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Dr. Gidwani-Marszowski: Good morning, good afternoon everybody, depending on your time zone. Today’s webinar is about how to derive transition probabilities, which are the main inputs into your decision model. And we have a lot of slides, so I’m just going to jump right into things. In the interest of time, I may be skipping over a few slides. I’ve included them here so you have them for reference but this lecture does not lend itself well to being split into two parts, so I hope you’ll just bear with me and we’ll get through this, as efficiently as possible. 

Before we get started, I will ask everybody to either get out a calculator or pull up an excel spreadsheet, as we do have an interactive example, a couple interactive examples today. 

Okay, so why are we so interested in transition probabilities? Devoting an entire lecture to them. The reason is because they are the engine to our decision model. They drive everything that happens in the transition model, I’m sorry, in the decision model. And there’s two main categories of transition probabilities in the decision model. If you have a state-transition model, then your transition probability is the probability from moving from one health state to another. So for example, moving from a health state of cancer to a health state of remission.

If you are doing a discrete-event simulation model, then your transition probability is the probability of experiencing an event. So that might be the probability of experiencing an acute myocardial infarction. 

So, transition probabilities drive everything that happens in a decision model, and oftentimes you’re going to be deriving these probabilities from inputs that you obtain from the literature. And today, I want us to be able to speak about when and how you can do this.

Before I get into the actual contents, I want to briefly acknowledge the two professors who have reviewed these slides and have given me some great feedback. Dr. Louise Russell and Dr. Rita Popat have both been fantastic, so my thanks to you both for your contribution. 

Alright, let’s jump right in. So we have talked about cost effectiveness analysis model in the past, in the cyberseminar and hopefully you guys have seen a schematic that looks something like this, which is a diagram of a cost effectiveness analysis. In this cost effectiveness model, what we’re doing is we’re looking at Drug A versus Drug B to treat diabetic patients, and we’re interested in understanding the relative value of these drugs, in comparison to each other. Our health outcomes are health states we’re interested in evaluating, are whether a patient has controlled diabetes or uncontrolled diabetes. Ideally, we would want a drug that provides the greatest proportion of patients to be in a healthy, of controlled diabetes. 

And so, this is the structure to the model and now we need to provide inputs into the model, and the inputs would be the transition probabilities. And so you can see these here, are currently not filled in but in the blue squares, what we would need to do is figure out the probability of being in a state of controlled diabetes and uncontrolled diabetes. And if we run the model and people move from one health state to another, we’re interested in the likelihood that they transition from the state of uncontrolled diabetes into a state of controlled diabetes. 

So, before I go further, I just want to point out that when we are doing a decision model or a cost effectiveness analysis, you’re oftentimes comparing drugs but you don’t have to compare drugs, it can really be any interventions that you study. So here, instead of Drug A versus Drug B, now I’ve switched the example and we’re comparing a single drug to a health services intervention that comprises diet and exercise, plus daily telehealth monitoring. 

When you have two disparate treatments, like this, one is a drug, one’s a health services intervention, you just need to make sure that when you go to the literature, in order to obtain your inputs for your transition probabilities, that the patients that have been studied in the manuscript about Drug A and the patients that have been studied in the manuscript about the health services intervention are relatively similar. If the patients that have been studied under the drug and the patients that have been studied with the health services intervention in the literature are different in systematic ways, then you run into some problems. For the purpose of this example, we’re going to assume that the patients that have been studied in these different interventions are relatively similar. 

This is the exact same schematic that we saw before now I have filled in the transition probabilities myself and so, here we see that Drug A, the drug, looks like it’s more efficacious than the health services intervention. Under the drug, 84% of patients have controlled diabetes. Under the health services intervention, 76% of patients have controlled diabetes. 

So this is, I should say, this schematic is really what we’re trying to get to, as our, as the end results of today’s seminar. We really, what we’re trying to do is our focus is entirely on how do we obtain these inputs that we can use in our decision model. 

So, there’s two main ways that you can obtain, or drive model inputs for use in your decision model. First, you can obtain existing data from a single study, where you go to the literature, you find the study that looks relevant and you pluck values from that study and implement them into your decision model. The other way that you can drive model inputs is that you synthesize existing data from multiple studies. So instead of using a single article, with which to drive your transition probability, you would do a systematic literature review and search the entirety of the literature to understand all of the studies that pertain to your transition probability of interest and then you would synthesize data from those multiple studies.

Today, what we’re going to be doing is talking about this first approach of how you obtain existing data from a single study but I will be giving future lectures about how the second approach of how you can devise existing data from a number of different studies.

Okay, so let’s jump right in. When you are obtaining inputs from the literature, if you are a very lucky individual, you’ll read a journal article and it’s going to have exactly the type of information that you need. That is a rare event. The vast majority of the times, you’re not going to be extremely lucky and in those situations, where you are not extremely lucky, what you have to do is, you have to modify the existing literature, in order to derive model inputs that are relevant to your specific model. 

