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Dr. Libby Dismuke:  I am so very pleased on behalf of HERC to introduce to you Professor Edward Norton.  Professor Norton is an Economist at the University of Michigan where he is a Professor in the Department of Health Management and Policy and in the Department of Economics.  He’s also a member of the Institute for Healthcare Policy and Innovation.  In addition to his affiliation at the University of Michigan, Professor Norton is a Research Associate of the National Bureau of Economic Research.  He was also the Director of the Robert Wood Johnson Foundation scholars and helped policy research at the University of Michigan.  He earned his PhD in Economics from MIT and before coming to Michigan he taught at University of North Carolina at Chapel Hill and at Harvard Medical School.  Professor Norton has published in a wide variety of topics in health economics including long-term care and aging, pay-for-performance, obesity, and applied econometrics.  Professor Norton has written extensively on advanced econometric techniques including a textbook on health econometrics.  He is an Associate Editor for both Health Economics and The Journal of Health Economics.  And I know that there are so many of us in medicine who use odds ratios that we are so excited and pleased to hear what he has to tell us today about using odds ratios.  Professor Norton whenever you’re ready.  

Dr. Edward Norton:  Great.  Thank you very much, Libby.  I’m delighted to be able to join you, although disappointed not to be able to meet each of you in person and talk with you and interact with you in a more typical seminar format.  But at least we’re able to do this Cyberseminar in the time of COVID.  Great.  Let’s get started.  

I know that different people have different backgrounds.  But I want to start with providing just a little bit of general information so we’re all on the same page as to exactly what I’m talking about.  So there are many ways to express the strength of association between some risk factors and a binary outcome.  We might use probabilities or odds and odds ratios or express these as risk ratios or risk differences or some disciplines call these marginal effects.  And my goal today is to provide insight into the interpretation of odds ratios and their limitations and some alternatives.  Because odds ratios as Libby said are used extensively in medical literature, health services research, epidemiology, and many disciplines.  And they’re one way to express the strength of association but there’s some challenges with that that I think are really important to explain.  

So again just to make sure we’re all on the same page.  The odds are the ratio of probability that an outcome occurs to the probability that it does not occur.  In other words, P divided by one minus P.  So for example, if the probability of death is 20% then the odds of death are point two divided by point eight or point two-five.  The odds being a little bigger than the probability.  Or equivalently we could say the probability of survival is 80% and then the odds of survival being point eight divided by point two is four, it’s really a different way of expressing the same information.  

A little bit more about odds.  If P is very small, if the probability is really small than odds are about equal to the probability because the denominators about equal to one.  However as the probability grows and the denominator shrinks odds and probabilities diverge.  Particularly when the probability is over 10% or so.  The wonderful oxymoron even odds means that the odds are one and that happens whenever the probability is 50%.  Although odds can never go negative they also have no upper bound.  So as the probability approaches one the odds approach infinity.  

Odds are often used by gamblers.  So I’m just going to go through this quickly on these, sometimes it’s useful to think of odds in this kind of way.  Suppose I asked you to randomly pick a card from a standard deck of 52 cards and say you win if you randomly select a spade.  Well the probability of that is 13 out of 52 or 25%.  We could also talk about the odds of selecting a spade which are then 13 out of 39, the 39 non-spade cards or one to three.  The way a gambler would think about it is for a $1 bet they would need a payoff of $3 every time they randomly selected a spade to break even.  Okay.  But hopefully we’re not degenerate gamblers and we’re interested in odds and odds ratios and interpreting the results from a logistic regression.  

And so that’s what I’m going to turn to next.  A poll question to help me out is, how would you best describe your comfort with odds ratios and logistic regression?  One being the most comfortable, that is perhaps you teach quantitative methods, very familiar.  Second, maybe you write papers that use logistic regression a lot.  Third, you read papers that use logistic regression but don’t do much on your own.  And fourth, what is logistic regression meaning either you’re excited about learning something new or you’ve randomly come to the wrong seminar on a beautiful day.  So I guess I’ll wait here for a moment.  

Maria:  And the poll_ 

Dr. Edward Norton:  Go ahead.  

Maria:  The poll’s open and right now we have a little bit more than 50% of the vote.  And we’ll just give it a few more seconds to give people time to respond.  

Dr. Edward Norton:  Okay, let’s see if we can get that problem_

Maria:  And if you’re having, I was going to say if you have problems answering the poll I would exit the full-screen mode and click directly into the screen to answer the poll question.  Okay.  So I’m going to go ahead and close the poll at this point.  

Dr. Edward Norton:  Okay. 

