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Ciaran: We have a split presentation today. Going first is John Lin and second is Peter Veazie. John is an Internal Medicine Physician and a Postdoctoral Fellow here at the Palo Alto VA, and he’s going to go first, and his talk is Evaluating the Role of Past Clinical Information on Cost Risk Adjustment. And so, John, do you have control so that you can start your presentation?

Dr. John Kent Lin: Yeah, sure.

Ciaran: Okay, so just go ahead and I will try to monitor questions as well, if you have questions popping up.

Dr. John Kent Lin: Absolutely. Okay. So thank you for having me. So as Ciaran said, today you’re going to hear two different presentations on work about improving risk adjustment modeling. So the first presentation that I’m going to give is about what we can do to incorporate additional predictors that could potentially improve cost risk adjustment.

I have no disclosures, and big thanks go out to our team. So Juliette, our statistician Ciaran for all of his insights during this process, Peter Almenoff, and also Todd Wagner who developed Nosos, which is the model that we’re going to look at today, and has been our fearless leader.

So in this presentation I’m going to give a quick overview of what risk adjustment is, just to get us all on the same page. Then I’m going to talk about Nosos, which is the specific risk adjustment tool that we’re looking at today. And then we’re going to move to our analysis, which is incorporating clinical memory. This has also been called a look back period in the literature. And this is a proposed way to improve risk adjustment modeling using the same variables that we already have. And this look back period is essentially, or clinical memory is essentially just past years of diagnostic information.

So first, getting us on the same page, what is risk adjustment? It’s used throughout health care from operations and payment, to health services research. From an operations perspective, let's say that we identify a health care center that spends more than the national average. But to know if they’re truly more expensive we’d have to first agree that their patient population is not sicker than the patients at other centers. We really have to agree that their patient population is the same sickness as patients at other centers, and this is never true. And so we use risk adjustment tools and statistical models to match patients’ unobserved characteristics. And ideally, we could perfectly adjust so that we would have the same sort of level of sickness of patients from one center to another. But it’s impossible to perfectly adjust, because we never observe all of the characteristics that make one patient sicker than another. And we’re always seeking to improve on the risk adjustment model.

There are a plethora of risk adjustment systems, and we don’t have time to go into all of these today. So the Charlson comorbidity index is a older one, a really well known one. More recently CMS has come out with a risk adjustment model that they use to reimburse Medicare Advantage Health Insurance systems. And there have also been multiple versions and iterations of the CMS model. The VA has two systems, and one is called the CAN score, the second is called Nosos.

So first I wanted to have this poll. I wanted to get a sense of your role in the VA. And so you can just select any of these that apply to you.

Rob: And John that poll is up. And let me apologize to everybody for my audio issues a few minutes ago. We have about 50% of your attendees already making their selections, and that’s growing rapidly, so we’ll give people just a few more moments to make their selections and we’ll go ahead and close the poll. It’s leveled off so I’m going to go ahead and close it and share out the results. And this will be over 100% because you can choose more than one. However, 38% chose operations, 8% chose clinical, and 69% chose research. So now we’re back on your slides.

Dr. John Kent Lin: Okay, perfect. So it seems like most people are sort of in the operations side or the research side, very few clinical folks here. And the second poll that I have is which of these systems, and there are many more systems than this, but which of the following systems have you worked with before?

Rob: And the answer choices, Charlson comorbidity index, I’m going to struggle with this one, Elixhauser, CMS risk adjustment models, CAN score, or Nosos. How did I do?

Dr. John Kent Lin: Yeah, good.

Rob: Okay. About 60% of your attendees have made their choices, and that’s rising quickly. And as I said before, it usually levels off right around 75, 80% and we’re approaching that rapidly. And things have leveled off. So I’m going to go ahead and close the poll and share out the results. And what we have is that 39% chose Charlson comorbidity index, 6% Elixhauser, 24% CMS risk adjustment models, 15% CAN score, and 15% Nosos. And we’re back on your slides.

Dr. John Kent Lin: You say 50 or 15?

Rob: That was 15. And you know what, John, I think I made a mistake and made this so that they could only choose one. So it_

Dr. John Kent Lin: Oh, got it.

Rob: __I apologize.

Dr. Peter Veazie: The numbers added up to 100% so that was, must have been correct.