There is a lot of different types of inputs that are available from the literature and we’re going to talk about how we can transform these types of inputs, into transition probabilities. So, we have probabilities, or risk, some journal articles will report those directly. Some articles will report rates, oftentimes you’ll see relative risk, odds ratio, sometimes risk differences and sometimes you’ll have mean or median values that are reported in literature. Through the dotted line is separating out the specifics that relate to continuous data versus those that relate to binary data. So above this dotted line, all of these statistics relate to binary data; below the dotted line these statistics relate to continuous data.

So what we need is data in the form of probabilities, for use in a decision model. So probabilities are used for binary outcomes, right? And that’s because we’re interested in whether each person, or each cohort, transitions from one health state to another. Did they move from cancer to remission? That’s a yes/no answer. 

So, I have a slide here that goes into a lot of detail about all these different statistics and what they evaluate. I’m not going to go over it right now, in the interest of time but I would encourage you to save this slide as a good form of reference material, for you to come back to, in the future. 

One thing I do want to point out is that some of these statistics are comparative and others are non-comparative. And so, you can see here, in the right-hand [unintelligible 7:58] column, which statistics are non-comparative, that’s the probability or risk, the rate, the odds, and also the survival curve and the mean. The odds ratio, relative risk and the risk difference are all inherently comparative data and the reason that this is important is because inputs for decision model require that you have non-comparative data. And what you can do is, some of these comparative-specifics, you can actually transform yourself into non-comparative data. 

The reason that we need non-comparative data is because the model itself is what’s doing the comparison, and so you don’t want to put comparative data into the model because then the model has no information with which to calculate a comparison, or I suppose, actually, if you did that, you’d be double counting the comparison. 

So, if we were, for example, studying Drug A to Drug B and that was what our model was trying to compare, we would need the probability of controlled diabetes with Drug A as our first input and we’d need the probability of controlled diabetes with Drug B as our second input into our decision model. The decision model would then make the comparison of Drug A versus Drug B for us. 

When you’re using probabilities from the literature, the most important challenge, the most frequently occurring challenge that you’re going to come up against is that the timeframe is not going to line up. You may see a study reporting a probability of event or probability of achieving a health state outcome that’s for a different timeframe than you’re interested in. What you need for you model is a timeframe that a, a literature-based input that is relevant to the timeframe that matches your cycle-length of your model. 

So for example, if you’re looking at the likelihood of achieving controlled diabetes with a drug, you may find a study that reports a six-month probability of achieving controlled diabetes but your model, your own decision model has a three-month cycle length and therefore, what you need is a three-month probability, not the six-month probability that’s reported in literature. And so, what you need to do is transform this six-month probability from the literature into a three-month probability before you use it in your own decision model. 

And one thing to keep in mind, is that when you are trying to transform probabilities from one timeframe to be relevant to another timeframe, is that they cannot be manipulated easily. You cannot multiply or divide probabilities. So, 100% probability at 5 years does not mean that somebody has a 20% probability of that event at one year. And if that’s hard to remember, I would encourage you to remember the opposite example, of 30% probability at one year does not mean 120% probability at four years. Obviously that 120% probability is an impossibility and so please keep this in mind when you think about dividing and multiplying probabilities. That it’s just not possible and this later example shows you why. 

However, what you can do, if you are trying to change the timeframe to which your probability applies, is that you can take advantage of the properties of rates, in order to do so. So, unlike probabilities, rates are able to be mathematically manipulated. They can be added, and they can be multiplied. And so, in order to change the timeframe of a probability, what you need to do is to convert that probability to a rate, exploit the mathematical probabilities of a rate and then re-transform that rate into a probability. 

One caveat with this approach, is that this assumes that the event of interest, or the outcome of interest occurs at a constant rate over your particular time period. If this assumption cannot be met, then you’re not able to transform into a rate, and then back to a probability. 

Before we get into how we actually transform rates versus probabilities, I want to just give you an, I want to, sort of, go through more in depth, how you calculate a rate, versus a probability, so that you understand the difference between the two. In a rate, you care when the event happened. This matters a lot. It changes the rate. So, a rate is the number of events that occurred in a time period, divided by the total time period experienced by all subjects followed. A probability is the number of events that occurred in a time period, divided by the number of people followed for that time period. 

So, in a rate, the unit of time is in the denominator but it’s not the denominator of a probability. And that’s why in a rate, you care when the event happens because that does change the rate, it doesn’t change the probability. 

So, here’s an example of four people that were followed for a time period of four years. And you can see that at the end of the study, only one of the people was alive and three of them died throughout the course of the study. If we wanted to calculate the rate of death, the rate, again, is the number of events that occurred in the time period, divided by the total time period experienced by all subjects followed. 

The person number one was for three years, person number two was for four years, which is when the study ended, person number two was for one year, person number four was for two years. Therefore, our denominator is the total time period experienced by all subjects followed is three plus four plus one plus two, or 10. Our numerator, the number of events that occurred in the time period, is three. Three divided by 10 is a rate of three per 10 person-years, or .3 per person year. Probability of death is three out of four, or 75%. 

On this slide, on the left-hand figure, the exact same figure that you saw on the previous slide. On the right-hand side, it’s a new figure. Now here, we still have four people that were followed for four years and we still have three people who died but they died at a different timeframe than the people who were studied in the left-hand figure. In the right-hand figure, there were two people who died at six months or .5 years, and there was one person who died at one year, I’m sorry. And the other person was alive at the end of the time period. 

