Cyberseminar Transcript
Date: January 10,2019
Series: VA Informatics and Computing Infrastructure
Session: Using the Python Programming Language
Presenter: Heather Lent

This is an unedited transcript of this session. As such, it may contain omissions or errors due to sound quality or misinterpretation. For clarification or verification of any points in the transcript, please refer to the audio version posted at http: //www.hsrd.research.va.gov/cyberseminars/catalog-archive.cfm

Rob: And it's just the top of the hour. I’d like to introduce our presenter for today. Heather Lent is a natural language processing analyst at VINCI on the NLP team at VA Salt Lake City. So with that said, Heather, can I turn things over to you?

Heather Lent: Yes, absolutely. Hello everyone. My name is Heather. Thank you so much for joining us today for the Cyberseminar where today's topic will be an introduction to Python. And with that, I think we can dive in with the poll question.

Rob: Okay, let me launch that first poll. And that poll is running, Heather, the question being do you have previous programming experience? The answers being no, Python will be my first programming language; yes, I have a little experience; yes, I have a lot of experience; and other. And the answers are streaming in. We're at about 35% voted and it usually tops off a little over 80%, which is where we are now, so I’m going to go ahead and close the poll and share out the results. And Heather, 18% of your attendees say that no Python, they don't have any experience and Python will be their first programming language; 46% say they have a little experience; 35% say they have a lot of experience; and one says other and they didn't put any details in the question pane, so I’ll hide that, and would you like me to move right on to the second poll?

Heather Lent: Yes, please.

Rob: Okay, so I’m going to launch that. And the question there is why are you interested in learning about Python? And that poll is up and the answers are streaming in just a little bit slower. We have about 50%, so I’m going to let things run for a little bit longer. And things are about leveled off a little over 80%. Maybe I’ll give people a few more moments. No, things have really slowed down so I’m going to close that and share out the results. And 34% say that they want to learn how to write their own programs; 23% say they want to research, they want their research group to use Python for analytics; 36% say they heard Python is popular and they want to know why. So pretty steady across those three, and then 7% say other. And people say I want to compare it other analytics languages; I’d like to be able to support existing programs we have; and I have two objects, writing and analytics. One more, we will use NLP in a project. Someone will write the program, but I need to run the program. And that's all we have so we're back on your slides.

Heather Lent: All right, awesome. Let me, great. So based off today's poll answers, it looks like we should have a really interesting talk set up for day, so I’m going to dive right in. First, here's an outline of what our talk is going to look like today. I’m going to start by giving a brief introduction to myself and my background with Python, and then I’ll discuss exactly what Python is and why you might be interested in it, and then I’m going to show you guys the basics of Python, both with some lecture and then some demonstration. Really quick I’m going to note that any opinions expressed here are mine, not the VA’s or VINCI's. And with that, let's get started.

So about me. Again, my name is Heather and I currently work with VINCI as a natural language processing specialist. But before coming here I worked as a researcher at the University of Arizona where Python was a part of my daily life. And today it's still a programming language I have a lot of fun with. I originally learned Python during grad school a couple of years ago and I think many of you will find that Python is a much easier programming language to pick up than maybe others that you've experienced before, if you have previous experience. And if you're brand new to programming, I’m really excited for you to get started with Python.

Before I dive into Python, I want to take a step back and explain exactly what Python is, especially for those in the audience who may have never programmed anything before. So you may think it goes without saying but I’m going to say it. Python is a programming language. A programming language is essentially how humans can provide a list of instructions to a computer in order to make the computer execute some task. Some original points, additional points I'd like to make about Python as a programming language may not make much sense to beginners, but for those of you with a bit more experience programming I think you'll appreciate these.

So firstly, Python is a high-level language so you don’t necessarily need to worry about things like a garbage collection or strict typesetting which is really nice. It's also a programming language that, it's interpretive which basically means that you don't need to compile it like Java or C. Python also supports flexible programming paradigms, and by this some people have different manners in which they like to program. If you're a Java programmer, you probably like object oriented. I personally love functional programming and I’m able to do that in Python, so it's really great. Python, lastly, can leverage C as sort of a back end, which makes it quite fast and scalable when you need to do that and that is one reason why Python fans really enjoy working with Python in big data.

So on that note, now I’m going to discuss why you should be interested in Python starting with two very impressive numbers. First, I want to note not only is Python the fastest growing programming language according to Stack Overflow, as you can see in these two charts here.

But Python is also the third most commonly used language for open source software projects on GitHub. And now if you're already immersed in the software world these two numbers will impress you. But if you're newer to programming and software engineering in general, probably the question remains for you, okay, but why is Python so successful? And why should I care about it as a researcher?

