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Moderator: And welcome everyone to HERC’s Cost Effectiveness Analysis Course, today’s session’s on Medical Decision Making and Decision Analysis. And we’re excited to have Dr. Jeremy Goldhaber-Fiebert with us today, he’s an Associate Professor of Medicine at Stanford University. His research focuses on complex policy decisions surrounding the prevention and management of increasingly common chronic diseases and the life course impact of exposure to their risk factor. He combined simulation modeling methods and cost-effectiveness analysis with econometric approaches. He completed his PhD in health policy, concentrating in decision science, at Harvard in 2008, and was elected a trustee of the Society for Medical Decision Making in 2011. So I’ll turn it over to you Jeremy.

Dr. Jeremy Goldhaber-Fiebert: Thank you very much. Can you, everybody hear me and can see the title slide?

Cider Staff: Yes we can.

Dr. Jeremy Goldhaber-Fiebert: Perfect. So here we go. So we’re going to talk about modeling today. The agenda is that first we’ll talk about through decision analysis more broadly and then cost-effectiveness as a type of decision analysis, and then we’ll talk about the role of modeling in these things, and then specifically focus on some simpler models, and then we’ll try and touch on Markov models and microsimulations. And depending on time we’ll, we may skip over a few of the latter slides.

So, you all received a poll, I don’t necessarily see results of the poll but, have you had a course in, and then you were asked that. So, I’m not sure what I should do in terms of getting that. The point of asking this question_

Cider Staff: Umm_

Dr. Jeremy Goldhaber-Fiebert: Yeah?

Cider Staff: We just need to hold off for a second, the audience is actually responding right now.

Dr. Jeremy Goldhaber-Fiebert: Ah, perfect.

Cider Staff: And have, I’ll have the results for you in just about 10, 15 seconds.

Dr. Jeremy Goldhaber-Fiebert: Perfect. So, I’m curious to hear the answers.

Cider Staff: Yep, give me just, the responses, it looks like we are slowing down, I’m going to give you guys five more seconds and then I’m going to close it out. Okay, so closing it out. What we are seeing is 24% of the audience saying that they have had a course in medicine; 52% in epidemiology; 87% in probability and or statistics; 35% in computer programming; and 26% in decision science or economic evaluation. Thank you everyone.

Dr. Jeremy Goldhaber-Fiebert: Perfect. So, I imagined something like that in terms of the group, and so what I hope the lecture adds today is really about number five, and how number five in some sense will utilize, incorporate, and compliment the other areas. So, hopefully we’ll play to people’s strengths and maybe add something that will be useful to them.

So, what is a decision analysis? A decision analysis is a quantitative method for evaluating decisions between multiple alternatives in situations of uncertainty. I don’t know what’s going to happen, I need to choose to do something, or something else, and I want to know how well I can expect to do with each of those alternatives.

So, we need multiple alternatives. If there aren’t multiple alternatives then there’s no decision. And we’re going to have to allocate resources, money, personnel, whatever, to doing that alternative and not something else.

We want to be quantitative. That means that we need information to get, we need to gather information, we need to assess the consequence and the information that we need involves assessing the consequences of each alternative, clarifying various dynamics and tradeoffs that might occur when you do one thing versus another, and then selecting an action that gives us our best expected outcome. We generally employ models to do this.

So, in general, the steps of a decision analysis involve enumerating all the relative, all the relevant alternatives, identifying important outcomes, determining relevant uncertain factors, encoding the probabilities for those uncertain factors, and specifying the value of each outcome, and then combining these elements to analyze the decision. So decision trees, which I’ll get to shortly, and related models are important for doing this. They make how we combine these various elements explicit, replicable, quantitative, all of these things. 

So, what do we call a decision analysis when one of the important outcomes includes costs? We call that a cost-effectiveness analysis. It’s a type of decision analysis that includes cost as one of its outcomes, and in the context of health and medicine the effectiveness outcome is some measure or measures of health.

So what is a cost-effectiveness analysis? In the context of health and medicine, a cost-effectiveness analysis, also known as a CEA, is a method for evaluating tradeoffs between the health benefits and costs resulting from alternative courses of actions. CEAs support decision makers, the methodology is not meant as a complete resource allocation procedure. What I mean by that is suppose I perform a CEA and I recommend, based upon this CEA, treatment A versus treatment B, that doesn’t necessarily imply that that should be the decision taken by the health system or decision maker, he or she or the system may need to weigh other factors that are beyond the boundaries of a typical CEA analysis, and that would be completely fine. Like many things CEA is a forum of evidence and evidence emphasis.

So in a cost-effectiveness analysis an extremely important outcome or the way we measure an outcome is something called the cost-effectiveness ratio, specifically, the incremental cost-effectiveness ratio. And that’s how we compare two strategies, we need two strategies to compute an incremental cost-effectiveness ratio. The numerator of the incremental cost-effectiveness ratio represents the difference between the cost, the complete total cost of a given strategy, and the costs of an alternative understudy, in this case the next best alternative. The denominator, likewise, represents the difference between the health outcomes, or the effectiveness, of the intervention, and the health outcomes of the alternative. So incremental costs divided by incremental benefits or outcomes. Incremental resources required by the intervention, so how much we have to spend for it, any changes it makes in sort of the downstream use of resources that alters costs, relative to the alternative, and likewise the incremental health effects gained from the intervention. 