Now because it is a rate, the denominator is the total time period experienced by all people followed and people in this figure on the right, died earlier than people who were followed in the left-hand figure. We see that the denominator changes. The denominator is .5 plus four, plus one, plus the .5, which adds up to six. The rate, the numerator of the rate is still three, because three people died during the time frame. So, because the denominator changes, the rate is now three divided by six, or .5 per person-year. Probability of deaths remains the same, 75% of people died. So, here you can see that the time period that which something happens, matters a lot for the rate but it doesn’t matter at all for the probability. 

So, now I want to move in to an example that you guys can work through yourselves, in your own computers. Looking at this figure, I want you to calculate both the rate of death and the probability of death from the following data, and again, a rate is the number of events divided by the number of person-years and the probability is the number of events divided by the number of persons followed.

So, Heidi, I think, let’s just give about 20 seconds or 30 seconds and then we’ll move on to the next slide. 

Heidi: Okay, sounds good. [pause]

[bookmark: _Hlk508876973]Dr. Gidwani-Marszowski: And since we no longer have the capabilities to have you all input your answers and have them pop up on the screen, so you won’t see anything changing on the screen in front of you, but please just work through the example yourself and on the next slide, we’ll compare your answers. You can compare your answer to what I’ve derived. [pause]

Okay. Hopefully that was enough time. So, for the rate of death, it ends up being .375 per person-year. So our denominator, I find it’s always easier to start with the denominator, so the denominator is two, plus three, plus one, plus two, or eight and the rate of death is three divided by eight or .375 per person-year, probability of death is 75%. So hopefully you guys all got that same answer, as well. 

Alright, now that we understand a little bit more about rate versus probabilities. Uh-oh, did I skip a slide? [sic]

Heidi: Oh, you may have.

Dr. Gidwani-Marszowski: I don’t why I don’t seem to have the slide about repeating events, but if you have a slide about repeating events in front of you, there are some different ways that you can calculate events that occur in a repeating manner. Since I don’t seem to have that slide up here, for some reason, we’ll skip that but I’m happy to talk about that at the end, if needed. 

Okay, so I’m going to move on to now the actual equations that you use to make a probability to rate conversion. So now that you understand how probabilities and rates differ, I want to delve into how you exploit the mathematical probabilities of a rate, in order to use mathematical properties, (excuse me) of a rate, in order to transform your probabilities to a timeframe that matters for you.

So, a rate is the negative natural log of one minus the probability, divided by a time. A probability is one minus the exponentiated value of a negative rate, times time. So, let’s actually put some examples to those equations. 

So hypothetically, we have a literature-based input that tells us the three-year probability of achieving controlled diabetes is 60% and let’s say the we have a cost effectiveness model that has a cycle-length of one year. So we want to really understand, what is the one-year probability of achieving controlled diabetes. So, in order to do that, we’re going to first assume that the incidence rate is constant over three-years and remember that’s a major assumption of utilizing the properties of a rate to convert probability. And we have the same equation that I showed you on the previous slide, and now we’re just going to plug in our data, into this equation. So we have the negative natural log of one minus .6 because we have 60% reported in the literature, divided three, or three years, and that gives us a one-year rate of .3054. So what we’ve done here is we’ve transformed the three-year probability to a one-year rate. Next, what we need to do is transform this one-year rate into a one-year probability. So we use our equation of probabilities and we just plug in our values, one minus the exponentiated value of negative .3054, times one. And the reason that it’s times one is because we’ve already transformed the three-year rate into a one-year; I’m sorry, we’ve already transformed the three-year probability to a one-year rate. And now we just want to convert a one-year rate to a one-year probability and so this value’s time remains one. That gives us a probability of .2632, or 26%. 

So, remember don’t stop once you have the rate, right? Here what we did is, we converted the three-year probability to a one-year rate. You have to take that second step of transforming that rate back into a probability. Now, even though I transformed a three-year probability to a one-year rate, and then a one-year rate to a one-year probability, you could also instead transform the three-year probability to a three-year rate and then transform a three-year rate to a one-year probability. In that case, we would have a value of one here and a value of 1/3 here.

Alright, so let’s do another interactive example here. So, another hypothetical piece of data is that 30% of people with an intervention have controlled diabetes at five years. If we wanted to find out the one-year probability of controlled diabetes, we would use the following equation and so I’d like you to work through yourself, what the one-year probability of controlled diabetes would be, using the data on your screen. [pause] 

And let’s give about a minute for this. [pause]

Heidi: And I haven’t heard from anyone that the first time wasn’t enough time, so hopefully the minute should be good for people to do their calculation. 

Dr. Gidwani-Marszowski: Okay, great. [pause] 

Okay, and that’s a minute. I hope that’s enough time for folks. I apologize but because I have so many slides, I will just move forward and if it wasn’t enough time, I hope you will try to do some of these examples yourself, after this lecture is over. 