In my opinion, there are two really big reasons for Python's successful. The first being that Python has very simple syntax. In other words, this just means that you're able to write a program to do something in Python and that code will most likely be much shorter and perhaps easier to read than other languages. Perhaps this makes it easier for scientists who are just trying to pick up programming as a tool rather than trying to get into computer science. So the simple syntax makes it really accessible. The second big reason for Python’s success is that Python has a very healthy ecosystem for supporting scientific framework. There are a lot of popular external resources that make scientific research easier to do in Python than many other languages without these resources. You can see I have the logos for these listed out here. Whether, if you're new to Python you won't have heard of things like NumPy, or matplotlib, or scikit learn, but I can guarantee you that as you continue with your Python journey that these libraries are ubiquitous, you will see them everywhere, and that they are going to help you do your research.

Some examples of tasks that you might use Python and some of these popular frameworks to assist you with in your research are things like general data analysis, data mining, data visualization. Python has gotten really good in the past couple of years. You can read and write to databases quite easily with Python. I would be amiss if didn't mention natural language processing and text processing for Python because that’s what I do and Python is great for that. If any of you are interested in machine learning research, Python is the choice language for machine learning research. But really, there's not much that you can't do in Python. Off the top of my head I don’t have an example of things you can't do in Python. So it's just a really great language that you can do a lot with.

So now I’m going to switch gears little bit and start describing how you can get started writing your own Python code. There's a few things you'll need at first get started. The first one is that you're going to need Python installed on your computer. Actually a lot of computers today, if you have a newer computer, it's probably already installed on it for you. However, for anyone looking for how to install Python I would highly, highly recommend checking out Anaconda. Anaconda is just a redistribution of Python. So essentially what that means is when you download it, it has all of the necessary code for you to run Python. However, it has some extra functionality which ends up being really helpful. So whenever people are getting started with Python, I always highly recommend Anaconda.

Secondly, what you're going to need is a shell/terminal because Python code is primarily run from a terminal. For those of you who are new to programming and that world, a terminal is essentially an interface that lets you execute commands on your computer. If any of you are on MacOS you might recognize this symbol right here is the terminal. If you're on Windows, I would highly recommend downloading the GitBash terminal because it will let you use bash commands. Essentially programmers use the terminal because once you’re comfortable with it, it gives you a lot of power. You can do things on your computer faster and more simply. Or you know, a lot of you researchers probably work on remote machine, and sometimes in these virtual machines there isn't actually any kind of desktop for you to interact with and so knowing the terminal will allow you to execute Python code on machines that don't have any kind of user interface.

Finally for Python, you're going to need some kind of text editor for writing code and saving the code you've written. Again, for beginners to Python, I would really personally recommend Sublime text. There's a screen cap of it here. Just because it has really nice syntactic highlighting to help you guide the writing process of code, and I personally think it's really pretty. If you want to go a little bit above and beyond a text editor, you can look for something called an IDE, which is basically, what is it? Integrated development environment, which basically is another level above the text editor in kind of helping you work with larger software packages in a way that's really convenient. For this, I would recommend PyCharm. However, when you’re doing a small project, I think it’s kind of overkill to use an IDE. I would just stick to a simple text editor. But if you're working on a research project and the number of scripts that you need to write is growing, then I would definitely switch over to PyCharm or one of these other IDEs.

So now that I’ve introduced you to what exactly you're going to need to get started with Python, let's get started by writing some of our own code. So here you can see I have two windows open. This one that I’m in right now, the white one, this is my terminal that I’m going to run the Python code from. And here? This is my Sublime text, too. So the normal way that you write code in Python is you'll have a text editor like this where you write your code. All Python script, let me save it. I’m going to save this as helloworld.py because hello world, right? That's the standard learning how to program in a new language exercise that you all do. And dot py is the file extension that all Python files need to be in. When you make a new file like this, as soon as you put your dot py, it'll help the text editor to understand how to highlight things in your code to make it easy to read.

So now we're going to print our actual hello world. And in Python, printing things is really simple. You just use the keyword print. You have two parentheses, and then in quotes you'll print the message you want. So print ("Hello, World!"). I'll Control Save this. And then I don't know if you noticed, but I have saved this file. This dot py file exists on my desktop. So using the terminal I’m going to move to my desktop. Then I can run this script by simply typing, oops, not in the text editor, typing in my terminal Python helloworld.py. As I push enter, it’s run the code. So this is kind of the most standard way that you'll interact with Python is with having a text editor and then a terminal to run your code by its side.