Dr. John Kent Lin: Okay. Yeah, so it seems like most people have worked, maybe many people have worked with many of these systems. So the CAN scores, as many of you, maybe all of you know, is a risk adjustment system created by Steve Singh, the economist in Seattle, and Nosos is the one we’re going to talk about today. And these are two distinct tools with different goals. The CAN score has been optimized to predict readmissions and mortality. And so its main use in the VA is by teams, sometimes clinical teams, that focus on readmissions and mortality. So, one possible use is benchmarking how one VA site is doing compared with another, but it can also be used to predict patients at high risk of readmissions or mortality. And there are not a lot of clinical folks here today, but clinicians may be familiar with the CAN score because some clinicians also use it to do panel management and identify patients at high risk to redirect more resources to those patients. So it can be used on an operations and health services research sort of side but it can also be used by clinical teams as well, more directly. So Nosos is a little bit different than the CAN scores. So unlike the CAN score that predicts health outcomes, such as readmissions or mortality, Nosos predicts costs.

So what is Nosos? Nosos is the Greek word for chronic disease. And it borrows heavily from the CMS risk adjustment systems. So it’s based on the CMS V21 system, which that system is also used to predict how expensive the patients of a Medicare Advantage plan will be. And CMS uses that system to allocate money each year to those plans. The way that the CMS system works is it aggregates ICD codes that are entered by physicians, this could be thousands of different possible codes, and it aggregates them into 80 HCC indicators. And so these indicators can be something like HIV, Parkinson disease, paraplegia, or dialysis status, sort of these large buckets. And then these indicators are then aggregated into one risk score. So the, it’s called the HCC risk score. Nosos adds additional VA specific variables to this. It’s important to note that in the CMS system, and in Nosos, we’re talking about diagnostic billing codes and not the patient's problem list. So what are the additional variables that the Nosos model added to the CMS risk adjustment model that allowed it to outperform the CMS risk adjustment model?

So, there are the ones that I’ve outlined in the red square. So this is mental health conditions, pharmacy records, and then also some VA specific variables, like whether or not the Veteran had additional forms of insurance, as well as priority status. So priority status, Veterans with higher disability ratings or who, for instance, had, you know, been injured in combat, they get higher priority and therefore lower copays. And then there’s also registry information. So this could be something like whether or not the patient was exposed to Agent Orange. Notably, the Nosos algorithm only uses information from one fiscal year. And so prior years of data are not incorporated within the Nosos model. And this is true just broadly of risk adjustment systems.

There’s two versions of the Nosos model. The concurrent version and the prospective version. The concurrent model uses the same years of diagnostic information to predict that year’s cost. So this could be using the fiscal year, 2015 fiscal year diagnostic and clinical information to predict that same year's cost. And this is primarily used as a benchmark. So how is our VA site doing with others nationally in terms of health care spending? The prospective model is more used to allocate future payments. So this is more in line with what CMS is doing with its risk adjustment model to reimburse Medicare Advantage plans. And they use that specifically to decide how much a health plan should get based off of the reported comorbidities of their patients of that year. So they look at the comorbidities of the patients in the current year and they say. Okay, next year we’re going to allocate you this much money based off of that.

So like the CMS Risk Adjustment tool, Nosos outputs a single risk score. And the interpretation of this score is fairly straightforward, it’s you can think of it kind of like as a multiplier. So patients who have a score of one are expected to have the national average cost for VA patients in that year, whereas patients with a score of two or three would be expected to have double or triple the costs of the national average.

Risk adjustment is imperfect, as the health services researchers in the audience would definitely know, and I’m sure that also the operations people are very, very familiar with. And so we’re always trying to get better systems of risk adjustment. So there are many options to doing so. One is adding more variables, which is what we’re sort of talking about today. The second is changing the structure of the model itself, which is what Peter Veazie is going to talk about. But one of the questions that we had was whether or not adding prior years of diagnostic information would improve risk prediction. And the reason why we settled on this question is because it’s easy to get additional years of diagnostic information. Whereas things like more textured information, like a cancer stage, or severity of illness are not captured in administrative codes, and you would have to go to a Veteran’s problem list, or other sources of data for that. Adding past years of historical information is somewhat easy to do. It’s easy to implement and if it provides a large benefit then it could be very helpful.