So, our answer is that a five-year probability of 30% results in a one-year probability of 6.89%. Okay, so what I’ve done here is I have first converted a five-year probability into a one-year rate. You could’ve done something different. You could’ve converted the five-year probability into a five-year rate, but that’s not what I did here. What I did is, I converted the five-year probability into a one-year rate and that’s why I divided by five, and that give me a one-year rate of .0713. I converted that one-year rate to a one-year probability, so I plugged in the negative .0713 and then I kept the timeframe at one, because it was a one-year rate to one-year probability, and that gave me a one-year probability of 6.89%.

Okay, so if events do not occur at a constant rate, there are some people that are working on some different methods that you can use to change probabilities into values that apply to your cycle-length. This is an advanced topic; this is a new approach that has come out in a 2016 edition of Medical Decision-Making, so I’d encourage you to take a look at that, if you’re interested. 

One thing I do want to mention is about confidence intervals around derived probabilities and we’ll speak about this more in future lectures but when you are inputting the values the decision models, there is some uncertainty around that point estimate. So just like a 95% confidence interval is reported in the literature for need values or for probabilities that represent some uncertainty around that estimate. That is uncertainty that we also need to bring into our own decision model, because we know that the value of the transition probability is simply a point estimate and it’s not incorporating any variation or uncertainty around that point estimate.

So, what we need to do is when we incorporate that estimate of uncertainty into our decision model, is we use the same probability to rate to probability equations to convert the upper and lower bounds of the confidence interval. And we use those converted upper and lower bounds of the confidence interval as inputs into our decision model, as well.

So, I have here the same example of our point estimate, controlled diabetes 30% at five years and that being a one-year probability of controlled diabetes of 6.89%. And we know that there is some uncertainty around that estimate, let’s say in the literature, they reported that the five-year probability of controlled diabetes was 30%, with a 95% confidence interval of 25 to 35%. If we wanted to understand what the lower bound estimate of our 6.89% of one-year probability estimate was, what we would do is we would take that lower bound and the confidence interval is 25% and then we would then use our same equations to convert that five-year lower bound into an annual rate lower bound and then an annual probability, lower bound estimate. 

And then we would do the same thing for the upper bound. So we’re using the exact same equation, in order to convert the recorded confidence interval into a confidence interval that applies to our probability at one year. And that would give us, for our decision model, a transition probability input of 6.89%, with an estimate of uncertainty around that input is 5.59 to 8.25%. 

Great, so. We’ve talked before about these different statistics. I didn’t go into a lot of detail about them, in the interest of time but I do want to come back to this table because I want to summarize how we can convert all of these different statistics to probabilities. So, probability or risk, can we convert that to a probability? Yes, it already is one, if we have a reported probability that doesn’t apply to the time period of our interest, for our decision model, we can use rate to convert that probability. Can we convert a rate to a probability? Yes we can, we just did it in a previous slide. 

So now I want to focus on relative risks, odds and odds ratios. So, in the beginning, there were two by two tables and I’m sure you guys all remember these from your EPI 100 classes, where you have, in a two by two table, on one axis of the table, you have whether a person has been exposed or unexposed, to an intervention and on the other axis, you have whether they achieved an outcome or did not achieve an outcome of interest. So the probability of achieving an outcome in people that have been exposed to an intervention, so the probability of controlled diabetes with Drug A, would be a, over a plus b, and some this two by two table you can also calculate an odds ratio, as well as a relative risk. 

If you have the two by two table reported in the literature, you’re set. You can just calculate the probability from this itself but oftentimes, you don’t have this. You’re just going to have the summary statistic reported, like the relative risk or the odds ratio. The point I’m trying to make, from showing you this table, is that the probability, the odds ratio and the relative risk all come from the same source. 

So, this is just that same two by two table that now applies more to our example, where our outcome is controlled diabetes and where the interventions are drug A versus placebo. So the odds ratio here would be the odds of achieving controlled diabetes in drug A versus the odds of achieving controlled diabetes in placebo. So relative risk would be the probability of achieving controlled diabetes with drug A versus the probability of achieving controlled diabetes with placebo. 

So these are some definitions of these different statistics. So the relative risk is the probability of the outcome in exposed people versus the probability of that same outcome in unexposed people. The odds ratio are the odds of achieving outcome in people who are exposed to an intervention versus the odds of achieving that same outcome in people who are unexposed to the intervention.  And odds themselves are probability of an outcome, divided by one, minus the probability of an outcome. 

So, because relative risk has probabilities in both the numerator and the denominator, as opposed to odds, they end up being easier for people to interpret than odds ratios. But the odds ratios have better statistical properties. The odds ratio of harm is inverse of the odds ratio of benefit. The relative risk of harm is not the inverse of the relative risk of benefit. So, because the odds ratios can be inverted and still hold, they have properties that we like. Since relative risk does not, you better hope that if the relative risk that’s reported in the literature is that the one’s that reported is the one you’re interested in. So, if you’re interested in the relative risk of developing an adverse event, you better hope that the literature reported the relative risk of experiencing an adverse event. If the literature reported the relative of not experiencing an adverse event, then you’re in a pickle. 