However, before moving on, I want to show you two other ways to do that, to do this. Because Python is an interpretive language, that means that you can type commands to Python and it'll interpret it as you go rather than needing to compile it. So here what I’ve done in my terminal, I’ve just typed the keyword Python, and you can see the next thing it printed out is Python 3.6.4 | Anaconda, Inc. | da, da, da, da, da. Essentially what this means is that my terminal has entered into a Python session. That Python is version 3.6. My distribution is Anaconda. And you'll see highlighted right here these three greater than signs, and that's actually a prompt so I can start typing. So rather than saving text into a dot py like this, I can also just type my command here, push Enter, and run it. Another thing I can do, I can assign a variable. I’m going to call my, my message is "hello, world", and then I can print[message].

This interactive kind of style of programming is a really good way to start learning Python because if I do something wrong, so right now I’m typing something incorrect. Python version 3 needs to have parentheses. So right now if I say print message without any parentheses, it's going to yell at me. Here it gives me a really nice syntax error that's like hey, you're missing parentheses, you might want to do that differently. So that's another way you can do "Hello, World". To exit out of Python this way, you can push Exit.

Another thing that I want to show you guys is actually really similar, and this is called iPython. It'll probably come with your installation of Python. And as you can see, the only difference that I typed was here I typed Python and here I typed iPython. I think the I, um, I don't remember what that stands for. It might be interactive or something. But basically it's just a nicer looking version of the regular Python shell that tells you exactly what the input is and the output is. Here I can print("hello, world"). Or I can do message = "hello, world", and it's a really good way to keep track of code as you're learning. So I always highly, highly , recommend that for beginners of Python open up your terminal, type in iPython, and start experimenting.

Rob: Heather, I’m sorry to jump in.

Heather Lent: Oh, no worries.

Rob: There's been a couple of clarifying questions that you may be able to address right now.

Heather Lent: Yeah, that’s great.

Rob: One person has suggested that it depends on your local IT policy whether or not you're able to download Python. And a couple of people have asked if they can download Python. So I don't know if VINCI can provide any help there or if you have any...

Heather Lent: Yeah, I do. I think that you’ll need to contact your IT people, but part of the installation, I think if the IT people have put in the files on your computer, I think it'll let you install it. So I can't speak for general VA computers and whatnot. But I know that right now VINCI is working towards creating an environment that will have Python installed for everyone so that they can work that way. But in general, yeah, it's just harder to work on a computer where you don’t have admin rights.

Rob: Okay. One other person asked if there was a reference to Anaconda in the slide presentation somewhere.

Heather Lent: I don't actually know if I put the link, but my slides do have the word Anaconda in that, and if you search for Python Anaconda, you will, I guarantee, find it. If I can edit the slides when we post them, I’m more than happy to include that in there. But I actually think if you just Google search Anaconda it'll come up, but I can't say for sure.

Rob: Okay, thank you.

Heather Lent: Awesome, yeah. Great. So I’ve shown you how to do "Hello, World" three different ways. First with running with a standard text editor and a terminal the way you would usually run it and then these two interactive ways with the Python shell and the iPython shell. And again, I really recommend playing in iPython to start getting comfortable with Python.

So now let's jump back into lecture for a little bit before returning to coding. I’d like to introduce you guys to how you define variables in Python and some of the different types of variables that you can have. So firstly, we saw in our "Hello, World" example that I had defined something by saying message equals, and I had these double quotes. So that's how you assign variables in Python. You first name a variable. The variable can be, if you look at the top here, it can be something like myString. Essentially your variable just needs to start with a lowercase letter of some sort. You don't want to start with numbers or underscores or punctuation, anything funky like that. Keep it simple. So you pick a variable name like myString. You set an equals sign. And then you can put your variable there.

So the first variable typed is that I’d like to introduce, again, is a string. And a string can be any combination of characters that are contained in either single or double quotes. So anything in quotes like this will be treated by Python as a string. The next kind of variable that is important to know is an Int, so Int for integer. And again, we assign it the same way. We pick some kind of, you want to pick a meaningful name because you want to be able to look at any piece of code you write, you want to be able to look at it later and understand what it means. So here I defined myInteger = 3. And as long as you have an integer there, Python will interpret it as an integer, whereas in other programming languages you might have to say myInteger, classify that as an Int, and say equals. Python interprets it for you. It sees if you type myInteger = 3, Python will automatically detect, hey, 3 is an integer, that must be what you meant. And if you want to do something more specific, you can force it to do a different data type. But the fact that Python interprets types for you like this is, again, one of the reasons why Python is much beloved by people.

