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Dr. Jean Yoon:  My name is Jane Yoon.  I’m at the Health Economics Resource Center, the VA Palo Alto.  I’m happy to introduce our presenter today.  His name is Jeremy Goldhaber-Fiebert.  He is an Associate Professor of Medicine at Stanford and also a CORE Faculty Member at the Centers for Health Policy and Primary Care and Outcomes Research.  His research on focuses on complex policy decisions surrounding the prevention and management of chronic diseases and the life course impact of exposure to their risk factors.  He’s done a lot of work on both developing in developed countries.  And he combines simulation modeling methods and cost-effectiveness analyses with econometric approaches in behavioral economic studies to address his research questions.  Jeremy graduated both his undergraduate degree and his PhD from Harvard University.  So we’re happy to have Jeremy and Jeremy I’ll turn things over to you.  

Dr. Jeremy Goldhaber-Fiebert:  Great, thank you very much.  You can all see my screen, right?  

Maria:  Yes, you’re good.  

Dr. Jeremy Goldhaber-Fiebert:  Excellent.  Good.  So today we’re going to talk about modeling in medical decision analysis.  So just kind of a caveat or just kind of a full disclosure statement, I have included a lot of slides.  That is by intention and we may not get through absolutely everything but the whole point of those additional slides and references that I’ve also included is for the interested sort of listener to be able to kind of continue thinking about and exploring these things on their own after this particular lecture.  So instead of, there’s no intent necessarily to be able to go through all of the slides but rather I’ll tell you what I’m going to sort of try to cover at a high level.  

So first we’re going to talk about the general idea of a decision analysis, then we’re going to focus on cost-effectiveness or cost-utility analysis.  We’ll then talk about some models in the context of such analyses using sort of decision trees.  And sort of sensitivity analyses that are going to use decision trees.  And then we’ll move onto Markov models and microsimulations.  

So the first poll question, have you had a course in, select all that apply; medicine, epidemiology, probability and/or statistics, computer programming, decision science or economic evaluation.  

Maria:  Okay people are starting to answer the question.  We’ll just give it another second and then I’ll have the result for you of the responses.  Okay the responses are starting to slow down so I’m going to go ahead and close the poll.  And I’m going to share the information with you.  So we have 32% said they have taken a class in medicine, 55% have taken a class in epidemiology, 83% have taken a class in probability and/or statistics, 43% have taken a class in computer programming, and 43% have taken a class in decision science and economic evaluation.  Okay and I’m back to you.  

Dr. Jeremy Goldhaber-Fiebert:  Great.  So that’s a great background.  Hopefully there’ll be something for everybody given this sort of, in an ideal world there’s some combination of all five of these things to kind of do the tasks that we’re going to sort of talk about today.  But the fact that most people come at it with a stronger background in some than other of these disciplines.  

So first let’s ask kind of a very basic question, what is a decision analysis?  

So the answer or a definition is a quantitative method for considering decisions between multiple alternatives in situations of uncertainty.  

So we’re going to break this down.  So the first thing is we’re going to talk about decisions between multiple alternatives.  So you don’t have a decision analysis if you don’t have to decide between things.  We’re going to allocate resources to one alternative and not to others.  You need alternatives in order to make a decision.  

The next thing is it’s a quantitative method.  So that’s going to involve gathering information, assessing consequences, clarifying dynamics and trade-offs, and selecting actions based upon the best-expected outcome.  We generally employ models to do this.  So when we say quantitative method there’s going to be some sort of quantitative model that’s going to allow us to do those tasks.  

So what are the steps of a decision analysis?  So we’re going to enumerate all the relative, relevant alternatives.  All of the possible decision alternatives.  Strategies, interventions, people use various terms but are you going to do A or B or C or D?  We’re going to identify important outcomes whether it’s life expectancy or costs or whatnot.  We’re going to determine relevant uncertain factors, the likelihood that complications occur, the treatment efficacy, et cetera.  We’re going to encode probabilities for those uncertain factors.  We’re going to specify values for each outcome.  And then we’re going to combine these elements to analyze the decision.  Decision trees, which is what I’m going to talk about first in terms of our first kind of model for doing this, and related models are important for doing these things.  

So let’s talk about identifying important outcomes first.  And typically when we’re doing cost-effectiveness analyses one of those outcomes is going to be cost.  So cost-effectiveness analysis or cost-utility analysis is a type of decision analysis that includes costs as one of its outcomes.  So what is a cost-effectiveness analysis?  

A cost-effectiveness analysis in the context of health and medicine is a method for evaluating tradeoffs between health benefits gained and costs resulting from alternative courses of action.  Okay, so our decision alternatives.  So cost-effectiveness analyses support decision-makers in making decisions, they’re not a complete resource allocation procedure themselves.  There are other considerations besides whether something is cost-effective that legitimately go into decisions made in the real world.  

So the most important part of a cost-effectiveness analysis is the cost-effectiveness ratio.  And really what I mean here is the incremental cost-effectiveness ratio, the ICER or I-C-E-R.  And this is how we can compare strategies in a cost-effectiveness analysis.  There are two parts to the cost-effectiveness ratio, the numerator and the denominator because it’s a ratio.  The numerator is the difference between costs of the intervention and costs of the alternative.  And when I say costs I mean all the costs not just the upfront cost of delivering the intervention but all of the downstream costs and costs diverted that might reasonably accrue under doing that alternative, doing that strategy versus the costs that might accrue downstream and upfront for the alternative.  The denominator is the difference between the health outcomes, the effectiveness or the benefits if you will, of the intervention including all of its downstream benefits and effects intended and otherwise and the health outcomes of the alternative.  So it’s the additional costs required for the, per additional unit of benefit gained.  Incremental resources required by the intervention, incremental health effects gained from the intervention.  