So there are two intuitions why adding past years of diagnostic information could be helpful. So first is that it’s hypothesized that additional years could predict how severe a disease is. And most diseases are progressive. So the thought is that the longer someone has a disease the more likely it is to become severe over time. The obvious counter-argument to this is that the disease course can be very, very different from person to person. The second thought is that adding past years can correct for poor coding from providers. So unlike in Medicare Advantage where there are actual financial incentives for health systems to code every single possible disease a patient might have, which is, and there’s been a lot of research that shows this sort of, quote-unquote, upcoding, VA providers lack that incentive. So it’s possible that in a very busy day a VA providers doesn’t code all of a patient's comorbidities. They may, you know, sort of code the most important ones in their mind. Or they may sort of just say well, this one is close enough. And the last is that there’s some evidence that additional coding gaps, sorry, there’s some evidence that providing clinical memory or adding additional years of diagnostic information could have modest improvements in risk adjustment. So there were a few earlier papers that looked at this very question with risk adjustment models for mortality. They used older risk adjustment tools, like the Charlson comorbidity index, and it was a little bit, so that was one difference. The second difference is that they looked at models that were specifically designed to look at health outcomes rather than costs. Nosos is, as I mentioned, specifically designed to look at costs. So it could be that, so one of our questions that we asked was whether or not adding additional years of clinical history would improve the prediction of costs using sort of the Nosos system.

So is there any evidence that, about the second hypothesis, sort of that, you know, adding additional years of clinical information could actually improve the fidelity, I guess like the coding fidelity of diagnostic information, when there’s some evidence that that’s true. So one of these, this is a paper that looked at standardized patients, they had standardized patients visit three different VA sites. And they found that 43% of the time the primary diagnosis was incorrect. And a chunk of that was the physician was just making the incorrect diagnosis, but a larger chunk of that was because data were just not entered correctly. And so part of the thought of adding additional years of clinical history is that could maybe improve the coding fidelity.

So we looked at the second thing, which we called coding gaps. And this is, we looked at patients who had diagnostic information between 2011 to 2015 and we asked the question whether or not we actually see gaps in coding. So we labeled some HCC indicators as chronic, and so this could be something like HIV, something that we know would be unlikely to be cured, like HIV or psoriasis, and we identified whether or not there were gaps in coding from year to year. So for instance, if a patient had HIV that was coded in 2011 and 2014, sort of like two end years, but not in 2013, we identified that as this patient had a coding gap. And so we asked ourselves a question of patients with, for instance, HIV or different HCC indicators, what percent of those patients had a coding gap like this?

And it was relatively small for HIV and AIDS, and also Parkinson’s and Huntington’s disease, 5 to 8%, but not nonexistent. It was a little bit larger for something like dialysis status, something that you would also expect that if they had into, you know, patients can have acute need for dialysis but if they had dialysis in two end years you would sort of expect that this person probably has ESRD and would have had dialysis in intervening years as well. And also, those patients would probably be getting dialysis very, very regularly and you would expect that there would be a low prevalence of coding gaps, but I think this one was higher than I would have anticipated. And then on sort of the higher side of coding gaps, for what we labeled as chronic illnesses, around 15 to 17% for things like heart failure, COPD, even something like paraplegia that you would kind of think would be there year to year.

So, we aimed to see whether or not adding previous years of clinical history would improve risk adjustment. And the basic idea is either adding additional years of HCC risk scores or indicators. So again, the original Nosos model uses the single HCC risk score that is kind of like an aggregate of the information that’s provided by the around 80 HCC indicators. And this is again, sort of the patient's diagnostic information, so ICD codes. And so we looked at the concurrent and prospective model, but then we also looked at two approaches. So, the first approach is Nosos using the risk sources, like the traditional Nosos model, but then we also thought well, when indicators are aggregated into risk score some of the texture of that information is lost. And so we created another Nosos model which uses, rather than the risk score, each individual, the presence or absence of each individual risk indicator as dummy variables. And so for instance, in the base year clinical information model, so this would be, for instance, using 2015 diagnostic information to predict 2015 costs. We had one model where we used one risk score, and then we had a second model where we used all 80 HCC risk indicators. And then we looked at sort of an expanded, what we call an expanded clinical memory model, which is basically adding the past years of diagnostic information. And so for the HCC risk score model, this would end up having five different HCC risk scores, one for each year from 2011 to 2015. And then for the HCC risk indicator model, this would have like 400 dummy variables of HCC risk indicators. You know even with the large sample size that we have through the VA, there was a concern of whether or not we were overfitting and so we used 5-fold cross-validations to address that. A third sort of model that we looked at was imputing those coding gaps. So, if a patient had HIV coded in 2011 and 2012 and 2015, but not 2013 and 2014, then we just imputed that value. So we said that patient also had HIV in 2013 and 2014, and we looked at whether or not imputing those coding gaps would improve risk adjustment.