The next kind of data type I’d like to introduce you to is probably one of the most important data types and this a list. So a list consists of two square brackets. You can put anything you want in between, separated by commas. So here I have myListOfStrings is equal to the string one, two, and three. Or I can have a list of integers. Lists don't have to all be one type. I could mix it up. I could have Ints or Strings or you can have lists of Lists. You can go crazy with Lists. But for the most part you're probably going to have the same data type in your List. And again, in a bit, once we return back to code, I think this will help all of you guys to understand it a little bit more than just seeing it on a slide, because again, that's really how you learn programming is by doing and seeing, interacting with it more than just on a slide.

Finally I’d like to introduce you to the Python dictionary. A Python dictionary is a list of these key value pairs. So right here I have a dictionary defined where my keys are these strings. You can basically query a dictionary and be like, hey, I have this key that I want, return to me some value. And those end up, you'll see them all the time once you get into, more into Python. They're really handy to know. Again, we'll see all of these different kinds of types of variables and actions, which will help you to better contextualize when and where to use them. And of course, there are many, many, many other data types in Python, but these are the ones that I think are really important to know as a beginner.

Now I’m going to briefly move on to explain three types of loops that you can use in Python. For those of you who have programmed before, this'll be a big boring, but bear with me because they are really important to know. For those of you new to Python, what do I mean when I say loop? So loop is basically a way to execute code instructions only when they meet a specific kind of criteria. So for example, an if loop allows you to write code instructions that will only execute if some kind of criteria, which is defined by you, has been met. So for example, perhaps you have some variable I, maybe you set I=3, or maybe you’re counting it. But if the variable I is equal to 12, this would print correct.

One quick note, you can see here there's no parentheses. This slide is made with Python 2 instead of Python 3. My apologizes. Just pretend there's parentheses there. And you can make your if loop as simple or complex as you want. You can specify if some condition, elif, another condition, and then you can handle any other conditions by saying else. And so it's a really good way to make sure that you're only executing condition, code if some condition is met that you would like. This ends up coming up a lot in code. You'll find it really practical, all that good stuff.

Rob: Heather?

Heather Lent: So next, yes?

Rob: I have another clarifying question that may be better right now. Do you mind?

Heather Lent: Yeah, absolutely.

Rob: Okay. This person is asking is square parens 1, 2, 3 different from "one", "two", "three" also in square paren, from 1, 2, 3.

Heather Lent: Yeah. No, that’s a great question. So the difference between those two is that while both of them are lists because of the square parentheses and the comma separated thing, if you have that one in parentheses, or sorry, in quotes, that means that that one is not being treated as an integer. It's being treated as a string because it's in those quotes. So any time something is in either single or double quotes, it's a string. Even if it's a string of numbers, it won't be interpreted as an integer. That sound good? Yeah. So the difference is one of those things you typed without the quotes is a list of integers and the other one is a list of strings, where those strings happen to be numbers.

Rob: The questioner says, thanks with an exclamation.

Heather Lent: Great. I’m glad that I could help. So next I’m going to explain the for loop. This is a really important loop to understand because you will use it all the time. For loop, basically it lets you step through each item of some kind of sequential data type such as a list. So for example, if you have a list of names and you want to execute some kind of instruction for each name, this would be the perfect time to use a for loop. Here you can see example where I set cities equal to a list, and each of these is a string in here. Right? And all I’ve done is I’ve said for myCities in cities:, print (myCities). And basically what that does is for each item in my list, it's gone through and printed it. You can see the same thing with the message, hello. For I in message, in this case since hello consists of, it's just one string with each individual characters in it, when I loop through it, it just does one letter at a time.

Notably something that I want to remark on, you'll see here in the, like for myCities in cities example, cities is predefined. Right? That's the variable name for my list. However, the name I’ve chosen here, myCities, I could pick anything for that. Most commonly in Python you'll see people just say for I in whatever, whether it's a list or something. You'll see for I in list, but it can be anything. So I could do for bananas in cities, print bananas. But you shouldn't do that because that is not very readable code and it doesn't make sense. So ideally you should pick whatever helps you kind of conceptualize the items that you're iterating through.

Finally, before we get to the hands-on demonstration, I want to describe to you guys the while loop. The while loop is just another way to execute code only while a certain condition is true or is met. So here we can see in this code snippet answer = "no". So the answer is equal to a string, no. And I can say while answer is equal to no, answer equals are we there yet? So as long as answer equals no, Python will try to execute whatever is in this loop. But as soon as the answer changes, if I redefine answers, if I typed in answer equals quote yes equals end quote, then it would exit out to print ("We're there!"). So that's an important thing while using while loops is to make sure that you don't accidently write something for which it will never escape because the condition never changes. It's kind of an easy mistake to do, but just be careful about that.