Models for decision analysis and cost-effectiveness analyses.  So we have a decision model which is a schematic representation of all of the clinically and policy-relevant features of the decision problem.  So model is obviously simplification that what’s I mean by sort of schematic.  And it needs to include relevant features but it’s not going to include the full richness of the real world.  So at minimum it will include decision alternatives, right.  What are we choosing between?  Clinical and policy-relevant outcomes and sequences of events that can lead to those clinical and policy-relevant outcomes.  The model enables us to integrate knowledge about decision problems from many sources.  So we might have epidemiology studies for certain things, economic studies for others, et cetera.  And the model is our way of talking about what happens combining all of the, this best information from many different places.  And the model is used to compute expected outcomes, averaging across uncertainties, right.  For each decision alternative.  So we’re not going to, in this sort of, the standard model we’re not going to say this is what will definitely happen.  This is, we’ll say what we, what will happen on expectation or what we expect to happen.    

So let’s talk a little bit about building a decision-analytic model.  So what do we need to do, what are the steps?  Well we’re going to define the model’s structure.  We’re going to get to that in just a second.  Then within that structure we’ll assign probabilities to all the chance events or the uncertain events within the structure.  We’ll assign values, we’ll talk about what that means in a second.  Utilities for example to all outcomes encoded in the structure.  And we’ll evaluate the expected utility of each decision alternative.  And we’ll perform sensitivity analyses.  These are sort of the basic steps of performing a decision analysis.  You want your model to be simple enough to be understood and complex enough to capture the problem’s elements convincingly.  And to be explicit about what assumptions you’re making.  

And just to sort of put this into context and not to say that I have hubris about what models are, all models are wrong but some models are useful.  This was of course not written about decision models it was written about you know time-series models but it’s absolutely true for decision models as well.  

So let’s talk a little bit about what it means to define a model structure.  So what are the elements of a decision tree’s structure?  Well we’re going to, there are basically three main elements.  The first is the decision node.  It’s a place in the decision tree at which there is a choice between several alternatives.  So for example we’ll denote the decision node as a blue square and we might have a choice between surgery and some sort of medication treatment, non-surgical treatment.  You don’t have to have only two you could be choosing between many.  So we want all the decision, all of the possible decisions to be mutually exclusive.  So at the decision node you will choose one and only one of the decision alternatives.  And if it were possible for example to do surgery and to provide medication that would be another branch called both surgery and medical treatment.  

The second element of a decision tree is a chance node and it’s a place in the tree at which chances, a chance determines the outcome based upon a probability.  So for example, you might have either somebody has no complications from a treatment or they die from that treatment.  And that is a chance node.  But again at a chance node you can have multiple possibilities, no complications, complications that are not fatal or fatal complications for example.  And the outcomes need to be mutually exclusive and collectively exhaustive.  So that the probabilities in chance node add up to one and only one of the things can happen.  

So what do we mean by mutually exclusive and collectively exhaustive, I’ve sort of said it but I’m going to say it again because it’s really important.  Mutually exclusive means only one alternative can be chosen, only one event can occur.  And collectively exhaustive means at least one event must occur, one of the possibilities must happen taking together the possibilities make up the entire range of outcomes.  And you’ve sort of seen this kind of idea in sort of probability theory courses or probability courses that you’ve taken but that’s the case for chance nodes.  

Finally there’s the terminal node.  The terminal node is the final outcome associated with each pathway of choices and chances.  And we denote it with this red triangle.  And then after that red triangle we sort of say what’s the value of that outcome.  So it can be all sorts of things or you could actually have multiple different outcomes at that terminal node.  So it might be that life expectancy down this pathway is 30 years.  Or you know it could be 28 quality-adjusted life years.  Or it could be costs or it could be some combination thereof.  

So in summary, decision trees are made up of decision nodes, chance nodes, and terminal nodes.  And you can construct the entire structure of a very complicated decision tree that actually is quite good at representing you know a complicated fairly realistic decision problem with only these elements.  

So I’m going to now walk through the construction of a decision tree as an example.  And it’s going to allow me to talk about the other steps of conducting a decision tree model-based decision analysis.  So this is a very, very stylized example.  I’m not a clinician, this is not a clinically precise example but it’s simple enough to put it on slides.  So we imagine that a patient presents with some sort of symptoms.  They likely have a serious disease but we don’t know whether they have that disease without treating them.  And we don’t have some sort of test for this so we have two alternatives.  We can either perform surgery which is more risky or we can give sort of medical management which is less risky but has a low success rate in terms of curing the disease.  And with the surgery once they sort of open up the patient’s abdomen let’s say they assess the extent of the disease and they have to sort of decide whether they’re going to do curative or palliative surgery.  And the goal in this simple, simple example is to maximize life expectancy for the patient.  

Okay so how will I represent this problem.  So the initial decision is between surgery and medical management.  So we have a decision node, surgery and medical management.  

Now if I am doing medical management there’s a chance that this patient has the disease and the chance that the patient doesn’t have the disease, right.  And that’s represented with the chance node.  So if the patient doesn’t have the disease then the disease is absent then it’s just a terminal node, they don’t have the disease.  

If they have the disease since they’ve been given medical management there’s some chance of cure and there’s some chance that they’re not cured.  And that’s the end of the medical management structure.  We’ll talk about the values and the probabilities in a little bit.  