Okay, so here are some results. This is the concurrent model. So we’ll be using 2015 diagnostic information to predict 2015 costs. That would be the base model. And then the expanded clinical memory model would be, sort of the richer model would be using 2011 to 2015 diagnostic information to predict 2015 costs. And here we see both with the R-squared and Mean Squared Predictive Error that adding additional years of clinical information didn’t help. And in fact, it looks like it may have made things worse. So the model didn’t improve at all.

When we look at the individual risk indicators, so this is just aggregating the score into the 80 or so odd indicators, overall the model performed better, which you would sort of expect with more texture with the diagnostic information, but again, adding additional years of clinical information did not improve the models fit.

And then here we’re looking at imputing those coding gaps. So, you know, if a patient has the diagnosis in the end years, imputing and making sure that we also code, we recode that patient to have that diagnostic information in the intervening years. This didn’t really do anything either. And there was no sort of substantial improvement here. Even with using the risk indicators.

So we looked at a prospective model as well. And these results are largely similar to the ones that I showed you previously. And in the interest of time, I’m just sort of going to breeze through these and just put these up in the table and you can look at them in the, I think you were given a set of the PowerPoint slides, and so you can look at these for yourself. But largely they have the same intuition.

So in conclusion, adding additional years of data did not improve risk adjustment. So we have several thoughts as to why that might be. You know we do have older papers showing that it did improve risk adjustment for health outcomes. So one possibility is that adding prior years of diagnostic information is helpful as a function of predicting future health risk, but it isn’t as helpful as a function of utilization or cost. You know, this argument is maybe less persuasive to me in that patients with higher readmissions or mortality usually have higher costs too. Like in the year of their death, or those patients usually have higher, you know, the disease severity is usually higher as well. Another possibility is because we use an algorithm that is newer. So as I mentioned, the past papers used the Charlson comorbidity index, and we used the Nosos risk score, which was sort of a better risk adjustment tool. The marginal gain of adding more years of clinical data is smaller, even just completely negligible. I will mention that in those older papers the marginal gain of adding additional years of clinical data was somewhat helpful, but the gains were really pretty modest. And sort of the last possibility, and this is the one that I find most convincing is because, is that historical ICD data is just a poor predictor of disease severity. So you can imagine, for instance, two cancer patients diagnosed in 2011. Maybe one of those had a really bad response to therapy and had progressed disease. The other one maybe was a stage one patient and had good response to therapy and then became disease-free. Or maybe alternatively had a bad response but then went into hospice. Those are sort of wildly different trajectories in terms of costs, and also in terms of disease trajectory and mortality.

 I think that, in conclusion for me, really if we want to make strides in improving risk adjustment we probably need new variables, or variables that more accurately capture disease severities. Some new variables could be like markers of socioeconomic status that we’ve seen in other risk adjustment tools to be helpful in predicting both costs and outcomes. Or markers of disease severity that are just not inside the current ICD code information, like cancer staging. Or measures of frailty, this would be sort of another one that’s sort of more of a clinical piece of clinical history but that can be perhaps gleaned in some sense from administrative data using some tools.

So this it for me, thank you so much, and for having me, and I’m not sure if I’m going to take questions now or after Peter’s talk.

Ciaran: Why don’t we, given so that we, why don’t we, if there’s anybody that has a pressing question, no questions have shown up on the, that I, let’s see, have any? No, I don’t see any. Oh, I missed it. So, did you restrict the analysis to Veterans who are using VA all years, how much of the coding gap is due to patients receiving care outside of the VA? Is one question and__

Dr. John Kent Lin: That’s a great question. So for the coding gaps part, actually for all of these analysis, we restricted the analyses to patients who had VA information for all years. For patients, this could be VA and Medicare though, so we had Medicare data as well, and so for patients with also Medicare data we incorporated Medicare costs for those VA patients, and Medicare diagnostic information.

Ciaran: And then the second question, was the patient population for Nosos, the VA, primary care patients or every enrolled patient?

Dr. John Kent Lin: This was every enrolled patient. And it did include patients who were like dually enrolled in VA and Medicare as well. And for those patients it would have, we would have relied on the Medicare diagnostic information.