So models for decision analysis and CEAs are very important. So a decision model is a schematic representation of all of the clinical and policy relevant features of the decision problem. So it’s going to include in its structure the decision alternatives, the clinical and policy relevant outcomes, and a sequence of events, that might lead to those different outcomes. Such a model enables us to integrate our knowledge, right, to synthesize our knowledge, and the available evidence about the decision problem from many sources. We might obtain probabilities from one set of sources, people’s preferences for various health outcomes from another set of sources, et cetera. And then we can use the model to compute the expected outcomes, averaging across our uncertainty, for each decision alternative.

So, we’re going to be building a decision analytic model. So the first thing that we have to do is define the model structure, then we will assign probabilities to all the chance events in that structure, we will assign values, i.e. utilities or health related quality life, of life weight, to all outcomes encoded in the structure, and then we will evaluate expected utility of each decision alternative, and then we’ll perform sensitivity analyses. The extension of this would be to do the same thing except for, for steps three and four we would also include costs, and we would get two sets of outcomes, but I’m going to sort of focus on a single outcome first and then we’ll come back to this notion of cost-effectiveness briefly, afterwards. We want our models to be simple enough to be understood, right, this is about communicating to other people, but complex enough to capture the problem’s elements convincingly. So it should have face validity, it should capture the relevant dynamics, and it should be explicit in showing what our assumptions are that we make.

“All models are wrong; but some models are useful”. We’re, our goal is to strike the balance between simplicity, which will abstract away from detail and therefor make us wrong, but be useful so to capture the relevant complexities.

So let’s talk about defining the model’s structure. What are the elements of a decision tree structure? 

So, we have three types of nodes, the first type of node is called a decision node. It’s a place in the decision tree at which there is a choice between several alternatives. For example, the decision node is represented by this blue square, and we have two alternatives that branch off of it, we can perform surgery or we could offer medical treatment. While that first example shows that we’re deciding between two things, we can have a set of alternatives that we’d be deciding between one of them. They have to be mutually exclusive, we’re going to do either one, or the other, or the other. If we’re going to do two things we’ll define an additional choice that says do and A and B, if that were feasible. So we’re going to go down, at a decision node we’re going to go down one and only one of the paths.

The second type of node in our model is called a chance node. It’s a place in the decision tree at which chance determines the outcomes based upon probability. So for here I’m showing it as a green circle, and there’s a chance that somebody has no complications, and there’s a chance that they die. And of course I showed you an example where there’s only two alternatives, but in fact, in this case I’m showing you a perfectly valid example where there are three alternatives, either you have no complications, you have complications but they’re not fatal, or you die. The, and so in these case, these chance events have to be mutually exclusive and collectively exhaustive. 

So mutually exclusive means only one alternative can be chosen, in the context of a decision node, or only one event can occur. And collectively exhaustive means at least one event must occur, one of the possibilities must happen, taken together the possibilities must make up the entire range of outcomes. So the probabilities at a chance node sum to one.

Finally, we have something called a terminal node. That’s the final outcome associated with each pathway of choices and chances. Here I’m showing it as a red triangle on its side. So the final outcome must be valued in relevant terms, so for example, it might be cases of disease, or life years, or quality adjusted life years, so that we can use these for making comparisons. So in this case I’m showing you that at this terminal node if a person arrives down that path they have 30 years of remaining life expectancy.

So in summary, a decision tree is made up of decision nodes, which enumerate a choice between alternatives for the decision maker, chance nodes, enumerating possible events determined by chance or probability, and terminal nodes, describing outcomes associated with a given pathway of choices and chances. The entire structure of the tree can be described with only these elements. 

So I’m going to show you, walk you through a very stylized example that is, you know, clinically completely wrong, but hopefully will illustrate the key features of the decision tree and how we work with decision trees to get to the point where we can make a decision. So, in this highly stylized example, patients present with symptoms, we think that it’s likely that it’s a serious disease but we don’t know whether the disease actually is present without performing the treatment. So there’s two treatment alternatives, surgery, which is potentially more risky, and medical management, sort of delivered empirically, which has a low success rate but is less risky. With surgery, and this, again, this stylized example, we’re going to have a chance to decide once, sort of the patient is opened in the operating room, the extent of disease and then decide whether curative or palliative surgery is the better option. And our goal is to maximize life expectancy for the patient. So it’s very important where you’re performing decision problem to say what it is that you’re going for, what do you want the decision to do best for you, in this case we’re going to try to maximize life expectancy.

Okay, so we have an initial decision between surgery and medical management. So we have a decision node that shows our two options. Okay, so for medical management either the disease is present or it’s not, and we don’t know, we’re delivering medical management to everybody because we’re not testing for the disease. So some people will be treated even though they don’t have the disease and some people will be treated with the disease. So, for people who have the disease present, the medical management has a way, has a chance of curing the disease and has a chance of not curing the disease. Likewise for surgery, disease is either present or absent, surgery is risky, even for people without disease, so there’s a chance of surgical death or of surviving the surgery. And, you know, if, once surgery happens if we see that there’s no disease then close the patient up. If disease is present then there’s a decision about whether to perform sort of the curative surgery or the palliative surgery. And there’s a differential chance of surgical death from those two different procedures. And if the patient lives there’s a chance that the surgery enables cure, even for palliation there’s some small chance of that. Again, I said highly stylized decision. 