Likewise with surgery there’s a chance that the patient has the disease or not.  And I’ll just note that the chances between the medical management disease present/disease absent and the surgery disease present/disease absent are the same. They should be the same because the surgery and medical management doesn’t change the presence or absence of the disease.  It’s just we have to average out since we don’t know whether the patients that we’re giving these treatments to have the disease.  

Now if the disease is absent either the patient lives from the surgery, they open up, they say ope no disease we’re done or there’s some surgical death, there’s some surgical risk that occurs from doing the surgery.  Surgery is risky.  

Now if the disease is present they’re either trying curative surgery or they’re trying palliative surgery.  

So there could be surgical death from this again.  And for those who don’t die with surgical death there’s a cure or no cure for both of them.  There’ll be some different chance at that.  But that’s the same structure and that’s essentially the full structure of the tree.  

So this, remember I was saying there was paths going to a final outcome.  So what does this path mean the one that’s highlighted in orange?  Well this is a patient who has had surgery, they happened to have had the disease, the decision was made to try curative surgery, they did not die from the surgery they survived it, and the surgery was effective and they were cured.  And so they’ll have whatever outcome it is for a person who had the disease and received effective curative surgery.  

And you can imagine each of those paths you can tell sort of similar sort of story.  So now of course we need to put on probabilities.  And those probabilities need to sum to one.  And those probabilities are going to come from studies and systematic reviews and expert opinion, et cetera.  That’s just the way that that’s going to work and so we’ve assigned those studies and you can see for example that the probability of disease present/absent is the same across surgery and no surgery.  That there is a high risk of surgical death for curative surgery than there is for palliative surgery.  But the cure rates for curative surgery are substantially higher than for sort of palliation which actually in this highly hypothetical example had some small chance of being curative as well.  So that’s that.  

So now we have to add the outcomes and remember we said we were talking about life expectancy.  So obviously if people die kind of right away, from surgical death there are zero additional years that they gain.  

And if, for the disease not cured has two years of life expectancy.  

And the disease cured, I’m sorry the disease cured or if there’s no disease at all the life expectancy is 20 years.  So cured basically means that you go on to live a normal rest of your life, 20 additional years.  

So with all of this information we can now talk about how we evaluate the tree which is a process called averaging out and folding back.  And so what I’m going to do at every chance node, starting from the terminal nodes and working my way back to the initial decision node is I’m going to average out.  And what I mean by that is that I’m, we see that there’s a 10% chance of 20 years and a 90% chance of two years so what’s the expected value of that.  It’s 10% times 20, plus 90% times two.  And we get 3.8 years and that’s equivalent to that sort of set of, that chance node.  

And now we can continue that process and do the same thing here.  

And now we continue the process again 10% times 3.8 years, plus 90% times 20 years, 18.38 years.  So for medical management, life expectancy is 18.38 years.  

Now we can kind of continue with palliation same sort of way.  

And now we get to a not a chance node but a choice node or a decision node.  And now at a decision node we don’t average out, there’s no probabilities.  We choose the thing that has the most of what we want.  In this case cure, trying cure has a higher life expectancy and we’re trying to maximize life expectancy so we choose cure, we fold back.  

So we just, and now we continue this process.  So 20 times point nine-nine and one times zero it gets us 19.8 and 10% times 16.38 plus 90% times 19.8 gives us 19.46 years.  So surgery has 19.46 years of life expectancy and now we have a final fold back and the final fold back is to say that we prefer surgery trying cure to medical management because it gives unexpectational [phonetic], additional 1.08 years of life expectancy.  And you can imagine similarly if we did that same thing for the cost outcomes.  So we didn’t just have life expectancy but we also had costs at all the terminal nodes.  And so we average out for costs that we might get something like the expected change in cost is that surgery costs $9,900 more $10,000 versus $100.  But again we get this 1.08 years and so the incremental cost-effectiveness ratio is $9,167 per year of life gained.  And if you’re willing to pay at least $9,167 per year of life gained you would choose surgery otherwise you would choose medical management.  

All right so that’s the basics of sort of how we analyze a decision tree.  And obviously we don’t do this by hand we have computer software that does this when we do such things for real.  But the primary sort of base case analysis the one that we just showed is not the end of the story.  Typically a very important part and one of the reasons why models are so valuable is that we can do sensitivity analyses.  We might ask questions like what happens if we have different probabilities or different life expectancy how would that change our decision?  How high would that probability or how low would that probability have to be for us to change our decision?  So when we’re asking about a sensitivity analysis we’re not just asking about whether the amount changes by a lot, like life expectancy goes up a little, goes up or down by so much.  We’re asking whether we would change our decision from surgery to medical management.  That’s what it, we’re saying is the decision sensitive to this input to our model, to this probability or this outcome.  

So here we go, probabilities and outcomes and other things are uncertain so let’s look at whether a model is sensitive to it.  

So sensitivity analysis is a systematic way of asking what-if questions to see how the decision results change based upon them.  Determines how robust a decision is.  And the two main ways of doing this is sort of a threshold analysis, a one-way sensitivity analysis where one parameter is varied at a time.  Or a multi-way analysis where multiple parameters are systematically varied holding all the other one’s sort of fixed. 

So if the probability of surgical death for curative surgery were uncertain, right.  So that’s the purple circled branch up above we might ask the question like how bad or good would, how bad would surgery have to be for us to not prefer it anymore.  So I can change that number, vary it up and down from you know zero to 100% and obviously if the fraction who live goes down as the surgical death rate goes up and ask how high could that surgical death rate be for curative surgery for me to want to do surgery versus not.  