All right. So now let's, let's switch to the demonstration. For the hands-on demonstration, I wanted to walk you guys through the task of determining some simple demographic information from a cohort. Specifically what we're going to do is we're going to write a program to determine the number of men versus women in a cohort. We're going to count the different ethnicities that show up in the dataset, and we're going to get the mean and median age. I don't actually have a dataset for this, so the first part of the demonstration will be generating some fake data that we can work with.

So let's get started. We're going to open a new script here, I’ll move this over here so hopefully you can all see it. So first let's name our file. We're going to call this demo.py, because again, remember, it needs to have that dot py ending. The first thing that I’m going to do is I’m going to import some libraries that we're going to use. Libraries are essentially external code resources that you can use, that you don't need to write yourself. So other people have gone and written a bunch of stuff. I don't want to reinvent the wheel, so I’m going to use it. And random is just a library from the standard Python lib, so it's okay if you don't know what random is or some of these libraries are at first. But as you learn Python, you're going to get familiar with them and know which ones to use. Or if you have a question, you're like how do I do this certain programming task, people might recommend to you libraries to use. Typically your library imports will go at the top of your Python script.

So now what we're going to do, I’m going to write a comment here. So the way that you comment code in Python is you start just a hashtag, and so anything I write after a hashtag won't be interpreted by Python because it will realize this is just my comment. So step one, we're going to create a dataset. So since our goal is to do demographic information, let's start with defining sex, age, and race. So the two options for sex, I’m going to define a string as M and F for male and female. So this is a list with two items in it for M and F. Next, I’m going to define age. So in this made-up cohort I’m going say we can have a range. This is another Python keyword. Ages can range anywhere from 18 to 65. And what this range does is, actually it enumerates the sequence of all the numbers in between 18 and 65. And for race, let's put some in here, Native American. I’m doing another list of strings. And as I use, as I use Sublime, you can see how it's doing this really nice color coding for me where the strings are yellow and the integers are purple. Any text editor you use will have some nice highlighting like that, which makes it really easy.

So we're initializing these types. Right? Because we want to make a random dataset with patients that have attributes in these categories. So now I’m going to define an empty dictionary and we're going to add to the dictionary entries for a random number of patients. So let's start by doing for n in range. How many patients should we have? Let's do 50 to keep it short and sweet.

So as soon as I enter into a for loop, I need to indent. So here I pushed tab, but some people will tell you to hit the spacebar four times. But so now what I am going to do is for n in range 0‑50, so this basically means 50 times, I am going to define a patient. Their name is just going to be, I am going to call them “patient” and then whatever number they are. And since n here is this integer, before I can concatenate the string “patient”, I need to make sure that n becomes a string. So 50 times we are going to redefine name to be equal to patient, whatever number they are.

Their patient info, let’s create a list, and now we are going to use one of these libraries where we imported. So let’s pick a random sex for them. Let’s pick a random age for them and a random race for them. And then what we are going to do is we are going to add to the dictionary. We are going to make it so the patient name is the key that we can always look them up by. And the patient info is the value that we will get.

And so now, what I can do is I will do a few things. I am going to print our patient dictionary so you guys can see what this looks like. Then I am going to print a bunch of these to help give your eyes a break. Then let’s print out the information for a random patient. Let’s do patient dictionary. And again, I can access any value as long as I have the key. So let’s do patient 11, and let’s save this and then move over to here. I am going to type in Python demo.py and run it. And so you can see immediately this is our huge dictionary that we just generated of all our fake patients. And patient 11 happens to be a female in her 60s that is African American. Cool. So now we have generated our data. Let’s get to how we can get some statistics out of these.

So next, we are going to calculate the most common sex and race for a dataset. I think that I need to be a bit more speedier, so I am actually going to copy and paste this from where I have already pre-written it, and I will walk through it with you guys. So what I am going to do here is I have defined an m-count and an f-count. So for counting sex of patients, we will start off with starting with zero and we can increment. Then I am going to initialize some empty lists that we can put all the ages and races to so that we will be able to count them.

So now the next step that I have done, and actually, I am going to comment these out, so they don’t print every time. Now I am going to iterate through all of the values of our dictionary, so for information and values, an important thing is right here I have info with this square bracket zero. So if you remember, the values here are equal to this list with the generated items in them. The way that you extract data from lists in Python, there is zero index, so if you want to get the very first item, you will need to use the square brackets to get the zeroest thing. So this here is the same as this. So, I can define sex as being info zero. If sex is male, we are going to add to the male count, and if it is female, we are going to add to the female count. In the same way, age is the second item, so it will be the square brackets one 1. And I am going to append age to my list of ages, and I am going to append race to my list of races. So once I execute that, I can print, for example, the number of male/female. So when I run that, you will see in our random generated set we had 27 men and 23 women.