Alright, so how do we get probability from relative risk? Well, it’s actually relatively simply. So the relative risk is the probability in exposed people versus the probability of the outcome in unexposed people. And so what we want to do, in order to get a probability from relative risk, is we multiply that relative risk times the probability of the outcome in unexposed people. And I’m just going to replace relative risk here, with it’s definition, which is probability of outcome of exposed people over probability of outcome in unexposed people, and then you can see that if we multiply this relative risk times the probability of the outcome in unexposed people, then the probability of outcome in unexposed people cancels out and what we’re left with is the probability of outcome in exposed people. So that’s exactly what we’re interested in for our transition probability. Now, of course, this requires that you’re able to find the probability of the outcome in unexposed people, in the journal article. 

So let’s go through an example here. So, let’s say we have a literature-based relative risk that’s been reported as 2.37 and we’ve read the rest of the journal article and we see that the probability of the outcome in unexposed people is 0.17. We would multiply that 2.37 times 0.17 and that tells us that people have a probability of an event of 40.3%, over the entire study period. So, remember that the probability that you’re deriving from your relative risk is going to be for the entire duration of the study. So it’s specific to that study’s timeframe. And now you may need to go back and use the properties of rates to change that probability to something that’s more suitable to your model cycle, right? Just like we did in those examples, a few slides ago.

One caveat I do want to mention is that if the relative risk that’s recorded in the journal article is a result of a regression, either because it came from observational data or because it came from a randomized, controlled trial where people were trying to accommodate clustering of data and decided to run a regression, instead of a TPEPH, then that relative, or I shouldn’t say a TPEPH, but some sort of outcome for binary variables, but if that relative risk is a result of a regression, then it’s been adjusted for covariates. But, most likely the probability of the outcome in the unexposed people that you find, in the remainder of the journal article, will probably be an unadjusted estimate. And so that poses a few problems. 

So, if all we can find from the literature is the probability of the event in unexposed people that’s unadjusted, then when we multiple that, times the relative risk, which has been adjusted, then these values don’t quite cancel out. And so that means, our derived probability estimate is going to have some bias, and therefore you need to make sure that you vary this in the sensitivity analysis. 

Alright, so relative risks are nice, but odds ratios are much more likely to be reported in the literature than relative risk and that’s because the odds ratios are what you get from outcomes of a logistic regression equation, which is what’s oftentimes run when you have a binary outcome. If you’re trying to derive probability from an odds ratio, things get a little bit more complicated and one thing you need to keep in mind is that it’s really important to understand whether the outcome of interest in the unexposed group is rare, or not. Generally, the rule of thumb in epidemiology is, if the outcome in the unexposed group is less than or equal to 10%, which we consider rare, then you can assume that the odds ratio approximates relative risk. 

If the outcome is not rare, that means it’s occurring 11 or more percent of the population, then this is an advanced topic and you shouldn’t try to derive probability from this type of odds ration without a consulting a statistician. 

So, this is a nice schematic which shows you why we essentially use the rule of thumb of 10%, as being a rare outcome. So this is a study that was published by Zhang and Yu in the 1998 edition of JAMA and you can see that the incidences on the X axis, and this is 10% incidence or lower, odds ratio’s on the Y axis, and then we have varying values of relative risk. When you are below a threshold of the outcome occurring less than 10% of the population, then the relative risk approximates the odds ratio pretty well. If the incidence of the outcome in the unexposed group is greater than 10%, then things start going haywire. And they really start going haywire when the outcome becomes very common, so you’re over here in the graph, or when the odds ratio, or relative risk end up being very low or very high. So, when there’s a common event that occurs more than 10% of the time, the odds ratio will overestimate the relative risk when it’s over 1.0 and it will underestimate the relative risk when it’s under 1.0 and so that’s why we really want to, sort of, stick here at this threshold of less than 10%.

Alright, so calculating probability from an odds ratio. If the outcome’s rare, we assume that the odds ratio approximates the relative risk. So this equation, that you see on your screen, is what we use to proport or derive of probability from a relative risk. Now, we’re assuming that the odds ratio approximates the relative risk, and we use the exact same equation. So if the odds ratio that we see in the literature is 1.57, and we go to the journal article and we see that the probability of an outcome in unexposed group is 8%, and since that’s less that our 10% threshold, we say great, this is a rare outcome, we’re going to assume that the odds ratio approximates the relative risk, use our equation here, that the probability in the exposed group is 1.57 times 0.08, or 12.56%.

So, I actually had derived this example of deriving this odds ratio from this two by two table. Now, you won’t have this, but I just want to show you that the odds ratio of 1.57 was derived from this two by two table, that I created and here you can see that there were 100 people, 12 plus 88, that were exposed to the intervention, 12 of them had the outcome. That means the probability of event in the exposed group is actually 12%, from the two by two table, and from our approximation here, we got 12.56%, so that’s pretty similar. So that’s a good thing.

Alright, so the probability of the event in unexposed people is really important because whether you can assume that the odds ratio approximates relative risk depends on this probability and it should be available in the paper, and many times it is available in the journal article that you’re looking at. If it’s not available, what you could try to do is to go to the literature to find this value for as similar a group of patients, as you can possibly find. 