And the result of such an analysis is shown on the following graph.  So medical management’s expected life years does not change because that probability only changes something in the surgical, curative surgical tree or part of the tree.  And what we see is that if there is zero chance of curative surgical death than life expectancy is obviously very high.  And as we increase that probability of curative surgical death it declines.  And in our base case the blue line is very much higher than the red line, i.e. the life expectancy with surgery is much higher than the life expectancy with medical management.  But if the surgical fatality rate were 70% or higher, then the blue line is below and we’d prefer medical management.  So the threshold at which our decision would change would be when the probability of curative surgical death is 70% or greater.  And we then might say well the base case is very far away from this threshold so I don’t think that the decision is highly sensitive to the exact curative surgical death rate.  So that’s an example of a threshold analysis.  

We might also sort of simultaneously vary the probability of curative surgical death as we did before.  That’s the Y-axis in this picture.  And prevalence of the disease.  So when disease is very prevalent or not prevalent that’s the X-axis in this picture.  And we might ask for which combinations of parameters do we prefer surgery versus medical management.  So the red region versus the blue region.  And in our base case the prevalence is low and the probability of curative surgical death is relatively low.  And we’d prefer surgery.  However if the prevalence of disease were substantially lower, so we’d be going to the left on our X-axis we might prefer medical management or like we said before if the probability of curative surgical death were substantially higher we might prefer medical management.  

All right so sensitivity, here we have our next poll question, poll slide.  Sensitivity analysis, analyses tell us.  Choose all answers that you believe to be correct.  How much model outputs change based on changes to the input, whether our decision would change with different inputs, how uncertain we feel about the decision, whether the decision problem is politically sensitive.  

Maria:  Okay so responses are starting to come in.  Just give it a few more seconds.  Okay and we are now a little bit more than 60% of the audience has voted.  Okay I’m going to close the poll and share the results.  And right now what we’re seeing it’s 75% is how much model outputs change based on the changes to the inputs, 81% selected whether our decision would change with different inputs, 47% selected how uncertain we feel about the decision, and 3% whether the decision problem is politically sensitive.  Okay and the slides are back to you Jeremy.  

Dr. Jeremy Goldhaber-Fiebert:  So I’m very happy that people sort of focused in primarily on one and two.  As I said the point of a sensitivity analysis is to ask whether our decision would change if we had different inputs.  And so in some sense two is sort of the ultimate aim of the sensitivity analysis.  And the way that we get at that is by looking at how much our model outputs change based upon our inputs for the various decision alternatives.  So one and two, so one tells us something but doesn’t really get to the conclusion of the sensitivity analysis.  Two really is sort of the conclusion of the sensitivity analysis.  Three, we don’t know, so we haven’t said anything yet about how uncertain we are about the inputs and therefore we, the sensitivity analyses I’ve shown you were just sort of varied the values of the different inputs doesn’t really get at how uncertain we are about the decision.  The only time that you might say it gets at it a little bit is if, if a very small change in your input led to a change in your decision.  Then you might say that the decision is likely to be uncertain.  But there are more advanced techniques that get at number three.  And number four the analysis that we did doesn’t really tell us whether the decision is politically sensitive or not.  

All right so getting at this question of uncertainty as opposed to sort of sensitivity is something called probabilistic sensitivity analysis which is an advanced concept also referred to sometimes as PSA.  And it’s talking about what’s also called Second-order Monte Carlo uncertainty.  So all those probabilities and utilities and other things that are in the tree instead of just being, putting values in them we replace them by probability distributions.  And those distributions represent our uncertainty about sort of the population average, right.  So it’s not the variance across people it’s our uncertainty about the mean or uncertainty about the population average.  And then we run the tree many times randomly sampling from those distributions and then we can look at sort of, kind of what we think is best to do on expectation averaging across that uncertainty.  And also how uncertain we are about, you know what fraction of the time is that expected decision truly the best decision.  So I’m not going to say more about that then probabilistic sensitivity analyses but an extension of sensitivity analyses allows us to get at number three.  And there’s some references at the end which deal with this topic, and it’s an important topic.  So that’s where I’m going to go there.  

So I’m going to now talk about an extension to our model structure.  So going from decision trees to Markov models and to other sort of fancier models and why we would want to go to fancier models at all.  

So really the point of these fancier models or these more complicated models are that we should use them or should consider using them when there’s a possibility of repeated events or repeated decisions.  Okay, so I’m going to draw you some now, some sort of schematic sort of cartoon pictures and then we’re going to go into an actual example of a Markov model, a very simple one.  

So if you have a one-time decision, immediate action that has consequences that sort of occur relatively immediately and then everything else sort of kind of continues as normal then a decision tree is very useful.  So the decision about, like you know how to do splinting or casting in the context of a fracture might be a good example.  Or maybe how to manage kind of like an acute illness or something like that.  So we do some intervention and in this sort of character example, sorry, we go from if we don’t do the intervention there is sort of a balance between good outcomes in green and bad outcomes in red.  And when we do the intervention there’s good outcomes more than there are red bad outcomes and we’re kind of done.  And nothing afterwards, we don’t have to decide about doing the intervention again there’s no repeated events that occur.  

But now let’s imagine some situation where there’s repeated actions and a repeated time-dependent event.  So somebody is healthy and they could become infected with some infection that could lead to some sort of bad outcome.  And that’s what I mean by green and orange and red here.  