So here’s our entire structure, and a path in the tree defines a course of events. So in this case the patient gets surgery, and the patient, who had disease, and that surgery we’re choosing to try curative surgery, and thankfully they do not die from surgery, and they are cured. And then there’d be an outcome associated with that. A diseased person who got surgery that was curative and who survived that surgery, how long do they live, considering that they were cured.

So the next thing that we have to do is that we have to add probabilities, and we’re going to do this from the literature. Notice, for example, that the probability that disease is present or absent is going to be the same whether you perform surgery or medical management, that’s really important. In this case the treatment is occurring for people with a given prevalence of disease that doesn’t depend upon the treatment and then we’re deciding in some sense whether we’re going to perform surgery or not. There is a relatively low probability of cure for medical management relative to cure for curative surgery. And surgical mortality is 1% for people without disease, 2% for people who have disease and that, you know, getting palliative surgery, and 10% for people with surgery. All right, so that sort of, the probabilities, again, I made them up for this stylized example. 

Now we’re going to assign outcomes to each of these. So, if you die, when surgery is performed, you have no remaining life expectancy, zero years. If you are not cured you have two remaining years of life expectancy, and if you are cured you have twenty years of remaining life expectancy. 

So now, how do we evaluate this tree? So we’re going to, the way we evaluate decision trees is by doing something called averaging out and folding back. When we were at a chance, we start at the outcomes side of the tree, and when you’re at a chance node you average the outcomes over the chances. So what I mean by this, 10% times 20 years plus 90% times 2 years is the expected outcome for people with disease present who have gotten medical management. In this case, 3.8 years, that’s the life expectancy. Likewise, we can do the same thing here, 3.8 years. 

So, once we’ve averaged out a chance node we can continue averaging out, treating the previous averaging, 3.8 years, as just an outcome that can be averaged out at the next chance node. So now we’ll do the same thing, 10% times 3.8 years, 90% times 20 years, equals 18.38 years, our life expectancy for medical management in this population with this given disease prevalence is 18.38 years. So we continue averaging out surgical death, 2% times 0 years, 98% percent times 3.8 years. Likewise, we do the same thing here. Again, we do the same thing here. 

And so now, we are at a choice node. Right? So we’re going to choose something, this is not about averaging out, we’re going to choose the branch that has the highest expectation, the thing that we want to maximize, in this case life expectancy. So we’re going to choose curative surgery. And we’re going to fold back. So again, now we’re in a series of chance nodes, so we average out, and we can average out again, and what we get is surgery gives us 19.46 years, medical management, as I said before, gives us 18.38 years. The decision node, we’re making, we’re going to be folding back again, and surgery is preferred to medical management because the incremental benefit of surgery, 19.46 minus 18.38, is positive, 1.08 years are gained on expectation. We recommend surgery with a try cure surgical option. That’s the base case of our decision analysis.

You can imagine, returning to this notion that I mentioned before of CEA, of doing the same sort of averaging out but with a second set of outcomes. So, costs, and getting a different set of costs, and then computing our incremental cost-effectiveness ratio, the difference in outcomes divided by the differences in, or excuse me, the differences in costs divided by the differences in outcomes, providing $9,000 per year of life gained. So, if we’re willing to pay at least $9,000 per life year gained, on expectation, we would choose surgery, otherwise we would choose medical management.

So, the model and that analysis is our base case analysis, but I would actually argue that even more important than the base case analysis are sensitivity analyses. Here we try to understand how robust we are, our decision is to changes in our parameters, different values of our parameters. Right? So, all these probabilities and outcomes have some uncertainty with respect to them. 

So, sensitivity analyses, or sensitivity analysis, is a way of systematically asking what if questions to see how our decision changes. Right? So, it’s not primarily that I care about what our incremental outcome is, I want to know, one of the most important things I want to know is, at what parameter values would I change from recommending surgery with curative to a different decision, a different alternative treatment, in this case medical management. So that would be something like a threshold analysis, or a one-way sensitivity analysis, and then a multi-way sensitivity analysis, a two-way sensitivity analysis is sort of the analog where we change two things simultaneously. So I’ll show you an example of both.

So let’s talk about surgical death. Imagine that surgical death for curative surgery is either very high or very low. How would that change our decision? Well, the intuition would be that if surgical death were extremely high we wouldn’t want to do a curative surgery, we’d want to do palliative surgery, and maybe at that point we wouldn’t even want to do surgery at all, we’d want to do medical management.

So this graph that I’m showing you, on the x-axis shows how I vary that probability from zero to one, and then the y-axis shows the expected life years for each strategy. And I am showing you curative surgery versus medical management, and what we can see is that the base case we like curative surgery more, the blue line is higher than the red line, but if the value were point seven for the likelihood of surgical death from curative surgery, then in fact we would switch to preferring medical management. 

Now I’m going to show you the outcomes of a two-way sensitivity analysis. So I’m going to vary the probability of curative surgical death and the prevalence of the disease. Okay? So, the y-axis shows values between zero and one for probability of curative surgical death. And the x-axis shows the prevalence of disease. The regions show, the red region and the blue region respectively show combinations of those two parameters, for which I would prefer one strategy, the blue region being medical management, or surgical death. So what we see is that if the probability of surgical death is very high, or the prevalence of disease is very low, then medical management is preferred. Whereas if the probability of surgical death is lower, or the prevalence of disease is higher, we prefer surgery. And our base case is shown as a black dot here, where we have relatively low prevalence of disease but we also have a relatively low probability of curative surgical death, for people in the model.