Maria:  And I will, and launch and share the results.  So we have 10% say I teach quantitative methods and they’re very familiar, 65% I write papers that use logistic regression, 21% say I read papers that use logistic regression, and 4% what is logistic regression.  Okay and I’m going to pass it back to you.  

Dr. Edward Norton:  Great.  Thank you.  I will warn you that throughout this talk I’m going to go back and forth between more technical and less technical things.  Hopefully there will be something new for everybody.  But I will try and use simple examples and some intuition as well as in the middle there will be some more technical material.  

Okay now let’s go to logistic regression.  So let’s suppose we run a logistic regression, we have output so we’re trying to predict a binary outcome with a number of covariates.  If we have patient-level data we might have a number of covariates around demographics, health status, that sort of thing.  The parameters that are estimated, I’m going to call the beta, are not a probability nor are they an odds ratio directly.  The parameter beta is actually the natural logarithm of the odds or as we say log odds.  Another way to say this is that the odds are equal to the exponentiated coefficient, beta.  So for example, if the coefficient for a parameter was point four, then the odds ratio is E raised to the point four, which is about one and a half.  If the coefficient is zero the odds ratio is one that again corresponds to a 50/50 probability.  If the coefficient is negative then E to a negative number will be less than one and in this case if beta’s minus point two, the odds ratio is about point eight-two.  Okay.  

So one way to think about an odds ratio is that for a risk factor it has the interpretation of whether someone with that risk factor is more or less likely than someone without the risk factor to have that outcome.  But it would be nice if we could quantify this a bit more.  

And so I’m going to go to an example.  This is a published paper in JAMA you could look it up, it’s from three years ago.  Very nice paper by Tringale et al.  And they studied industry payments to physicians; so did physicians get money from industry.  And the numbers on this page are just the raw numbers, it’s not from a logistic regression.  So these are just simple probabilities.  For men in their sample just over 50% had received an industry payment.  For women it was 42.6% had received an industry payment.  Given those two numbers we can come up with the odds for men which is just over 50% to just under, so the odds are 1.03.  For women, because the probability’s a little less than a half the odds for women are point seven-four.  Then the odds ratio comparing men to women and I’m following what they did in their paper, we could also do it women to men, but following what they did in the paper the odds ratio for men compared to women is 1.03 divided by point seven-four.  You take the ratio of the two odds, get an odds ratio, it’s about 1.4.  So given that information we can say that the odds that men receive an industry payment is about 40% higher than for women.  

Okay that doesn’t control for anything.  Clearly there’s some other factors that could be at play.  There could be cohort effects, there could be specialty effects.  And so they ran a logistic regression controlling for many other factors.  And when they did that and looked at the coefficients for men and for women and compared them, the odds ratio comparing men to women shrank to only about 1.3.  So after controlling for some other confounding factors.  Okay.  So that is one kind of typical example of use of odds ratio in a published study.  

I want to talk about two problems with odds ratios.  The first one is I think much better known and recognized and the second one is really the focus of what I want to talk about today.  But just for the sake of completeness I’m going to talk about the first one and that is confusing odds with probabilities.  Odds are obviously not probabilities, it’s probability divided by one minus probability.  And odds ratios are not risk ratios in the same kind of way.  A risk ratio would be say the probability for men divided by the probability for women, the odds ratio have a one minus P in both numerator and denominator.  And so sometimes people will make statements like say from the Tringale et al. paper, men are 40% more likely to get industry payments.  No, not at all.  They’re not 40% more likely, the odds are 40% higher.  

If I go back two slides, look at the last bullet point, the odds that men receive an industry payment is about 40% higher.  If I calculate the risk ratio that would be 50.8% divided by 42.6%, that’s closer to about a 20% increase; men compared to women.  

And that difference between the odds interpretation and the probability interpretation is something that’s, newspapers mess up all the time.  It’s very hard for laypeople to kind of make these distinctions.  So even when researchers are very careful and I do want to point out Tringale et al. was, they were very careful about this so this is not a criticism of them.  Even when authors are very careful it’s easy for the media and the public to misinterpret the results.  And often exaggerate the effect that’s of interest.  And this is especially a problem when the underlying probability’s not close to zero things can differ a lot.  So this problem of odds not being the probability is well-known and if this were the only problem I probably wouldn’t be giving this talk today because to solve it we can just try and be more careful about explaining what we’re doing and being careful about the language we use.  

Here's an interesting thing about odds ratios.  Suppose I tell you that the odds ratio for men compared to women is two.  And I don’t give you any other information.  It could be the case that for example the probability for men is like one percent and therefore only a half for women.  That’s a two to one ratio.  And the odds ratio for that is two to one.  But it also could be the case that it’s 50% for men and 33% for women or 80% for men, 67% for women.  So with an odds ratio it’s therefore very important to also state the underlying probability so that people have a better understanding of how to put the odds ratio in context.  Okay.  So again my guess is most of the audience listening already knows that and is probably very, very careful about it.  