Alright, now we talk about how we derive probability from odds, since we just talked about how you derive probability from odds ratios, now we’re moving on to probability from odds. Now this is very simple because odds and probability have a direct relationship. Odds are the probability divided by one minus the probability and thus, probability is odds divided by one plus the odd. So, for an odds of 1/7th, one over seven or one to seven, that results in a probability of 0.125 or 12.5%. And the way that we got this is, is that we just plugged in the probability is odds, over one plus the odds, so the numerator is 1/7th. The denominator is one plus 1/7th or 8/7ths. And then we just divide, and we get a probability of 12.5%. So that’s pretty straightforward, if you just have the odds reported to derive the probability.

Now, let’s say that you actually have the individual patient data yourself, that you’re working with, and that you are running some sort of a regression and you wanted to find the adjusted probabilities, from your regression, yourself. So you didn’t just want to look at your individual patient-level data and derive a probability from that because that was unadjusted; you wanted adjusted data and adjusted probabilities. If you’re using a program with Stata, which is generally what I use, you can use the “margins” command, after you type in your logistic regression equation. You just type in the “margins” command and that’s going to give you the predicted probabilities of a variable x, given that the outcome equals one. 

Okay, so back to our summary table. So, we’ve talked about probability and rate before, we just talked about odds of ratios and relative risk, and we figured that yes, we can convert these to probabilities. Odds are very easily converted to probabilities. Odds ratios can be converted to probabilities, if there are two conditions that are met. First, that the outcome is rare and that you have the probability of the outcome in the unexposed. A relative risk can be converted to a probability if you have the probability of the outcome in the unexposed group, available in the literature. 

Alright, now let’s go ahead and talk about risk differences. Okay, so a risk difference is the risk of an outcome in one group minus the risk of that outcome in another group and risk just is another word for probability. So, if you wanted to find out the risk difference of two interventions, you would just subtract the probability of an outcome under the first intervention, minus the probability of that outcome under the second intervention, and that would give you the risk difference. 

So that is the change in risk that is to the treatment and if the treatment has a lower risk than the control group does, than the risk difference is negative. If the treatment group has a higher risk than the control group does, than the risk difference is positive. Okay, so this is the equation for risk difference. And so if the article gives you the risk difference, it’s oftentimes going to give either the probability of treatment of the probability of control. If the article gives you the probability of treatment, great, just use that directly. You don’t need anything else. But if the article gives you the risk difference and the probability of control, then you just use that and the risk difference to derive the probability of the outcome for the treatment group. 

Going back to our summary table, we just talked about risk differences. A risk of difference is x minus a z, where z is calculated as x minus y, so that the paper reports x or y, in addition to z, it’s just an easy matter of subtraction and addition, in order to get the risk difference, oh I’m sorry [sic], the probability of the outcome in the treatment group. Okay, let’s see. 

Now let’s move on to survival data. So, before in our example to date, in this lecture, we’ve just assumed that all previous probabilities were assumed to be constant throughout your model. So, whether your model lasted for five years or for 50 years, we assumed that the transition probability that you derived from one cyclent of your model applies to every single cyclent of your model. And now, that doesn’t have to be the case, but it can be. The one type of transition probability that should never assumed to be constant over time is survival. We know that as people age, their likelihood of mortality increases and so what we need to do in any decision model is have multiple probabilities of death in our model. One for each time period of interest. So, you might want to say, okay every two years or every five years, or whatever is relevant to your patient population, the probability of mortality increases. You don’t want to keep that constant over time. 

So, there’s a couple different sources of survival data. So, there’s all-cause mortality, and that can come from the CDC and that actually is rates; it’s age and sex adjusted rates. Or, you can get mortality data that is specific to your disease or your treatment from the literature and that will likely give you the probability of death at a particular time-point from survival curve. Now the panel on Cost-effectiveness in Health and Medicine recommends that you use all cause-mortality in your decision model, rather than just disease-specific mortality because if you use disease-specific mortality, you’ll be underestimating mortality. You’ll be assuming that people don’t die from other causes and therefore, you may be overstating the effectiveness of treatment. 

So this screen shot here is a reported survival rate from the CDC and so, you can see that, so let’s say that we’re interested in people that are elderly and so these are the rates for people at different ages. And you can see that, and maybe we’re interested in males of all races, but you can see that the mortality rates really jump dramatically across these different ages and so this is one of the reasons why you can’t assume a constant mortality rate for your population, when you are doing a decision model. You have to actually increase that mortality rate, as your cohort ages throughout your model. 

So, here’s the rates per 100,000 that were reported by the CDC and what we need to do is transform this rate to a probability. So, on this screen, in this left-hand table, is the exact same data that I just highlighted in the previous slide and we know from our equation that probability is one minus the exponentiated value of the negative rate times time. And so here, they’ve already told us that this is per 100,000 person-years, on the previous slide and therefore, using those data, we get the probability of the death for each one of these age groups. For people 75-79, probability of death is 4.39%. People aged 80-84, it’s 7.09%, people 85 plus, it’s 14.29%. 