Now again, since we're running short on time, I am going to paste this into here. The next step we are going to do, if you look at line 48 and 49, is I can pass this list of races to this counter object. Remember we imported it at the top. If I run that, we end up, the data was regenerated, so that's why the information is different. You can see that it has counted each of the races for me. Also using that statistics package we imported, I can print the mean and median age by running this. So with our newly generated data, you will see that the mean age was 36 and the mean age was 38. And so that is just a really quick example of how you can get started with Python really quickly.

Before I wrap up, again, since we are short on time, and I want to get to questions, my tips for beginners, I think I have mentioned a bunch of them, mostly that I recommend that you use Anaconda. I always, always, always recommend that people work with Python 3 instead of Python 2. If you are wondering what that was, Python 2 is just an older version of Python. However, Python 2 is no longer going to be supported, like within this year, so don’t use it. Use Python 3; just save yourself from suffering. And again, I really like, iPython is a good way to learn. Anytime you come across an error while you are working with this, you can always search the internet for your errors. No matter what problem you have, I guarantee you at least one other person has had it. Ask the internet, and some nice, kind person has probably answered it. I will leave those other tips there.

Here are some additional resources I'd like to recommend. Again, please take a look at the slides afterwards if you want to check these out.

Before wrapping up, I wanted to let you guys know that more Python curriculum will be coming to VINCI Central soon, such as lectures for SAS developers to work in Python, R developers to work in Python, how do you work with VA data, specifically SQL server with Python, data visualization, and more. So it is really exciting. And with that, that is the end of my talk. Thank you so much, everyone, for tuning in, and I'll open it up to questions.

Rob: Okay, lots of questions, and I will try to stick to the ones that are technical in nature and not about how you do things within the VA, because it seems like you don’t know all the answers to that.

Heather Lent: Yeah.

Rob: Can you have more than three if conditions?

Heather Lent: Oh, for that, what you would do is you would start with an if, and then you would just do elif, elif, elif for each one. You can have as many elifs as you want. Elif means else, if. So you can say if condition, else if condition, else if condition, etcetera, etcetera, and then just end it with an else statement to capture whatever it doesn’t catch.

Rob: Great. Thank you. Lists and data types. Do lists know of data types or is everything just character?

Heather Lent: Yeah, the lists, like when you access an item inside of a list, its associated data type is part of that item. There is no way to separate them out.

Rob: Okay.

Heather Lent: Yeah. So for example, whatever is in the list isn’t just going to be treated as a string. If you have a list of integers, it will treat those items as integers.

Rob: Thank you. Next question: Can you do a do until a condition is met, or a do loop by some parameter?

Heather Lent: You know, I don’t think Python has a do loop. Someone might have implemented it in a library, so I would search the internet for that. But typically that is not how you write Python, and I have not seen that, so I would say no.

Rob: Okay. What terminates the while loop?

Heather Lent: The while loop will terminate if you do, basically if you update what the condition is, so if I go to Python, I set i equal to zero, while I is, let’s say less than five, I might have spaced this wrong. Print. Yah! Oh, sorry. This is going to fail because I indented it wrong. But if I did I plus equals one, you can see it prints it out five times because I am incrementing I there, and as soon as this condition is no longer true, it terminates. So as soon as the clause changes, it will leave.

Rob: Okay.

[Crosstalk]

Rob: Sorry.

Heather Lent: Oh, just to make sure that I am successfully answering that question, part of it, too, is the while indentation in Python is really important. So you can see here how I typed this, there’s these spaces that I put, and so basically any time you are writing a loop, whatever you want to be within the scope of that loop, you have to indent. So if I had typed something here instead and didn’t indent, that part would not be part of the while loop, as soon as you un-indent. That probably more fully answers that question.

Rob: Okay. I think the answer to this is yes, but the question is, is Python used for your natural language processing activities?

Heather Lent: In VINCI, we actually mostly use Java, but I do, Python is the number one language for doing natural language processing in general. So if you are interested in that, Python is definitely the route to go, and I recommend that you check out a library called NLTK for Natural Language Toolkit. It's a really good place to get started, both with NLP and learning Python.

Rob: Great, thank you. We've had a couple of questions about the Jupyter notebook as a place to use Python. Can you comment on that?