Ciaran: Okay, and then the last question was, what was the method of imputing? And I think you explained that, but just so I’ll just quickly answer that basically, it wasn’t one of the imputation methods, it was just did they have a diagnosis before and after, and if there was a gap we imputed that they did have. So that’s__

Dr. John Kent Lin: Yeah, exactly. So it’s assumed that they had that diagnosis in intervening years. Exactly.

Ciaran: Yeah, as John explained, it was the idea that if these were diagnosis that you should not have, and so if it wasn’t coded we added it. All right, so we’re going to move to our second presentation, and as John alluded to we’re going to be, this is essentially looking at instead of looking at adding variables, it’s a method, looking at a different method of, a different modeling method to try to predict costs. And this is going to be presented by Peter Veazie, who is a Professor at the Department of Public Health Sciences at the University of Rochester, and he also collaborates with the Geriatric and Extended Care Data and Analysis group, which is based at Rochester/the Canandaigua VA, and several other places across the VA. All right, Peter, you’re on.

Dr. Peter Veazie: All right, thank you Ciaran. And on this particular presentation, my collaborators include Orna Intrator, and Ciaran, who was just talking, Bruce Kinosian, and Todd Wagner. And so I appreciate that. The, okay that’s weird, my apologies but my, here hold on, that’s strange, hang on, I got to get, technical difficulties here. Okay, my keyboard is not working but fortunately, our mouse is.

All right, so the idea behind reasonable risk adjustment includes having a good set of risk adjusters, and John was investigating that, but it also includes the ability to then come up with a good model and estimating based on those risk adjustments. And so for this talk I’m really going to explore that side. And I’m going to sort of put forward a alternative specification of what is otherwise a standard model, and I’m going to show through a Monte Carlo, and then follow it up by a actual data empirical application, that it might have some merit and I would argue should belong in our toolkit.

The approaches to modeling for risk adjustment are many, and I would say that my list here on the poll is only a limited few, but some of the more common ones. And so at the moment I just want to sort of get a sense as to what you might have used, for those of you who are actually doing a model estimation, if you can, and pick one of these. And F is not available, I believe it’s only A through E. I was told I had too many on there.

Rob: All right, Peter, that poll is up. And as you can see we had to take none off, or was it, yeah it was none, right?

Dr. Peter Veazie: Yes. Correct, right, that’s correct.

Rob: And__

Dr. Peter Veazie: I don’t actually see results anymore, that’s interesting. But that’s okay__

Rob: You won’t see them as the presenter. 

Dr. Peter Veazie: Okay.

Rob: You could see the results of John’s polls. You have about 40% of your audience voted so we’ll give people a little more time to make their choices. This is a multiple choice, select all that apply. So, we’ll let people figure out what they want. It looks like things have leveled off. So, yeah, I’ll go ahead and close the poll and share it out and explain to you, Peter, that it’s going to be more than a 100%. However, linear regression of log-transformed costs got 64%, square-roots-transformed costs was 32%, GLM with logarithm link function for mean cost was 50%, and GLM with square-root link function for mean cost was 23%, and other models was 41%. And now we’re back on your slides.

Dr. Peter Veazie: All right, thank you. All right and other models include lots of different things, mixture models, multipart models, etcetera. I want to focus today on the generalized linear models and talk about a very specific tweak to it. So, I’m going to look at a very commonly used generalized linear model, and then I’m going to re-parameterize it and show that this slightly tweaked re-parameterized model is actually worth considering as we go through and try to find good risk adjustment models. 

So to start, as a reminder, what is a generalized linear model? Basically, a generalized linear model is, and just remind me, Rob, can you see my mouse?

Rob: Yes, we can.

Dr. Peter Veazie: Yeah, okay. A generalized linear model is basically saying that we take a function of the mean, the regression function, the expected value of y given x. And a function of this mean is a linear combination of coefficients related to a set of risk adjusters. So that if this, what’s called a link function, were a identity function, can you erase it, so to speak, in the sense of an identity function, then we would have our usual linear model, the expected value is beta x. But we’re going to allow ourselves to change that through different functional forms I’ll give a specific one below that we’re going to talk about. Second thing is that we specify a distributional family for the distribution of our outcome variable, in this case cost. And with the combination of these two things we then estimate by maximum likelihood. Now the maximum likelihood estimation idea here isn’t just a footnote, because it's going to be the reason why we can end up with the problems that my reparameterization can help do a better job of.