So most of what I want to talk today is about a second problem that is less well-known and frankly far bigger problem.  And this is what I hope you come away with today is understanding that odds ratios are scaled by an arbitrary factor.  Scaling in this case means dividing by a number for a particular reason which I’ll get to later.  The scaling factor is equal to the square root of the variance of the unexplained part of the binary outcome.  Again I will come back to that a little later and show where that comes from.  But the odds ratios are scaled by this arbitrary factor which is going to cause a lot of problems of interpretation.  For those of you who are more mathematically inclined and interested in all the derivations I have a paper in health services research that was published two years ago in 2018 with Bryan Dowd.  And I do have references at the end of this talk so all the, the full references are shown at the end.  

So the scaling factor changes when variables are added or dropped from the logistic regression.  And that’s going to cause problems when we, like run one model and then maybe run another model, we’ve got some more variables that have been added in.  The extra variables will presumably explain some of the variance, will be related to the dependent variable.  And therefore when you add variables that belong in the model there’s less unexplained variance.  The scaling factor shrinks, you were then dividing by a smaller number and that will increase the odds ratio.  One important point, when I’m, throughout this talk when I’m talking about adding or dropping variables I’m always referring to variables that belong in the model, so they predict the dependent variable.  And they are completely unrelated to the treatment variable of interest.  If you have variables that are correlated with the treatment of interest then those are confounding variables.  In some disciplines it’s called endogenous variables, that’s a different statistical challenge.  I’m just talking about adding and subtracting variables that predict the dependent variable but are unrelated to the variable of interest.  

This causes a number of consequences that are kind of problematic.  And I’m going to go through each of these points in more detail in a moment.  But what it really means is there’s no unique odds ratio, no sort of special number that sort of all studies should expect to get if they’re done well studying the same phenomenon.  And it also means you cannot compare odds ratios across different studies and you cannot compare an odds ratio within a study using different model specifications.  They’re just not comparable because they’re each divided by a different arbitrary scaling factor.  And we can’t sort of run through standard robustness checks to see if the estimated coefficients are stable if you add more covariates. 

All right.  So I’m going to now switch into, going into a little more technical detail for the next few slides.  But I want to start with ordinary least squares regression.  I usually find that it’s good to explain technical concepts starting with regression to make sure we sort of under, because basically everybody’s had least squares regression, let’s understand the phenomenon there and then we’ll move on to the nonlinear model, the logit model and see what is similar and what’s different.  Okay so imagine we have a dependent variable Y star that’s very continuous.  And it’s explained by several covariates, imaginatively named X one, X two, and X three with an error term epsilon.  The variance of epsilon is called sigma squared and that’s the variance of the unexplained part.  If we were to add additional variables to the model then the R squared would go up and sigma squared would decrease.  Again adding variables that really explain Y star and are unrelated to the other X’s.  So if we add more variables we’re explaining variance of Y star so sigma squared will decrease.  But the other important thing to remember, in ordinary least squares is even if we add these other independent variables the betas in this model, beta one, beta two, beta three, they will be basically unchanged when you add these additional independent variables as long as they’re not correlated with the additional variables that are added.  So those betas will be unchanged.  And we want to remember that as we later move on to the logit where we’ll find something very different.  

Now I want to switch over and sort of derive the logistic regression model.  Starting from an underlying latent continuous variable.  So imagine we have something like birth weight of a baby, Y star is birth weight measured in grams a very continuous variable.  And we want to have a model that doesn’t predict birth weight but whether the baby is low birth weight or not.  So if birth weight is above the threshold T, like 2,500 grams, then we’ll say the baby is not low birth weight.  If it’s below 2,500 then it is low birth weight.  So here we have a nice example with an underlying continuous latent dependent variable.  But we can also take that variable and dichotomize it into whether it’s above or below a threshold.  So what we actually observe is Y which is whether Y star is above or below the threshold.  