But this, if they don’t get infected this week there’s a chance that they become infected next week.  And those who become infected could get better next week or they could stay infected or they could have the bad outcome.  And so we get this sort of nesting of the tree or sort of a tree recursion and you can imagine sort of this happening over and over and over again over a long period of time.  And you can do this with chance nodes but the tree becomes extraordinarily large, right.  So if you just imagine sort of all the dot, dot, dots more of these same sort of, kind of branching and paths kind of coming down.  

So repeated events can occur throughout the individual’s life.  Interventions might be delivered at multiple times depending on when they have events.  And subsequent transitions might be dependent upon prior intervention outcomes.  So this structure becomes very, very cumbersome if represented explicitly at this sort of decision tree kind of way of doing it.  And so that’s one of the cases where we’re going to want to have a Markov model.  And now I’ll sort of show you an alternative way to represent this sort of process of events happening at some future point with some chance but not necessarily happening at any point in time.  

So what is a Markov model which is one of the simplest ways of doing this?  A Markov model is a mathematical modeling technique derived from matrix algebra that describes the transitions that a cohort of patients or people make among a set of mutually exclusive and collectively exhaustive health states during a series of short intervals or cycles.  

So what are some of the properties of a Markov model.  Individuals are always in one of the finite number of health states.  Events are modeled as transitions from one state to another.  Time spent in one health state determines overall expected outcomes.  The living longer without disease yields higher life expectancy and potentially quality-adjusted life expectancy than living with disease or dying at some earlier cycle.  And during each cycle of the model individuals may make a transition from one state to another.  

So when we’re constructing a Markov model we have to define our mutually exclusive and collectively exhaustive health states.  We have to determine possible transitions between these states, so these are state transitions or transition probabilities.  And then we’re going to determine a clinically valid cycle length.  And I’ll talk about all of these things in more detail.  

So let’s start with the cycle length.  So this is a question that often comes up, you want the cycle length in these sort of discreet time Markov models to be short enough for a given disease context so that the chance of having two events within a given cycle is really, really, really small.  Okay.  So for many applications weekly or monthly is probably perfectly sufficient.  And on modern computers such a model runs extremely quickly.  And for certain applications like managements of infection within an ICU maybe you need to do hourly or daily or whatnot for the cycle length of relevance.  So the cycle length you want short because you want sort of like the chance within an hour of two major events happening to be really, really small or whatever the clinical context sort of demands.  

Okay so, we’re going to now talk about the world’s second most simple Markov model.  The first most simple Markov model essentially is survival model of survive/die, healthy/dead, or not dead/dead.  But I’m going to talk about healthy/sick/dead kind of model because that gives us a lot of the flavor for what the sort of potential of what Markov models can do.  So we have a set of health states and in this simple model we have three health states.  A person is either healthy, alive and with the absence of disease.  They are sick, alive with a presence of disease.  Or they are dead.  And you can either be one or the other, you cannot be in two states at the same time and that describes the complete state of what people can be.  And the health states in general are best defined based upon actual biology or pathophysiology.  And not based upon like test results or other kinds of things.  So it’s a Markov model so there are these two Markov assumptions and I will talk to you about them and I will also talk to you about how we sort of change models to sort of get around them when they don’t hold.  So the first one is an assumption called homogeneity and the second one is something called memorilessness.  So homogeneity says all individuals in the same state have the same costs, quality of life, risk of transition.  If you’re in a state, anybody who’s in that state is the same.  Okay so all healthy people are similar from our perspective.  And memorilessness says the current state determines the future risks.  So if we had a model where you could get sick and then get well again and then get sick and get well again the fact that some people who are healthy now have never been sick.  And other people who are healthy now have been sick once or more times their subsequent risks are all the same if they’re currently in the health state.  That’s what memorilessness means.  And when those assumptions are invalid for our particular application.  So for example maybe for some period after becoming sick we have a higher risk of dying even though we no longer have the disease, like the treatment made us weak in some sort of way.  Then what we need to do is stratify our states or we need to have tunnel states.  The idea that we’re going to count time since an event or we’re going to say the history of the event is encoded by having separate states.  So I’m healthy with a history of being sick.  That would be another state.  And healthy without that history of being sick would mean I’d never been sick before for example.  So we’re not going to deal with that advanced topic but that’s how it is dealt with.  

So now the next thing we need in a Markov model is we need a series of transitions between health states.  So healthy can become sick, sick can die, sick can become healthy, healthy can die.  And the proportion that do not transition stay in their state.  So we sort of have these loops back to themselves.  There needs to a risk of death at all times and from all states.  And there needs to be at least one state which in our world will be dead typically which is the absorbing state.  There are only transitions into this state and there are not transitions out of this state.  So what’s going to happen over the long-term which is the case for reality as well is that all people will eventually die.  And the end of the state after a long period of time is that everybody’s dead who started out living and nobody’s in any of the other states.  

So we can put probabilities on all these transitions.  So the way I’ve sort of written it in shorthand, we can write this in a matrix form if we wanted to.  So the probability of being healthy and staying healthy, of if I am healthy staying healthy is pHH.  The probability of starting out sick, of being sick in a given cycle and conditional on that and transitioning into healthy is pSH.  And the probability of going from dead to healthy is zero, right.  So I’m reading across the row.  And so what we see is that any allowed transition has some probability that’s not zero and any not alive transition has a probability of zero and dead is an absorbing state so the probability of transitioning to dead given that you are currently dead is one, right.  People who are dead stay dead.  

