy, thank you for taking the time to present today's session. To the audience, if your questions were not addressed during this presentation, you can contact Dr. Lowy directly at the email shown here. So I think we want to go to the very last slide in your deck. You can also contact the VIReC help desk. The next session in our CDW series is scheduled for Monday, October 24th for 12 p.m. Eastern Time. The session is entitled, Getting CDW Back Together, Joining CDW Tables (Continued), because this is a continuation of an earlier session on joining CDW tables. This cyber seminar will be presented by Dr. Margaret Gonsoulin. Thank you once again for attending this session. Molly will post the evaluation shortly. Please take a minute to answer those questions. Thank you. Goodbye.

Molly:
Excellent, thank you Dr. Lowy and thank you Cheryl. For attendees, I am going to close out the meeting now. Thank you for joining us. Please take just a moment to fill out these few feedback survey questions. We do look closely at your responses and it helps us to improve sessions, and our program. So thank you once again, and this conclude today's [unintelligible] _____ [00:40:46] seminar presentation. Have a great day everyone.

Page 1 of 2