All right, so that’s sort of the first section. And we’re more or less on time. So, here is a poll question. Sensitivity analyses tell us, and you should choose all the answers that apply, it could be more than one, how much model outputs change based on changes to the inputs, 2, whether our decision would change with different inputs, 3, how uncertain we feel about the decision, 4, whether the decision-problem is politically sensitive.

Cider Staff: And responses are coming in, we’ll give everyone a few more moments to respond before we close it out and go through the results. Just waiting for things to slow down a little bit. Okay, looks like we’re slowing down so I’m going to close the poll out. And what we’re seeing is 86% of the audience saying how much model outputs change based on changes to the inputs; 78% of the audience saying whether our decision would change with different inputs; 38% of the audience saying how uncertain we feel about the decision; and 4% saying whether the decision-problem is politically sensitive. Thank you everyone.

Dr. Jeremy Goldhaber-Fiebert: [Unintelligible 25:29] So, the way I would answer this is that sensitivity analyses definitely tell us about one and two. That’s their main purpose. Number three, they can be used this way but when we actually quantify uncertainty then we’re going to be doing something called probabilistic sensitivity analyses, and that involves imposing uncertainty distributions on the various parameters in our model. So, just because I vary a parameter over a range I haven’t told you, and we don’t necessarily know how likely different values are that parameter to be that, the true value of the parameter. So, I would say that three is arguable, but you would need to do something sort of a little different or a little bit more advanced in this particular case to really quantify uncertainty. Number four, sensitivity analyses don’t directly comment on this but you might argue that for certain types of parameters that will tell us whether this is going to be politically sensitive. Meaning if there’s a lot of political disagreement about some particular parameter then it could be. But that’s generally not the primary purpose of sensitivity analyses. 

So, as I mentioned, that question is also sort of my bridge into something called probabilistic sensitivity analyses, also known as second-order Monte Carlo simulations. So, estimates of probabilities, and utilities, and costs, and other things in decision trees are replaced by appropriate probability distributions. For example, and what I mean appropriate here is you wouldn’t want to have an uncertainty distribution for a probability that went outside of the zero to one range, because probabilities are bound in between zero and one. You wouldn’t want to have an uncertainty distribution that went below zero for an odds ratio, since an odds ratio goes somewhere between zero and infinity. So, we pick appropriate probability distributions and parameterize them based upon how much evidence we have. Less evidence bigger uncertainty. And then we sample from those probability distributions and evaluate the tree to determine what’s the optimal action and how much we gain from that optimal action, relative to the alternative, many, many, many times. And then this results in a mean and standard deviation of the expected outcomes, right, sort of the life expectancy and our uncertainty about it, for each strategy. And as well as some probability that the strategy that we might recommend in the base case is truly the one that we’d expect to be the best outcome across these many samples. That’s essentially what probabilistic sensitivity analysis is, it’s a much more sort of advanced and nuanced topic and, you know, there are chapters in a variety of textbooks that describe this in much more detail. So I’d encourage you if you’re interested in this, in that topic, to read further. 

So, I’m going to talk now a little bit about Markov models, which are, I would say, sort of the much more frequently used type of model for cost-effectiveness analyses, relative to decision trees. And sort of what their tradeoffs are and situations where you use them or you might sort of consider using them or not. So, here we go, Markov modeling.

So, essentially Markov models are our response to this following question, what do we do when there is a possibility of repeated events or decisions over kind of a longtime horizon?  So the decision tree becomes sort of this very big, very, you know, with long, long, long branches, and many chance nodes, that sort of repeat over and over again. That becomes very unwieldy to construct, to debug, to maintain, to analyze, et cetera. So instead we’re going to use a more efficient encoding, called a Markov model.

So, for example, you might have a decision about a one-time immediate action, you know, somebody presents, they have some sort of very acute kind of thing, and do you want to do A or B, and the intervention changes the outcome, makes a good outcome more likely, and but that’s sort of it, and the person either has good outcome and they live the rest of their life, or they have a bad outcome and they live whatever their, sort of, more diminished life and that’s it for the decision. Then you probably can just get away with using a decision tree. 

However, imagine the following case, where a person has an event that might make outcomes be good, moderate, or bad. Right? But what happens if that person has that chance of having that event occur over and over and over again? So, in this case the person is healthy, there’s a chance that they remain healthy or that they become somewhat sick. If they remain healthy, again, at some time, you know, a month later there’s a chance that they become, they remain healthy or they become sick, a month later the same thing, a month later the same thing, et cetera, et cetera, et cetera, et cetera, and you can imagine how bushy this tree is. If they become sick they might become healthy again, they might remain sick, or they may become very sick or even die. And, you know, if they get better then there’s a chance that they become sick again, right? Sort of, you know, imagine disease where you get infected, you either resolve it on your own or you’re cured, but you can become re-infected again. And that can happen over and over again with, especially with an uncertain timing of when it occurs. So then we need kind of a different structure. Repeated events can occur throughout an individual’s life, interventions deliver, might be delivered at multiple time points, screening let’s say for the disease or something like that, with subsequent transitions depending upon prior interventions or prior disease. Then we need a different structure, it’s going to just be too hard to do with a decision tree. 