And so, if we wanted to actually include this into our decision model, this is the way that I would do it. So, here we have a model where it’s a cycle zero, it’s the beginning of the model, people are age 75 and my model has a one-year cycle length and so in the next cycle, or the next year, they are aged 76, etc. etc. And I’m going to model them, I’m going to say, up until age 86 and so, I would include this annual probability of death, that’s the same for people as they are age 75-79. Once they reach age 80, I’d include the higher probability of death until they reach age 85, and then I would include the high-end probability of death. And so that’s the way that you can incorporate, all-cause mortality rates as probability-based inputs, into your decision model. 

Now, there are some situations where you might want to use disease-specific survival data and there’s two main types of disease-specific survival data that you’re going to find in the literature. The first is the Kaplan-Meier curve and the second is the Cox Proportional Hazards curve. The thing to keep in mind about this too, is that the Kaplan-Meier curve is unadjusted data and the Cox Proportional hazard curve is adjusted data and so if the data that you are looking at come from a random or controlled trial are oftentimes just going to be reporting the unadjusted Kaplan Meier curve. If the data are observational, then you may, you’ll hopefully see that people have adjusted for different types of biases and confounders, and thus use the Cox Proportional hazard curve.

So this is just an example of a Kaplan-Meier curve and this is from a study in the Lancet and it’s looking at hospital admissions for cardiac reasons. And one group of patients was the treatment group, they underlined cardiac oblation. The other group was the control group and you can see these are their different Kaplan-Meier curves. And so, one of the things that you could do, since this is the only information you have is that you could use this graph, in order to approximate the data, as your interests. And so let’s say I was interested in the probability of survival at month 18, for the control group, I could use this graph to say okay, it’s approximately 54% at month 18, for my control group. So, that’s not a fantastic way to do things but there are sometimes where this is the only information that you’re going to have available and so you can use information from the graph, knowing that it’s a point estimate and that there’s some uncertainty around this point estimate. 

Alright, so we can convert survival curve data to probabilities, but one thing that I do want to mention is that survival curve data are conditional. So, in the survival curve data you’re looking at the probability of survival, conditional upon having survived up until that time point. And therefore, as more people die, as time progresses, the probabilities can change dramatically because the people who have dies are no longer in the denominator because they are no longer eligible to die. And so the survival curve data become a little bit challenging to work with but hopefully you’re following the recommendations from the panel on Cost-effectiveness in Health and Medicine and just using all cause-mortality rates. Converting those all cause-mortalities rates to probabilities and avoiding these headaches, altogether. 

Alright, so the last thing that we want to talk about is, how you derive probability from continuous distribution. So, if there are mean data that are reported in the literature, what are you going to do there? And this is a bit more, a lot more, actually of a challenging situation and so, what you need to do is because your decision model requires transition probabilities and probabilities are the probability of experiencing an event, which is a “yes or no” answer, or a binary answer, what you need to do is find a way to generate a binary variable from this continuous distribution. 

So, for example, if we’re looking at controlled diabetes, one threshold that is oftentimes used is that people that have a hemoglobin A1c value of less than seven, are considered to have controlled diabetes. But if you had an article that was reporting just mean hemoglobin A1c values, you could, if they gave you an estimate of variation around that mean hemoglobin A1c value, or median hemoglobin A1c value, you could then derive the proportion of patients that were underneath the particular threshold of interest. 

So, this actually ends up being a pretty challenging exercise. I’ve done a couple of these in the past and partnered with a very intelligent PhD statistician and it took a lot of very, very complex algebra, in order for us to be able to generate the proportion of patients that fell below a threshold that we imposed upon a continuous distribution. So I definitely recommend that you involve a statistician, if this is the challenge that you’re up against. 

If you’re not able to involve a statistician and you’re just doing a back-of-the-envelope analysis, you should be very clear to your readers that this is a vey quick and dirty way to generate a probability from mean data. But the quick and dirty thing to do would be, to use the mean of the variation to plot a distribution, and then estimate how many people fell below that cutoff. And I want to emphasize that this is definitely a very dirty way to do this and you’re assuming that your distribution is perfectly normally distributed and that’s a pretty solid assumption to be making. So, I would really only use that quick and dirty way, if you’re are doing something that’s very back-of-the-envelope.

Alright, so back to our summary table. We just talked about means and whether you can convert to a probability and the answer is “yes”, if you have an estimate of variation. If you don’t have an estimate of variation, you can’t do anything, whether it’s quick and dirty or statistically correct. Without the estimate of variation, you don’t know what the distribution looks like and therefore, you don’t know how many people would fall below a threshold of that distribution. So if you have an estimate of variation, that’s great and if you have a statistician that can be involved, that’s even better. 

Alright, so I’ve just been speaking about variation and I do want to emphasize that estimates of variation are very, very important. What we’ve talked about here is namely, deriving transition probabilities that are singular point estimates as inputs in your decision model. Just like any estimate in the literature has a measure of uncertainty around it from sampling error, you’re transition probabilities, whether they’re derived or came from the literature, are still going their own variation around those point estimates, that transition probability, and that variation needs to be estimated and included into your decision model and that’s because it’s necessary for sensitivity analyses which is a more advanced topic. 

We’ll speak more about sensitivity analyses in another lecture that I’m giving, but I do want you all to keep in mind that just because you have derived a transition probability, does not mean that you are home free for your decision model. You still need to bring with that derived transition probability the estimates of uncertainty around it. 