Heather Lent: Yeah. so Jupyter notebooks are really good for experimenting, and they are pretty fun to work in. I specifically didn’t mention them in this lecture because I think they can be sort of confusing for beginners, and there are some mistakes that are easy to make while you're still new to Python. But I definitely recommend trying them out and playing with them. Most Python installations will have Jupyter notebooks as part of it. So all you do is type jupyter notebook into your terminal, and it will open something like this. I don’t have any Jupyter notebooks to show you, or I guess I could make a new one. It basically looks like this where you execute things in cells. But again, I caution beginners against using Jupyter notebooks until they are very comfortable with Python.

Rob: Thank you.

Heather Lent: Also, if anyone does have, you said there were some questions about using Python in VINCI. My boss is here, and so she can answer some of those if there happen to be a lot of those questions.

Rob: I’m sorry, a lot of questions about…?

Heather Lent: How to work with Python in VINCI or what the plans are for that. Her name is Olga Patterson [phonetic]. She is here next to me.

Olga Patterson: Hi, everybody. VINCI questions are welcome.

Rob: Hi, Olga. Some people are asking how to connect Python to things like CDW or how to point to a dataset located elsewhere. Is that something that maybe they should email VINCI for, offline?

Olga Patterson: Yes, that is one of the routes you can go if you want one-on-one direct communication. But in a very brief way, I can respond that if you have a development workspace in VINCI and you have Python, then connecting to the database only requires that you have access to the database, and from within VINCI, you can write Python scripts. And if you are new, again, internet search would provide examples of the specific code. But you can query SQL database and enter the SQL statement as a part of a Python function and retrieve results, and then you need to weight results within Python. I do not believe that we have Python in a standard workspace.

Heather Lent: But if you have your own development machine, where it happens to be installed, search VA Pulse for Python, because there are some really good contributions people have made, such as Kelly Peterson [phonetic], who worked with Python in VINCI to access CDW. So they might have made their scripts public for how to work with the database, so check out VA Pulse, search for Python, you’ll find a bunch of stuff.

Rob: Okay. Does Python have a case statement or do you have to do multiple ifs?

Heather Lent: You’ll have to do multiple ifs; I don’t think there is a way to do cases in Python.

Rob: Thank you. Is there an intuitive UI for Python such as SAS possesses?

Heather Lent: No. Python, you’ll either need to interact with it with the Python shell, like iPython that I showed you or you will need to write your script and save it, the latter being the most preferable way to do it, other than fun tinkering, but there is nothing like R Studio or SAS Interface for Python.

Rob: Okay. Somebody is asking if you would go to the last demo screen with the coding so they can take a snapshot.

Heather Lent: Oh, wait, of this?

Rob: In your demo.

Heather Lent: I can make it available too. I can send it, too, for you to put on the thing. But if you screen capped this, I can slowly scroll down for you to get this, but I will send it in a follow-up email so that you can all access this.

Rob: Another person is asking can you share some sample codes for them to play with. So again, what would be the most appropriate email address at VINCI for people to send to for detailed information?

Heather Lent: Yeah. Great question. So please use my VA email.

Olga Patterson: VINCI Services.

Heather Lent: Oh, okay, never mind. You don’t need to email me. You can email VINCI Services for lots of questions. I thought you meant me, specifically. No, email VINCI Services.

Olga Patterson: Yeah, vinciservices@va.gov, and if you have a question specifically about this presentation, you can mention that in your request, and then a response will be sent to you directly.

Rob: Is that vinciservices, all one word?

Olga Patterson: Vinciservices, single word, at VA.gov. All VINCI-related questions can be sent there and specifically about this Cyberseminar that also can be sent to VINCI-services, with a note that this is in regards to Cyberseminar.

Heather Lent: Great. And to answer the other part of that question, since Python is so popular, there is so much Python online, so I would just pick your favorite search engine and search for Python tutorial. And you will find a lot of code to get started with that way, or you can poke around GitHub. But there is no shortage of fun code in Python online to play with.

Rob: Thank you. This person says they are very new to programing but they are wondering if Excel can perform some of those functions, so what would be the advantage of learning Python over that?

Heather Lent: Yeah, so you are absolutely correct that you can do a lot of things in Excel. However, one of the reasons why people prefer programming languages, in general, is the fact that you can scale them up to work on really large amount of data, and you can do many more tasks in Python than you can do in Excel. So for example, for some NLP projects, maybe I want to get a bunch of data off of PubMed. Well, I can’t build a webscraper in Excel to go extract PubMed abstracts for me, but I can absolutely do that in Python. So if you are only looking to do some kind of basic statistical things, and you don’t have a huge dataset, Excel will probably work fine. But if you have a large dataset and you are really wanting to get nitty gritty with the data or you have a more complex task that you want to do, Python is definitely the avenue that I would recommend.

Rob: Great. Thank you. Somebody is asking you to comment on white space.