So, as an example, and the main focus of this talk is thinking of a log-link function in the Gamma family. What that means is we’re taking the log of the mean as a linear combination. The beta x, which means that the mean itself is a natural exponent of beta x. And then we’re going to specify the distribution of y as the Gamma distribution. The Gamma distribution has two parameters, it has a shape parameter, what I’m calling alpha, and a scale parameter I’m calling beta, and it turns out I should not have not called it beta because it's not the same beta as what’s above. My apologies. I wasn’t paying attention, this beta is coefficients on my risk adjusters, this is what I’m calling my scale parameter. So, apologies for that. But the Gamma has two different parameters and those parameters give us different sort of modifications of the distribution.

So if we look at two distributions here, where I have a distribution with a shape parameter of two, and a scale parameter of six, and compare it to a distribution with a shape parameter of four, and a scale parameter of six. So I’m holding the scale parameter constant and just increasing the shape parameter, we can see the distribution starts moving out towards the right. And in doing so, the mean of these distributions are also moving out towards the right. This would suggest that if the shape parameters is a function of risk adjusters, or x variables, then the x variables would be related to the mean through the shape parameter. If we look at the scale parameter, the same thing, if we hold the shape parameter constant and increase the scale parameter, as it spreads out further and further to the right, the mean of the distribution starts drifting out towards the right as well. Again suggesting that if the parameter is a function of x variables, your risk adjusters, then the risk adjusters would be influencing the mean through the scale parameter. And it’s important to note that if you're going to have a conditional distribution, distribution of y conditional on x, the only way it can be a nontrivial distribution with x is that those x variables influence one, at least one of the parameters in the distribution. So in this case, if risk adjusters do affect the mean in this Gamma specification it has to either be going through one of these two.

So not surprisingly then, indeed, the regression function is a function of both the shape and the scale parameter. As the graphs above showed, they showed that either one would be shifting the mean. And the variance it turns out is the shape times the scale parameters squared. Now if we look closely at the variance, and notice that this is alpha times beta, we can see that the variance and the mean are actually related to each other. If I were to multiply this side over here by alpha, and divide by alpha, I would have an alpha-squared, times a beta-squared, or an alpha times beta-squared over alpha, which is my mean over alpha. So it’s basically saying the variance is proportional to the mean squared, proportionality factor of one over alpha, or the shape parameter. But this is also, the variance at the top line again, is also alpha times beta, times beta. Which means it’s the mean, alpha times beta, times beta, which I show below. The variance could also be expressed as the scale parameter times the mean. When you're looking at just the distribution, a single distribution, such as the variance of, the distribution of y, this sort of difference doesn’t really matter. It’s just a rewriting of the parameters and it has no real relevance of concern. Not true however when we look at conditional distributions, the expected value of costs conditional on a set of risk adjusters.

There we begin to see a difference show up. Because now we have, again, our risk adjusters have to influence the mean through something. One of the parameters, the other or something. So, for example, the x as our risk adjusters might influence through the scale parameter. That would mean that our mean is the shape parameter times some function of x’s. Or it might go through the shape parameter, which means that my shape parameter is a function of x’s and my scale parameter is just left as a constant. Or it could go through both. I can make both of these a function of x. I’m going to be talking mainly about the top two, the bottom one is also able to be estimated, it’s also very useful, I usually run it to be able to help me to decide between the two. But for the sake of time, I’m going to talk about the top two specifications.

The standard, what I’m going to call the standard model, is the model that STATA runs, that SAS runs, when you type in their GLM programs. So if in STATA if you type GLM and you put in your variables it’s going to run this specification. It’s going to assume that your x variables are influencing the mean through the scale parameter. Consequently, it’s going to be based on this idea that the variance is proportional to the mean squared. But as I mentioned above, it doesn’t have to turn out that way. We could specify it in that alternative form. We could have instead said that the variables influence the mean through the shape parameter, and therefore the variance is proportional to, is directly proportional to the mean. So we have two different alternatives here. One is through the scale parameter, which is the standard one, this is the one that STATA is going to run, or this alternative. If this were the true, the standard were the true underlying actual relationship, and I ran the alternative model, would that make a difference? And if the alternative were true and I ran the standard model would that make a difference? In other words, is it actually important if we specify correctly? So just as sort like a question of thoughts on this. What do we think in terms of whether misspecification should be a problem?

Rob: Peter, that poll is up.

Dr. Peter Veazie: Okay.

Rob: People are giving their answers. We’ll give them a few more moments to make their choices. This one should be an easy one.