Alright, we’re getting to the top of the hour so I’m just going to have a couple more slides and then open this up to questions. One of the things I want to emphasize here is that the quality of the literature that you’re using, matters greatly. So, I alluded to this in the beginning; that if we have a decision model where we’re comparing a drug versus a health service intervention, then we want to have these two interventions, the drug and the health services intervention, we want them to have been studied on relatively similar patient populations. 

And if you have two really different randomized controlled trial, let’s say one randomized controlled trial that was comparing drug to placebo and another randomized, controlled trial that was comparing diet, exercise and telehealth to placebo, in a separate randomized, controlled trial, if those two randomized, controlled trials were really different, then you have a problem. And you cannot properly compare these two interventions in your decision model. You can’t plus values from one RCT and suck values from another RCT and use them. And that’s because, let’s say the drug study enrolled a little sicker patient then the diet, exercise and telehealth enrolled healthier patients. Then the delta between drugs and placebo could be larger than the delta between diet, exercise, telehealth and placebo. And what that’s doing is it’s biasing your estimate because it’s making the drug look like it’s more efficacious than diet, exercise and telehealth, when really it’s not that the drug is more efficacious, it’s that they were studying the drug on the sicker patient population. 

So, when you are going to the literature, in order to get your data inputs that you can use to derive transition probabilities, what ideally you have, is that you have two treatments that were directly studied in a head-to-head RCT, so you have a single RCT that was comparing these two interventions. If that doesn’t happen, which is actually a decent, if not the majority of the time, then what you would want is that the drug is compared to, let’s say placebo in the first RCT and the second intervention is also compared to placebo in the other RCT and these two RCTs enrolled similar patients. But if you don’t have any of these situations, there’s a potential solution in that you could do a network meta-regression, which I’ll touch on briefly in future lectures but that has its own limitations. It can only adjust for differences at the study level, rather than at individual level and so really, what you need to do when you’re going to the literature, and you’re plucking data-based inputs from a single study, is make sure that you’re choosing the highest quality study that you possibly can. 

So, in summary, when you want to use reported data as probabilities in your decision model, you need to transform those reported data into something that’s useful for you as a decision analyst. If you have data in the form of rates, odds ratios, if the outcome is rare, relative risk or survival data, then that’s pretty easy to transform into a probability. If you have a continuous data with an estimate of variation, it’s more difficult but possible to transform that reported data to a probability. If you have an odds ratio where the outcome is not rare, or you have things like standardized mean differences, then that’s more advanced topics and you should consult with statistician about that. 

If you remember nothing else from this lecture, I want you to retain that probabilities only apply to a particular length of time and in order to change the length of time, to which a probability applies, you need take advantage of the characteristics of a rate and to change the length of time to which a probability applies, you would transform your original probability to a rate, then transform that rate back into a probability. 

If you are interested in reading more, I would strongly recommend these two articles. They’re not too long but they provide some really valuable information and so, I actually encourage every single attendant at this seminar to read those two journal articles. 

Heidi: Alright, and if you have any questions, I will take them now. [pause] 

Moderator: Karen, are you available to help-out with questions?

Karen: Yeah, and Risha, note that there were a couple, sort of, specific questions that I just told the people to contact you afterwards because they weren’t generalizable. [pause]

Dr.Gidwani-Marszowski: Okay, anything that would be useful for the whole group? [pause]

Moderator: We do have a question that’s pending here, is long, I’ll read through it here, how does one combine separate outcomes into one composite or aggregate outcome rate? Let’s say you have an aggregate outcome called MCAE, major clinical adverse event, would consists of death, [unintelligible 55:45.8] and MI. In the past, I have used weighted means of the components of aggregate outcome but sometimes I get a composite aggregate rate that is really high and does not make clinical or real-world sense. For example, a major clinical adverse event after an appendectomy maybe calculated as 90%, using weighted. Weighted means when the individual components may be small, say between 10 and 15%. Is there a simpler way to get this aggregate or composite outcomes without doing a meta-regression?

Dr.Gidwani-Marszowski: To be honest, I’m not entirely sure that meta-regression is really what you need, because a meta-regression is only going to adjust at the study-level, whereas what I think you’re looking for is an individual patient composite value. So, I think you’d need to stick with individual patient-level data and that’s going to be really hard because that’s not going to be reported in the literature. 

Composite outcomes are challenging and the biggest challenge is making sure that you’re getting a weight accurate and so, it sounds like you’ve already used some existing weights and hopefully those are well validated. If you’re getting values from the weights that are very large, relative to individual values, I would suggest converting those probabilities of the component values to rates and then combing the rates, and then converting that combined rate back to a probability because I hope you’re not just adding probabilities or combining the probabilities directly because like we just talked about, probabilities cannot be added or multiplied. Only the rates can do so.

Moderator: Okay, and that looks like that was the only pending question that we have here.

Dr.Gidwani-Marszowski: Great, well I hope that what we’ve done is clear instead of being so non-understandable as to confuse everybody to the point of not asking questions but in case you do have any follow-ups, my email is up on the screen so you can feel free to reach out to me directly. 
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