So then, we’re going to build a model, in this case we’re going to build a Markov model. So what is a Markov model? It’s a mathematical modeling technique, derived in some sense from matrix algebra, that describes the transitions a cohort of patients make among a number of mutually exclusive and collectively exhaustive health states during a series of short intervals or cycles.

So, Markov models wear sort of properties of them, individuals or parts of the cohort are in one of a finite number of health states, events are modeled as transitions from one health state to another, time spent in each health state determines our overall expected outcomes, living longer without disease yields higher life expectancies and higher quality adjusted life expectancies, and during each cycle of the model individuals may make transitions from one stat to another.

So, when we construct these sorts of models we’re going to define a set of mutually exclusive health states, we’re going to determine possible transitions between these health states, that I will call state transitions or transition probabilities, and we’re going to determine a clinically valid cycle length, which I will mention in a minute. Essentially, the clinically valid cycle length is a cycle length where only one transition is likely to happen within that give time frame. So, if things are happening sort of on the order of years, you know, a monthly or weekly cycle is fine because unlikely that multiple events will occur within a cycle.

So, we want it short enough for the given disease being modeled the chance of two events or transitions happening within cycle essentially is zero. So, in general this, in practice people will typically use weekly or monthly cycles, some older models, you know, would use yearly cycles, but for some applications like thinking about interventions within ICU, or suspected pulmonary embolism, or something like that, people will use hourly or daily cycles.

So, we’re going to model, let’s say the natural history of a disease, in this case a highly stylized disease. So we want to set a mutually exclusive and collectively exhaustive health states. You are either healthy, sick, or dead. And we’re going to try to define these states sort of based upon the best known and sort of actual biology or pathophysiology of the given disease. So, then there are two Markovian assumptions, which are homogeneity and memorylessness. What homogeneity means is that all individuals in a given state, for example healthy, have the same costs, quality of life, or risks of transition. If that’s not the case then we need two different health states to sort of describe their heterogeneity. The second is something called memorylessness, which means that the current state, wherever all those homogenist individuals are now, that defines their future risk, their likelihood of transition. If that’s not the case then you might need a state like healthy with a history of sick to define the fact that people who have a history of being sick might have a different chance of becoming sick again. So, there are sort of techniques, advanced techniques, and I’ve mentioned one of them, stratification or tunnel states that are used to ensure that the Markov assumptions hold, and this an advanced topic which I would encourage you to read about in the appropriate texts or and sort of follow on work that you might do, if that’s something of interest to you.

So the next thing that we’ll do with this Markov model is we will define the relevant transitions between health states. The one transition that I’m not showing here is a transition which says that, actually I’ll take that, I take that back, let me start over, I misstated that. So what I’m not showing here, but you should show generally in diagrams, is a transition that goes from healthy to itself, from sick to itself, and of course from dead to itself. Those transitions basically say if you don’t transition out of the state you stay in that state. And that’s generally the way all states are, except for something called tunnel states, which I’m not going to mention right now. The other thing that’s very important is that there’s always a risk of death, so every state should have a probability of transition to death. No state keeps you alive with certainty for any amount of time. And as I said, the proportion that do not transition stay in the current state, that would be an arrow going back to that state, which I’m not showing for simplicity in this diagram but in general we should be showing. There’s, that’s the extra complication there. So risk of death from all times and all states, and if there’s no transition out of a state, that being dead, it’s called an absorbing state, that means over time, over a long period of time everybody will ultimately die, which is sort of the biologically plausible type of Markov model that we’re dealing with.

So you can define these transitions with a matrix of probabilities. Right? So, this says the probability of, I’ve written this in a shorthand, this is the probability of going from healthy to healthy. Right? The probably of going from healthy to sick, pHS, and the probability of going from healthy to dead. Likewise, the probability of going from sick to healthy, the probability of staying sick, and the probability of dying, given that you’re sick. Non- allowed transitions, for example coming out of the dead state, are given zero, and then the probability of staying in the dead state is given one, so this is the absorbing state. So if we didn’t allow, for example, sick to recover, it was a purely progressive disease, the probability of going from sick to healthy would be zero. So now we’re going to apply this matrix of probabilities to the proportion of the population that’s in each state at a given point in time using matrix multiplication. In reality you’ll, you would use a computer program that does this for you, but I’m trying to illustrate kind of how it works. And this is the fraction of people in each of the states, of the original cohort in each of the state at a given time, and so that fraction must sum to one. Just like the column probabilities here must sum to one. So we’re going to multiply row by column to get the proportion in a given state at a subsequent time point. And it also could be the case that the probabilities of transition could be time dependent, so we don’t have to have a single matrix, or a single set of probabilities, we can have things that depend upon time, and that would also work in this framework. So we do this, as I said, this matrix multiplication, this one times this one, plus this one times this one, plus this one times this one, give the proportion in healthy at the subsequent time, likewise for the second row, proportion and sick, likewise for the third row, the proportion who are dead.