So the other part is some portion of the population starts out in each of these states.  At sort of a given time point.  So if we imagine time equals zero maybe in our model everybody starts out as healthy and so we’d have one, zero, zero as the proportion healthy, proportion sick, proportion dead.  And then to update the model we do matrix multiplication.  

And by matrix multiplication we get the proportion healthy, sick, and dead at the next time step at the you know cycle T plus one.  And in the sort of advanced or full version of these models that transition matrix doesn’t need to be the same across all of the time steps, right.  So the probability of death could be rising in time as the cohort ages.  You know older people have a higher likelihood of death or less equal than younger people.  

So matrix multiplication just involves multiplying a row of the matrix and the column of the proportion and then summing to get the proportion healthy in the next cycle.  So pHH times proportion age, pSH times proportion S, zero times proportion P, sum them together and get proportion H in the next time step.  And so we do this over and over and over again.  

And if we trace out these vectors of the proportion of people in each of the states at each of the times what we get is a model, is a trace or a graph that looks like this, right.  Where the proportion of healthy people is in green and a proportion of sick people is in orange and the proportion of dead people is in red.  The heights of the, the sum of the heights of the curves equals one at every time step and in the end everybody is in the red state and that proportion is one, and zero for the other states.  So that’s essentially what the trace is.  

So you can ask two questions, is the proportion of people in a given state at a given time the prevalence of that state.  And is model time age.  And I will give you the answer to both of these which is that the proportion is not the same thing as prevalence.  Why is that?  Because the proportion is the proportion of all people who started out alive but there’s some fraction of people who are dead.  And prevalence is defined as the proportion of people who are in a given state divided by the sum of the proportions of people who are not dead, right, you know of all living people.  And so the proportion is not the same thing as the prevalence.  And model time is not the same thing as age unless the cohort starts out at age zero.  And I can start my simulation with a cohort being, starting out at age 20 or at age 50.  So model time is related T that little index of time is related to age but there might be some non-zero starting age that I have to add to T to get the age.  So if I wanted prevalence at age 25 for a model starting out at age 20 I would go five time steps in and I would sum the green and the orange heights.  And let’s say I want a prevalence of sick and so I divide the orange height by the sum of the green and orange heights, at model time equals five.  And that would be the prevalence of sick at age 25.  Okay so instead of considering this trace as a graph we can also consider it as in tabular form.  

So if you look at the tabular form what you see is we started out everybody with, as healthy at time zero, at stage zero.  And a proportion who are sick and dead are zero, zero.  And the proportion who are not dead the sum of H and S is one.  and then we could at each time step based upon our transition matrix we update these proportions.  And we get a trace that shows that after some number of time steps there are no people who are healthy, no people are sick, everybody is dead and then we sort of stop the model.  

So with that trace we can do a lot of things.  The first thing that we can do is we can assign quality of life weights to each of the states.  So typically healthy is given a weight of one, there’s a more complicated version of that but I’m not going to get into that here because we’re talking about modeling and less about economic evaluation.  Sick might have a quality of life weight that is lower than one.  And dead by condensation is given a quality of life weight zero.  

And now if we assign those quality of life weights to the proportion of people in each of the states at each of the times and sum over that, we get the total number of quality-adjusted life years lived.  Or the quality-adjusted life expectancy which is sort of given by that formula below.  Which it sort of ignores, again another economic evaluation concept of discounting, but gives you what you can do with the trace.  So I can compute the quality-adjusted life expectancy that is output for the model and likewise if I knew the costs of being in each of the states I could compute the expected costs for, you know with this model for this condition.  And there are, as I said before there are sort of fancy extensions to some of these things but this gives you the basic concept.  The power of what that trace allows us to do in terms of kind of computing those outcomes just like we had at the terminal nodes of our decision tree.  

So how do we model interventions?  Well interventions can do a variety of things but one of the things that I’m going to sort of think about them doing is changing some of the probabilities.  Okay so I’m going to give you kind of a simple-ish example and what it’s going to do is it’s going to change some of these transition probabilities and hence it’s going to change the trace and hence it’s going to change the QALYs and the costs.  

So imagine we have a screening and treatment intervention.  The screening is 70% sensitive and 100% specific.  The treatment is 90% effective and obviously we can only give the treatment to people who test positive.  And the intervention occurs after the natural history transitions, every cycle.  So we’re going to do this intervention kind of if our cycles are annual we’re going to do it every year let’s say.  So we can define these probabilities with intervention, sort of with these sort of subscript I’s, as some transformation of the transitions in the absence of the intervention.  And so the people who transition, so if we take that first equation from healthy to sick they’re going to actually transition to sick even under the intervention 30% of the time because they’re going to be missed by our screening test, right.  So it’s they have the disease they’re sick but we are only at 70% sensitive so 30% of the time they’ll still transition to sick because we’re not going to treat them.  And for the ones who are detected, the 70% who were detected 10% of the time the treatment’s ineffective so they’ll still transition healthy to sick.  Okay.  Likewise for people who are sick and who stay sick we’ll have similar transformations on those probabilities.  And for the people who transition from sick to healthy we’ll have all those people who would’ve transitioned from sick to healthy, right.  Because we’re 100% specific but some of the people who otherwise would’ve been, stayed sick will get healthy 70% sensitive test and 90% effective test.  So 70% times 90% times the probability of staying sick, with the intervention they become healthy.  So that’s sort of how we get these numbers.  

So if the natural history numbers was this matrix then if by those equations they would be some other set of numbers for treatment, which happen to be these numbers.  