Heather Lent: On white space? Oh, so Python cares about indentation and such like this. Let me just open Python. I can show you better than I can explain it. So since Python cares about indentation, when you start a variable, you don’t want to have any white space in between the indentation line that you are on and the boundary that you are working on I guess, so I can do this, but I can’t, if I do this, where I put a bunch of spaces here - that wasn’t supposed to work; maybe because I am in iPython. It will complain because the spacing that you put before a variable is like meaningful for indentation. So it is just like if I tried to do for I in range zero to five, oh, I typed in twice. My b. Here it automatically indents, but if I tried to go back and wrote like, print hi, this would get mad at me because there is no white space indenting in the for loop. So as far as white space, you want to just be careful when you are indenting loops and that kind of stuff.

Rob: Okay. Are you ever concerned if a library for import is corrupted with a virus?

Heather Lent: Yes. I mean, that is something that you should be concerned about in general because I can definitely go on to GitHub and download whatever. The standard Python library should be pretty safe. If you are downloading a random open source library off of GitHub, GitHub actually warns you when there are security vulnerabilities. So just like anything that you are downloading, be conscientious that it's from a source that you trust or an author that you trust, and then you won’t really have to worry about it too much. So just use common sense.

Rob: We are at the top of the hour, but I already have permission from Heather to go a little bit late. But attendees, if you need to leave right now, please just do stick around for a few short moments and fill out the survey that pops up when you leave. We count on you and your answers to continue to bring high-quality Cyberseminars. This person is asking about Sublime. I have got Sublime loaded. How did you get that window with the file output to sync up with what you were doing in Sublime?

Heather Lent: Wait, how did I what now? Which window? This white window, the terminal?

Rob: I am not sure. He is saying HOW did you get that console, question mark, if it's called a console or not, window where the file output...

Heather Lent: [Interposing] Oh, yeah.

Rob: Go ahead.

Heather Lent: Ah, you mean how did I get - okay, I think I understand the question. Since I saved the my dot py file on my desktop, when you open a new console terminal thing, your default position is your home directory. So right now I typed in ls and that just lists all of my documentaries or all my folders on my computer. So I did cd to desktop, and that is what took me here. When I say ls, this is the same as listing all of the files on my desktop. So on that note, this is actually something that I had in my presentation but I kind of ran out of time to say. I would highly, highly, highly recommend that if you are going to be executing Python from the console like this, learn some BASH commands. Can I do like a BASH tutorial? It’s basically how you can get around on your computer. If you have a Windows machine, there is its own Windows console and I have no idea how to use it. And so if you are on Windows, I really like Git for Windows, where you get a similar terminal like this and you can use BASH commands. But there will be different commands for if you are using the Windows terminal, which I do not know how to use. I stay away from that.

Rob: Okay. We have a few more questions. If you know, what is the Python equivalent to a dataframe in R?

Heather Lent: So actually, okay, for a second that caught me off guard, because you can also have dataframes in Python, but you need to use a library called Pandas. So here I am searching this. It will basically work. You will import Pandas the same way that I imported these, so here I would do import pandas. And then just like that, you can make dataframes the same as you can in R. It is a super handy library.

Rob: Thank you. Do you recommend the Spider environment?

Heather Lent: I don’t know what the Spider environment is, but it sounds cool, because - what is this? I can’t say because from this it - no, just from the what's on my screen, no, but I have no idea. Sorry.

Rob: Okay, thank you. Can new libraries be installed in VINCI by the user?

Heather Lent: No. You need data access or you need admin access to do that. You can’t pip install a Python library. I think you have to email someone and ask pretty, pretty please. Is that correct, Olga?

Olga Patterson: You can ask VINCI. If you know the exact library that you want, you can ask VINCI. We are planning to have more functionality within VINCI to make it easier to work with Python. We will streamline downloading packages easier, not at the moment, and we will have Cyberseminars dedicated to that specific question, how to work within VA, how to use Python if you know R, so it will be coming in next lectures. If you have an immediate question right now that you are eager to know answers and work with somebody, email to vinciservices@va.gov, state your question, and somebody will contact you and work through your problem and hopefully find a good solution.

Rob: Great. Well, thank you very much, Heather and Olga, for preparing and presenting this very informative presentation and for fielding all those random questions. Clearly when you are doing something this technical coding, you get people from all directions. So unless you have more closing comments, I will just go ahead and close the seminar and ask attendees to please fill out the survey that pops up when I do so. Anything?

Heather Lent: Sounds good. I have no closing additional things to say. So thank you, everyone for coming, and thank you for your help with facilitating the Cyberseminar.

[bookmark: _GoBack]Rob: Awesome. Have a good day, everybody.

[END OF AUDIO]