So out of that, if we take these proportions at each of these times and apply time on the x-axis, and proportion on the y-axis, what we’ll see is that the proportion in healthy will decline over time, in this particular Markov model the proportion and sick might rise, and the proportion in dead rises as, and eventually absorbs everybody in the model. And the height of these lines will sum to one, at all time points. I will say that, I’ll ask you sort of two questions, is the proportion equal to the prevalence, is the model time equal to the age? No, the proportion is not equal to the prevalence. Why? Because the proportion is of the original cohort and some fraction are dead. So what we need to do is take the proportion in a given state and divide it by the sum of the proportions in the non-dead states, and that’s equal to the prevalence of whatever the state is at a given time point. And model time is not equal to age because there’s nothing that says that we have to start the model with where everybody’s equal to age zero, we could start the model, for example, with a cohort of 30-year-olds and then follow them forward. But, that’s just sort of a, you know, a deterministic shift in time, and so you could compute the ages at when events are expected to occur, given that you know the starting age of your cohort. That’s the kind of things we can do with the trace. 

You can imagine putting that trace into a table, so these are the proportions, that vector of proportions at each time point. This is, we started out with a proportion, with everybody being healthy. Right? And then these first three columns are the trace, and, you know, proportion of healthy goes down, the proportion of sick rises and then fall, and the proportion of dead rises, if we wanted to get the fraction that’s not dead we subtract the proportion dead from one, and we get the fraction that were either an h or an s. So that’s a computed column that I’ve made just for simplicity.

So, now let’s talk, so if we wanted to talk about life expectancy we would just essentially sum up this, the not dead column and we would basically get life expectancy, sort of like a survival curve if these were, if the stages were years. And otherwise we’d get them as the life expectancy in months, and then we’d have to do some additional adjustments on it. But let’s talk about quality adjusting life expectancy, or QALYs. So quality of life weights are encoding the fact that living is certain types of health states are less than being, sort of, perfectly healthy. So in this case, living a year, or a month, or whatever it is, perfect health will give a quality weight of one, if we’re sick, in this particular case it’s point six, and if we’re dead it’s zero. Where do these numbers come from? There would be, you’d extract these from literature where people have used, sort of, standard methods to elicit them.

So, we can compute QALYs in our model, by taking the proportion in healthy at each time point and multiplying it by the quality weight for healthy, the proportion in sick at each time multiplying it by the quality weight for sick, and multiplying the proportion dead by zero, and then summing over all of our time points until everybody is dead in the model. And likewise, if we had costs we could do that, you know, how much does it cost to live in a year being sick, or of healthy, of being sick, of dead, and then we could compute the QALYs and the costs. Now, I will say this, I haven’t mentioned a more advanced topic for cost-effectiveness analysis, which is discounting, I believe, in some of your subsequent seminars, that will be talked about. But that’s how these numbers, these aggregate numbers are computed out of the Markov trace. And we can compute these, sort of, under different interventions. 

So, imagine the choice is not intervening or intervening, so we just computed costs and QALYs without intervention, just in the way that I described. But now, perhaps our intervention modifies our probabilities, and I’m going to talk about that in a second. 

So imagine we have a screening intervention, we’re going to scree people who are sick, with a screen test which is 70% sensitive, so it’s going to get 70% of the people who are diseased, it will say positive, and is 100% specific, it’ll say positive for no people without the disease, and then for the people who are detected to be at this screening test, we’ll offer treatment to them and it’ll be 90% effective. And the intervention occurs after the natural history transitions in each cycle, so we’re going to kind of do this sort of screening and treatment every year, let’s say we have yearly cycles. So, these, the probabilities with intervention can be written in the following ways. Right? And sort of as equations, like this. And that’s, the reason why I’ve written them that way is because the intervention occurs, the screening occurs after people have made their transition to being sick. Right? 

So if these were our transition probabilities, in the natural history model, applying those equations we would get some values that would be different in the presence of intervention we could then compute the costs and QALYs with the intervention. 

These are the values given the intervention that I just said, you’re welcome to try these computations by hand afterward just to sort of see. 

And what would happen would be the fraction, let’s say who are alive with and without the intervention will be different, and if we QALY adjust this fraction then that would be the difference between the blue and the green would give us the gain in QALYs, or the gain in life years from the intervention. Sort of in a very analytis [sic] way to comparing two Kaplan-Meier survival curves, the one that has a shallower slope means more people are surviving longer. 

So, a Markov model actually looks, is diagramed actually in a very similar way to a decision tree, except for we have a different special type of node called the Markov node, and off of that Markov node comes our health states, right? So you’re in one of these health states, and then everything after those health states is the transitions within a cycle, right? Whether you become healthy whether you become sick, whether you die, given that you started out healthy or given that you started out sick, and then dead people stay dead so there is no chance here, it’s just a fraction that happened. And then these terminal nodes actually tell us where do we go to next, right? And how good it is to be in each of those states in encoded by saying, with numbers like one point six and zero for the qualities of living in each of the states.

So, in the case of our intervention, so I’m going to zoom in just on this top branch, this healthy branch, so we don’t have to immediately go to wherever we’re going to go to next cycle, we can have things happen within the cycle, within the year. So in the case of the intervention, the person is healthy, they either stay health, they become sick, or they die. And if they’re healthy and they’re screened they will test negative, perfect specificity, if they become sick they will either test positive 70% of the time, given the sensitivity, or they will test negative, and if they test negative they had no treatment so they are a sick person they remain sick, but if they’re treated, if their test positive and they are treated, and the treatment is efficacious, then, which I believe is 90% of the time, if I recall, then they go to healthy, but otherwise they become sick. So, this screening intervention moves a fraction of people who would’ve otherwise become sick, back to healthy, based upon the sensitivity and based upon the treatment effectiveness. And that’s sort of the way it will work in our markup model. Likewise, for people who have sick will have service similar within cycle structure. And the model then will kind of loop back around, I’m healthy, I became sick, I’m sick, I became healthy, I’m healthy, I became sick, I’m sick, I died, I’m dead, I remain dead. And we’ll run that for the cohort until everybody is in dead.