And if we run the trace with and without the intervention, for example what we might get is longer life expectancy.  So this is the fraction let’s say of people who are not dead over time.  So the X-axis is time, the proportion who are not dead is the Y-axis.  And without intervention it looks like this.  And if we gook the area in that blue, those blue bars we get the life expectancy or the quality-adjusted life expectancy without intervention.  

And if we think about the R, sorry the green bars that gain, that addition in height that extension of quality-adjusted life expectancy is what that’s sort of representing.  So the area between the top of the green bars and the top of the blue bars gives us the quality-adjusted life expectancy gain with the intervention.  And similarly we could compute costs that way.  

So how do we diagram these sorts of models?  Well we have this additional kind of node, this M node this Markov node and from it the first thing that we have is the states in our model healthy, sick, and dead.  And then we have things that look like chance nodes except for these are essentially the what can happen within a cycle and the red terminal nodes now don’t sort of measure final outcomes but they say where I go to at the end of the cycle.  So in the natural history there’s some chance of staying healthy if you’re healthy, some chance of transitioning to sick if you’re healthy, or dying if you’re healthy.  Likewise for sick.  And dead obviously stays dead.  

With the intervention remember we have our natural history transition so now I’m just focusing in on one health state, healthy.  And remember in the, first we transition to sick from healthy so that’s that middle kind of line off of the chance node.  And if we test positive and treatment is effective instead of staying sick we actually go to healthy, right.  So that’s tracing down this path.  And if treatment is ineffective even though we tested positive then you get sick.  And if you test negative or false negative then you stay sick, right.  

Likewise we have a very similar looking sort of set of transitions for the sick health state with the intervention.  And for the dead it stays the same.  So you can encode that structure and then the Markov model will, in software that will get translated to something equivalent to sort of these matrices and then you can sort of again in software sort of run it and produce traces for each of your interventions.  And get sort of the expected benefit and expected costs as we did with the decision tree and then conduct the economic evaluation, what’s the incremental cost per incremental benefit.  

So the models I’ve been talking with, about today are sort of cohort state-transition Markov models.  You could also think about instead of running kind of cohorts through your model running individuals through the model.  When you run cohorts through your model the model is deterministic.  And when you run individuals through your model the model is stochastic.  I will talk about what that means now.  And that’s sort of the transition between a Markov cohort model, the matrix version.  It’s a smooth model that’s sort of essentially kind of thinks about a cohort of “infinite population size”, meaning that the proportion of the cohort can be any number between zero and one.  It’s not sort of limited to only numbers for a finite cohort size.  And it, we can use the same structure that we built up to simulate many individuals in what’s called a First-order Monte Carlo simulation or a simple microsimulation.  So the matric entries become the probabilities that the individual will transition from one state to another instead of the percentage of the cohort that deterministically flows from one state to another.  

And so what do I mean by that is, I have my transition matrix and let’s think about one individual.  So at time zero that individual starts out healthy and has some chance of being sick and some chance of staying sick and then some chance of becoming healthy again and then some chance of getting sick again, and some chance of dying.  And those chances are just the, are represented by the probability in our matrix.  And you know essentially we’re flipping coins to determine what happens to that individual each cycle.  

Another individual with the same probabilities might have a path that looks like this.  They stay healthy, they get sick, but they get healthy again, and then ultimately they die.  

And some unlucky individuals might just die the first cycle even without getting sick.  They just, they pass away.  And so the distribution of these paths through the model when we simulate a large number of individuals with this microsimulation is going to get very, very close to what would have happened with our deterministic state transition cohort model, okay.  

So, but for any finite simulation from this microsimulation, we can compute the fraction of that finite simulation that is in each of the states, in each of these times, and therefore the microsimulation can give us sort of some approximation of our trace and we can compute QALYs and costs with it just like we did.  

So what do we do with this microsimulation?  We run many individuals.  We calculate the proportions in each state at each time.  Sort of just like our Markov cohort table.  So for example in our microsimulation we might actually simulate 100,000 actual individuals and we might see that in our case 5,100 of them were sick at some timepoint and that’s 5.1% in the state.  And this is a reasonable proximation of the 5% in that state in our smooth cohort model.  And if we simulated a lot more individuals that 5.1 might become 5.01 and so we’ll get much closer to that smooth cohort version of our model.  And there’s some, I give a reference here for sort of thinking about how many people you might, might you need to simulate to do this with a microsimulation.  You might ask, why would we want to do this complicated thing, this microsimulation.  It requires longer simulation times, it’s more complex, more people are familiar with Markov models than they are with microsimulations.  There’s this Monte Carlo noise that we have to deal with even if we’re simulating lots of people.  It seems like a pain.  

The reason is, is that as I sort of mentioned before once I need to stratify and add other complexity to my state-transition Markov model the size of that model, just like the size of the decision tree can blow up as well.  So imagine we have this sort of healthy, sick, dead model but now we, our probabilities of transition depend upon our smoking status, our body mass index, and our hypertension status.  So we need 192 states to represent people in each of, you know for each combination.  You know a smoker who’s overweight but not obese and they have level two hypertension you know, and they’re sick.  So I need a lot of states.  And that’s just for a relatively simple amount of stratifications but now imagine past history is important.  Being a previous smoker is important or being a previous smoker who had hypertension within the last five years is important.  And now I can tell you that the state space that I’d have to put into my Markov cohort model gets very, very, very large.  And it becomes very difficult to sort of represent and deal with and work within a state transition cohort model.  