Dr. Peter Veazie: It should be, given the topic.

Rob: Well it’s still creeping up, so we’ll give people a few more moments. And things have leveled off so I’m going to go ahead and close and share out the results. And I’ll tell you that 69% say yes, only 4% say no, and 27% say not sure.

Dr. Peter Veazie: Okay. Well, I would have sort of been in the no category myself, to begin with. The reason I started inspecting this was really more on the not sure side. And there’s a reason behind it, we don’t have time to get into it. It has to do with the commonality, the structure of the mean function itself. So I wanted to look at and see just how problematic it is. If it’s misspecified that would usually generate problems, but I wasn’t sure that it could be really very dramatic. And so we’ll get some sense of that.

Now the problem does come from the moment relationships in the two different specifications. And there’s a reason why this is what's really generating the problem.

It’s coming from the fact that we are using maximum likelihood estimation. If instead I was using, let’s say, nonlinearly squares to estimate that link function, then these issues I’m talking about today would not really arise. They would essentially be a non-issue. However, when you’re maximizing the likelihood function your not trying to find the central regression function that minimizes the residuals, your trying to maximize the probability within the framework of the distribution you specified. Which means that you are going to, let's say you take the standard STATA approach, where the variance is proportional to the mean squared, tt’s going to adjust the parameters [unintelligible 42:56] in part is trying to make that true. It’s going to try to make it true that the variance is proportional to the square of the mean. And if it’s not true, in reality it’s going to still try to make it true. And in doing that it’s going to essentially adjust the coefficients to do the best it can. If that means that it’s a misspecified model it’s going to typically shrink the R-squared. The question is, do we care? Is it far enough from a prediction perspective to really matter? And that’s going to actually depend on your data. But and I’m going to show is it can matter. Which puts it in our toolbox I think.

Another problem is sort of standard, a misspecification of a likelihood function will also affect standard errors. And quite often the misspecified model is going to increase the standard errors. So we can have problems that in theory could show up. And the question is, again, is it going to matter?

So for a quick look to make the point, here is a data that I just generated, with the true specification of being a Gamma distribution in which the shape parameter is a function of the x’s, as I’ve put up here, and the scale parameter is a constant. And then I ran the GLM model out of STATA, the standard GLM model, on it, which is the misspecified model in this case. And I plot my predicted values through the center of the cloud here, and that’s the green line. And then I run my maximum likelihood estimator for the correctly specified model, and that’s the red line. And we can see just visually that it seems like it makes a difference, and indeed the models are different, and in certain portions could be considered seriously different.

So, I draw 60 of these samples and do my estimation on 60 of these samples just to get a sense of what happens across a bunch of them. I’m going to look at this parameter right here, the point 2. We could look at other ones, but I’m just going to pull out the point 2 and see how well it does in terms of that parameter in terms of estimation. The bshape here is the correctly specified alternative model, and on average it was coming up essentially what the true parameter was. Whereas the bscale is going to be slightly off. And again, this is not surprising to me because it is trying to adjust that parameter to try to make that moment condition also sort of fit reasonably well as well. What turns out even more striking in this simple little example is that the standard error for the correctly specified model is about a third of that of the misspecified model. So if we just sort of roughly create Z statistics out of these averages, which isn’t really the way we would do it, but just sort of get a rough picture, we would have essentially a Z statistics that would be hovering around something that we would say is clearly significant, for a misspecified model we would be saying well no, it’s not. So, this can have a impact on our inferences, and that standard error difference can have an impact on our converse intervals as well. Now, I had mentioned R-squareds. I had mentioned that the R-squareds could go down. So how does that work?