So, one final thing that I want to mention briefly, which is definitely an advanced topic, is the difference between cohort and individual models, or the difference between deterministic Markov models and stochastic simulation. So a Markov cohort model, sort of the matrix version like I just sort of walked you through, is a smooth model. In a sense you can think of it as representing an infinite population, so proportions of the cohort transition deterministically between the various health states each cycle. And they kind of flow until there’s a, until essentially the entire cohort is dead. We can use the same structure, that I just showed you, to perform a first-order Monte Carlo simulation, or what I will call a simple microsimulation. Then the matrix of probability it becomes, in some sense the way we interpret it is, is the probability of an individual transitioning from one state to another, instead of the fraction or the percentage of the cohort that’s going to flow deterministically between the states. So, what do I mean by that? That’s a lot of words. 

So, in the microsimulation I will start, I will essentially have a queue of individuals, and they start out in this case in healthy. And I flip a coin and there’s some chance that they transition to sick, there’s a chance that they stay sick, there’s a chance that they become healthy again, they stay sick, or that they become sick again, and that they die again. Likewise, and that’s dictated by coin flips, pseudorandom number draws, compared to the probabilities of transition for my matrix. 

Likewise, this would be another path, just given sort of those pseudorandom number draws. Person is healthy, they remain healthy, they become sick, they are healthy, they’re healthy, and they die. Finally, we might have a flip of a coin that this very unlucky person dies in the first cycle and of course remains dead. And we’ll do this for many, many, many individuals, many, many first order Monte Carlo simulations and average across those individuals. 

So, if you recall, we had this trace where we had the fraction of our cohort that flowed through the model in each time step. And then we computed costs and QALYs, based upon these fractions. 

In the microsimulation, if we run many, many, many people, we can compute these proportions. So let’s suppose that we simulate 100,000 people, at a given stage 5,000 of them were sick, that’s equivalent to saying 5.1% of the original cohort is sick. And this approximates this smooth cohort, the fraction of a smooth cohort that was in that state at that time, with some confidence interval. And by performing the larger and larger microsimulations with more and more people, this sort of approximate proportion will get closer and closer to what would’ve happened with the smooth Markov cohort simulation. Right? So that’s what I’m mentioning here. You can see, for example, the Kuntz and Weinstein chapter in one of Michael Drummond’s edited books, Economic Evaluation, for more on this. 

But why do this microsimulation business, and have these confidence intervals, and these first order microsimulations, and everything just gets, takes longer and gets more complex, and it’s more confusing and whatnot. 

The reason to do that is because of something called state explosion. So I showed you this sort of simple little Markov model that had two states and then a death state. But suppose we need to stratify by sex, and by smoking status, and by levels of body mass index, sort of how obese or underweight somebody is, and by their degree of hypertension. So now, just talking, we’ll have, instead of 3 states we’ll have 192 possible states. And if we need to stratify by past screening and treatment history, or their past history of being obese at a given level, or having hypertension of a given level, then the number of states get very, very large. And that tree, just like our decision analysis tree, our decision tree, the Markov model becomes very, very bushy and big, and hard to maintain and manage. And the microsimulation, we can encode all of the probabilities essentially as equations, and it becomes in some ways a more efficient way to represent our microsimulation without having some, you know, these enormous matrices. 

So, as I sort of mentioned on that slide, we can sort of define each individual in terms of their attributes, and then we can compute probabilities of transitioning or of changing their attributes, conditional upon anything that we want to. And that’s a very efficient way of doing that for people who have sort of an epi or bio stats background you could certainly imagine how you might compute such conditional probabilities using various regression, regression models, and primary data, so, and that’s kind of a nice thing. 

So, I’m just about done and I’m happy to take questions. I look forward to hearing your feedback. Know what information your consumers need, so think about the outcomes that are relevant to the decision makers, for the policy makers, and make sure that your model is doing a good job, sort of, focusing on those. Pick a model that’s as simple as possible, modeling is complicated, people don’t like complexity, they tend to tune out when it’s too complex, it will, it increases your chance of having bugs or other problems, making your run time slower, et cetera, so choose a model that’s as simple as possible but no simpler. And know the limits of what your model does and does not make statements about, and comment about those things. Overstating what your model does or overstating your conclusions is a good way to lose credibility. All models, all analyses have limitations, and sticking within them is a good way to do that. Remember that we’re representing the world, so the model itself is wrong but it can be useful. 

So, in summary, medical decision analyses clearly define alternatives, events, and outcomes. They formalize the combination of evidence to support decision making. They can prioritize information acquisition, what are we uncertain about, what’s our, what are we sensitive to, maybe we need to have more data about that. And they can help healthcare providers to make medical decisions under uncertainty.

So, here are some references to some classic sources about decision analysis and modeling. Thank you, and like I said, I guess we have about four or five minutes for questions and comments. Let me know what I need to do now.