But the microsimulation is a much easier more compact way of doing that.  So I’m going to simulate one individual at a time, I can assign a set of characteristics to that individual.  I can define a function for the probability of transitioning from healthy to sick.  So think about like a risk equation.  What’s the probability of becoming sick given somebody’s age, smoking status, BMI, and hypertension?  And I can define also some functions about change between those sort of risk factors or strata.  So you know sex, biological sex doesn’t change but obesity might change as a function of your current body mass index and your sex and maybe your age for example.  And we can also track previous health states so that that probability of going from healthy to sick might not only depend on your current risk factors and status but it also might depend upon whether you were sick in the past.  And so as long as I can track a set of things about that individual I can do this sort of in a very compact kind of easy to represent set of sort of risk or transition equations.  And so the microsimulation becomes a much more tractable way to model things.  And you can imagine like oh I know how to, if I’ve done some epi and what not I know how to estimate say a list logistic regressions or low JIT models or probit models that might predict these risks conditional upon these characteristics.  So, and you can now think about how you translate those into these sort of risk prediction equations that we might need in our microsimulation.   

So we’re just about at the end of the time and I have wrap-up.  Know what information your consumers need, the policymakers, the decisionmakers you’re going to feed your model to.  Pick a model that’s as simple as possible to do what you need to do but no simpler.  And know the limits of what your model does and make statements within those limits.  All research studies including modeling these studies have limitations.  There’s nothing to be ashamed about overclaiming what you do erodes your credibility.  

So in summary medical decision analysis involves clearly defining alternatives, decision alternatives, events, and outcomes.  A formal method to combine all of the evidence together.  It can be, also be used to prioritize what additional information we might need, what inputs our decision is sensitive to.  And it can help health care providers and others to make medical decisions under uncertainty.  

So thank you very much, here are some references to some classic texts and other sources that may be useful.  

And I’m happy to take questions.  

Maria:  Hi, I know it’s at the top of the hour and some people have to leave.  

Dr. Jean Yoon:  Can you stay a couple of minutes to answer a couple of questions?  

Dr. Jeremy Goldhaber-Fiebert:  I’m happy to stay for a few minutes to do that.  

Dr. Jean Yoon:  Yeah there’s, great_ 

Maria:  If people have to leave the only thing we ask is for them to fill out the form_        

[silence 59:42-59:50] 

Dr. Jean Yoon:  Okay I think I was muted.  I was reading a question.  So what the question asks, how do we look at the decisions that go into variable selections and the values attributed to each variable?  

Dr. Jeremy Goldhaber-Fiebert:  So these sorts of models are not typically used to make decisions about variables in a sense of doing an analysis of your data.  So what I would say, I think that question may be referring to sort of this, the last thing I said about risk prediction.  So that was sort of an offhand comment on my part.  There are sort of standard methods well outside of decision analysis about you know good practices for valid generalizable development of risk and prediction equations.  But these models are not being used to make decisions about what variables to include or not.  

Dr. Jean Yoon:  Okay, great.  There are, a couple of people wanted to know about the use of software from these calculations.  

Dr. Jeremy Goldhaber-Fiebert:  Yeah, so there’s some people _ 

Dr. Jean Yoon:  Can you tell people about the names of some of these software packages.  

Dr. Jeremy Goldhaber-Fiebert:  Happy to mention that for sure.  So on the, for pay side of things sometimes people build these models in Excel or they build them in programs like Treeage, T-R-E-E-A-G-E.  There are three software versions.  There’s a software called Amua, A-M-U-A which you can Google to find.  There are packages in R, some very nice packages in R.  The Darth Project, D-A-R-T-H Project is one and there’s something else I think called BCEA.  There are a couple of packages in R that enable you to implement these models and then people also implement them in Python and all sorts of other things.  I’ve implemented these kinds of models in Stata, I’ve implemented these sorts of models using other programming languages as well.  So those are sort of the main options.  I’d say most people you know will start out using some sort of software that’s specialized for building these models.  But that’s my general answer.  

Dr. Jean Yoon:  Okay, great.  Another question asks can you repeat again the factor that distinguishes between deterministic and stochastic?  

Dr. Jeremy Goldhaber-Fiebert:  Yeah so when I, in the context that we were talking about it for state transition Markov models versus, cohort models versus sort of individual microsimulations.  So in the state transition cohort model which is deterministic that transition matrix says what fraction of people in a current state will deterministically flow into some other state at the next time step.  So there’s no flipping of coins if it’s a point three probability that means 30% of whoever’s in a given state will flow into the other state at each cycle essentially.  So in contrast with the stochastic individual simulation if I’m partly in the state that has that 30% chance I flip a coin, or in this case I draw a uniform random number between zero and one and if it’s less than point three or less than or equal to point three then the transition occurs and that person moves from one state to the other of that cycle.  And otherwise they don’t.  So it’s stochastic in the sense that there is some random chance that in a given time stat something will happen to me and then I repeat that process over and over again and I build up my sort of micro-simulated cohort of individuals that way.  

Dr. Jean Yoon:  Great, thank you.  It looks like we need to wrap up.  I’m sorry we didn’t get to your question today.  But Jeremy has listed his email here.  So if you’re willing to answer questions by email, people could contact you for more specific questions?  

Dr. Jeremy Goldhaber-Fiebert:  Do what I can!  

Dr. Jean Yoon:  Any last words you want to give?  

Dr. Jeremy Goldhaber-Fiebert:  Well thank you all for participating and I wish you luck in applying these concepts in your work.   [ END OF AUDIO ]