Well, here I want to shift to actual data. So I applied these models to fiscal year 17 VA cost data, and I used a total cost, and I used the Nosos set of variables as my risk adjusters for this example. I applied it to those who were never institutionalized in fiscal year 17, the overall sample of those individuals, and four subgroups of them. The GEC Cohort, the Home-Based Primary Care Cohort, those with low gen frailty index, which means low frailty, those with higher frailty, as subgroups. If we look at the R-squareds of these models, the top row here, scale, is STATA’s standard model, and this second one is the alternative model. And here we can see on this actual data, when I run these, there is very distinct differences. You’ve got the alternative model outperforming in terms of R-squared by truly nontrivial amounts. Anywhere from something like this, with a negative to an actual point 49, I’m going to explain why you can negatives in a second, a point 38 R-squared all the way jumped up to point 6, et cetera. Point 07 to point 36 in that subpopulation. So it clearly, we’re not talking about R-squared differences of one point or two point, it can clearly make a difference. In terms of this maximum error, this is if you take the predicted values and chop it up into deciles. This is like doing a [unintelligible 47:49] graph, chop it up into deciles and look at the mean residuals within each decile. The average, the largest of those means, as the average mean error in the deciles, shows up at the highest costs range. So where the high-costs individuals are. The standard STATA model, in this case, comes up with a high residuals, relative to the alternative model. Again, by quite a bit in that upper category. Again suggesting that getting that specification correctly, even though both models would be characterized as a generalized linear model with a Gamma family and a log-link. That applies to both. It’s simply how did we parameterize the two? They’re both the same specification in that sense of Gamma over the log-link, but it can make a big difference. Just for a side note, what does this mean? I mean you might be telling yourself that R-squareds are supposed to be between zero and one, and that’s actually very much true, but that’s only if you’re talking about the actual R-square, which is to say the actual regression function itself. But we don’t, we have models of the regression function.

And so in terms of the model of the regression function, when we calculate our R-squared we can reexpress it as that true R-squared, with the actual regression function, which we don’t know, we’re trying to model. And a factor that’s related to the true R-squared, minus your modeled R-square. And if the model were perfect it would equal to this, and this would go to zero, and we’d get our R-squared. But instead, as the model departs from the true regression, misfit misspecification exists, this factor grows, and we subtract it from R-squared, and we can actually overwhelm it so much that we get a negative R-square.

So that’s just a clarification, it's not an indication that something went wrong, it’s just literally a fact of the matter that this model is just grossly misspecified with respect to this data.

So, a real quick question. Who has used STATA, or who does use STATA as statistical software analysis? That’s my main software. I don’t actually use SAS, I mainly use STATA.

Rob: And that poll is up and you have about, a little over 50% of your viewing audience__

Dr. Peter Veazie: Okay.

Rob: __ already made their choices. And that’s up around 60 now. Things are starting to level off, so we’ll give people just a few more moments. And I’m going to go ahead and close the poll and share out the results. And Peter, 37% say yes, and 63% say no.

Dr. Peter Veazie: Okay. Well then for the 30 so percent of you who say yes, let me just simply note that, because you could probably do this in SAS, I just don’t know how. But for those in STATA, if it sounds like well if STATA doesn’t have a existing code in the GLM to run this how am I going to run this alternative? It’s actually not very hard at all. And in fact, this is the extent of it right here. It takes a 12 line program to write, exactly this one, you can cut and paste it from the slides and put it into a do file. Which I can actually write in six lines if I wanted to be more concise about it. But a 12 line code, and then use their ML set of commands, and you would replace the dependent variable with your actual dependent variable, and this INDV label with your list of risk adjusters. Run this whole set and it’s going to estimate the model. If it doesn’t, if it has problems conversion, then you’ll have to look up help in the ML and you’ll need probably a better initial value specification. Now it gets into a little more complicated stuff, which I’ve written a tutorial on which is not part of this. But anyway, the point here is to say it really isn’t that difficult to do, even though it’s not precoded in STATA. It actually is here, and it might be definitely worth it.

So my conclusions are that there is an alternative to the Gamma GLM log-link, it also works with the square-root link and other links as well, that can outperform the standard GLM Gamma, and therefore I say puts it in our toolbox and ought to be considered. There are of course other models to consider. You wouldn’t say, oh this is the best model just because I show some examples. You’d have to look through other models, and there might be something else for your particular data, but this is part of the toolbox I would contend. A final note, the Modified Park Test that Will Manning and others have put forward as a way of determining what your distribution in GLM is, Gamma or not, really doesn’t do what they say. And we can see that because they have you regress the log of R-squared on a linear sort of regression on the log of y hat, if this beta is a two it’s a Gamma, if it’s a one a Poisson, and my above alternative would give you a one. So the Gamma can be both two or a one, which means you can’t use this test to actually tell you whether it’s a Gamma or not. Just a note for that, for those who use that. So anyway, my final conclusion is simply that this could belong in the toolbox and it might help us out as we’re trying to find appropriate models depending on our data or our population and such. Thank you.

Ciaran: All right and I don’t see, wait a minute, a question came, did I, I’m not seeing any questions come up. So, I think we don’t need a, because given, don’t have any questions, we can thank the presenters for taking the time to share this with us.
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