Cider Staff: Great, thank you very much Jeremy, that was great. We had had one comment question in the first half, just on the decision tree model that you presented, just wondering whether you accounted for the chance node where patients get either curative or palliative surgery? And also how you account for whether patients are more concerned about avoiding surgery than an extra year of chance of a cure?

Dr. Jeremy Goldhaber-Fiebert: Okay, so the second, I’m going to take the first question first and the second question second. So the first question first is, in our example that’s not a chance node, it’s a decision node, and the idea is that, like I said, it’s a stylized example but basically that the surgeon is going to make a decision, or the, you know, about which type of surgery he or she is going to proceed with once we determine that there is disease. So, no, there is no chance there, it’s just a decision, do I want to do A or do I want to do B? I can imagine how somebody would, you know, you could extend this analysis to some actual context, where some fraction of patients it would be appropriate to give them curative surgery and for the rest it would be appropriate to give palliative surgery, right? You know, sort of the severity of disease or mark, you know, I don’t know. But that’s not the stylized example. So I see where that question is kind of coming from, it just, to give you an example of a decision need within the decision, within the decision tree. The second question was about how you account for patient preferences for, you know, avoiding risks or other kinds of things relative to, or you know, undergoing some outcomes versus other outcomes, versus just getting an additional year of life. So, that’s, this is a great question, it illustrates the idea that we have to be very explicit about what we’re trying to maximize. So I said from the outset what we’re trying to maximize is expected life years again in this example. So you can imagine that experience of surgery, or the concern about surgery reduces our quality of life. And so it could be the case that all of those, let’s, and so let’s suppose those outcomes in that tree were not just life years but they were quality adjusted life expectancy or life years, then you might imagine that on the surgical branch, if there was something very unpleasant about surgery or the recovery from surgery, we might have a quality decrement, a reduction in the quality of life, for people going down the surgery arms and not for the medical management arm. So, people who were cured, who had 20 years of life expectancy, under the surgery example might actually have less quality adjusted life expectancy than a person who’s treated and cured with medical management. Right? And so yes, you can represent that. But then what we would be maximizing in the context of this decision tree would be quality adjusted life expectancy and then we’d have to account for the various features of the health states or the interventions that change our quality of life for either, for the remainder of our life or for some period of time. Other questions?

Moderator: [Unintelligible 57:59] 

Cider Staff: Yeah, we have a few more. They’ve, thank you for the helpful presentation they say. Could you offer some suggestions for where to find life years when not readily found in a literature? For [unintelligible 58:10]

Dr. Jeremy Goldhaber-Fiebert: So, the life years, the typical thing that we do sort of for markup modeling, so, is we sort of think about this, not in terms of just getting kind of a, kind of a provided life expectancy, or remaining life expectancy, but rather we have to do a bit more work. So, where you, one of the places you start is CDC in it’s vital statistics has life tables. So those life tables will have remaining life expectancy for people by age, and sex, and race, and a variety of other characteristics. You’re going back many years. For people, and in theory you could put those into your model. But what those life tables also have are the age, and sex, and race, and whatever else specific mortality rates, sort of for the population. But we’re often modeling people with diseases that aren’t necessarily very prevalent but for the people who have the disease, greatly increase mortality. So, when we’re modeling life expectancy for people with those certain diseases, we need that component of other cause mortality, essentially the background risk of death, that might be varying with age and sex, or might be varying with age, for example. Plus, we need some additional excess mortality risk, or excess mortality rate that we have to sort of plug in and use. And so, those sort of conditional on disease specific, life expectancy or rate, we often get from looking at Kaplan-Meier curves, or other sort of measures like cumulative risk, or cumulative incidents, or whatnot, cumulative risk of death in this particular case. And then applying some sort of, you know, exponential transform to get the sort of, the appropriate rate that we then combine with our background mortality rate and get the sort of, the period specific risk of death, which might be time bearing. So I know that was a bit complicated, but the answer is partially from things like CDC life tables and then partially from disease specific risks of death. And I believe, actually, in that same book that I mentioned before that was edited by Drummond, there are some chapters, probably also by Karen Kuntz, that will, that talk about that in more detail, and certainly other books on this sort of modeling will raise this.

Cider Staff: Great. And we have a question about whether probabilities have to come from the literature [unintelligible 1:00:51] we’re done.

Moderator: Hey Jo, Jo I, Jo, Jo, Jo, I’m sorry, we’re, no, we’re not able to take any more questions. Jeremy has to get [unintelligible 1:00:57]

Cider Staff: Aahh. All right.

Moderator: Sorry. [laugh] Sorry.

Cider Staff: When I started to type I’m sure that_

Dr. Jeremy Goldhaber-Fiebert: [Unintelligible 1:01:01] answer to that last one. So, and then I’ll say thank you. So, the probabilities often times come from the literature, sometimes we don’t have literature that speaks directly about those probabilities, and then what you will either be doing is you will be using some sort of expert judgement, some sort of subjective estimate of that probability, and there are methods for that, or you will be using a very advanced technique called model calibration, where you try to figure out what that probability must be, such that the model’s outputs match a whole lot of other things that you do have data on. So, you can handle that situation and we do handle that situation, but it’s definitely more challenging. Data limited environments, or physician problems are harder in certain ways. So thank you very much, I apologize that I need to go. It was nice to meet you all virtually, and good luck with the rest of the course.

Moderator: [Unintelligible 1:02:06] Jeremy.

Cider Staff: Thanks so much, Jeremy.
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