We could then ask what’s the probability that Y star is above the threshold.  We can rewrite that since Y star equals X beta to the linear index, plus the error term, we can rewrite that as the probability that the linear index plus the error term is greater than the threshold.  We can move X beta to the other side and then if we assume a symmetric distribution for the error we get the last row there; the probability that the error term is less than this expression, X beta minus the threshold.  In statistics we can make very precise statements about the probability of some random error falling into a range if we standardize that error.  So that’s what we need to do next.  By the way this is the most technical slide of the talk, so if you’re a little lost bear with me we’ll get onto other things soon.  So what I want to do now is standardize this equation by dividing through by the standard deviation of epsilon.  And then assuming that this has a logistic distribution.  And you know that sort of sounds innocuous we’re just going to standardize it, you know what could possibly go wrong?  And I’ve learned whenever I’m telling a story to my children and I tell them you know, hey what could possibly go wrong?  They get excited because they know something spectacularly bad is about to happen.  So hopefully you’re leaning into your screen anticipating something spectacularly bad about to happen in a couple of slides.  

So with this logit normalization what we’re doing is dividing through by sigma and then we can make precise statements about the probability.  You can either think of it is that the continuous dependent variable is above the threshold or that the error is less than this linear index.  Small technical note of dropped T from the equation because it can get absorbed into the constant term.  Now it’s at this point that most textbooks have a kind of a throwaway sentence saying hey let’s assume that sigma equals one.  It’s a normalization, hey it really doesn’t matter we’re just going to obliterate sigma, let it equal to one and then it’s gone.  We’re not going to do that.  We’re going to leave sigma in this equation so that we can see the role that it plays in computing things like odds ratios.  When we assume a logistic distribution we then get the equation at the bottom; if you’re familiar with logistic distributions this will look very familiar, one divided by one plus E to the minus X beta over sigma.  

That functional form looks like the top part of this graph.  It’s an S-shape curve, it’s bounded between zero and one.  Any numbers that you put into X beta will get you a number between zero and one, that is a probability.  And if you’ve heard of probit models you can kind of go through the same math that we did on the previous slides but assume a normal distribution instead of a logistic distribution.  
[bookmark: _GoBack]
Okay.  Now that we’ve derived this logistic function, one over one plus E to the minus X beta over sigma.  I want to go back and revisit what we started with, in the first slide.  And that is writing out the odds, P divided by one minus P.  So now we’re going to write it in terms of beta and sigma and sigma’s not going to disappear nicely.  All these formulas are taken from the health services research paper with Bryan Dowd from 2018.  There is a typo in the paper which has been corrected on this slide, there’s an extra minus sign.  If you write out the probability divided by one minus the probability that is the odds, you get an equation with lots of E raised to the minus X beta but that simplifies down to a fairly nice-looking thing that’s E raised to the X beta over sigma.  That’s still not a signal parameter that’s actually a whole index of X’s and betas multiplied by each other.  So that would be the expression for the odds given all of the characteristics of a person.  

But the way things are often reported in papers is for a one particular dummy variable.  So let’s say we’re looking at smoking as a risk factor for something.  We can calculate the odds for a smoker using the previous formula E raised to the and then it’s each of the variables multiplied by its corresponding beta all over sigma.  And then the odds for a non-smoker would look very similar except because they’re a non-smoker the smoking variable drops out.  When you take the ratio of those two expressions by the magic of mathematics for exponents, or exponential functions most of it actually simplifies and we end up with a, hopefully a familiar-looking formula E raised to the beta for smoking over sigma.  And again over sigma matters for today’s talk.  Or if we talk the natural logarithm of that we say the log odds are beta for smoking over sigma.  Okay.  So basically what I’ve done is I’ve gone back to first principles rederived odds ratios, log odds, in terms of beta and sigma to show that there’s this normalization that shows up.  

And now I want to spend a little time and focus on sigma and what is sigma and how does this matter.  The key thing to remember here is that logit models don’t estimate beta.  They estimate beta over sigma.  Where again sigma is the standard deviation of the error term and sigma’s unknown.  We have no idea what it is.  You cannot identify it from a logistic regression model and therefore you’re taking, what you’re getting is beta over sigma where one of those terms is unknown.  The sort of metaphor here that I like to use is suppose you walked into a store to buy something, you asked the clerk what the price is through your mask of course because you’re wearing a mask, and the clerk who’s wearing a mask and is at least six feet away from you says oh the price for that is 20.  And you say oh, $20?  And the clerk says no 20.  And you say well was it Euros or Krone or Yuan or?  And the clerk just says no it’s 20 and never tells you what units it’s in.  You don’t know what the scaling factor is, it’s unknown.  

So now I want to talk about what changes sigma?  That is this measure of unexplained variation.  Think about it as what happens when you either add or subtract variables to the model.  When you add variables to the model that really belong, they explain the dependent variable, there’s less unexplained part of the dependent variable, sigma goes down.  When sigma goes down beta over sigma goes up and, but you don’t know by how much but it does go up.

Now I want to walk through some implications of this.  First of all, there is no single odds ratio.  It’s not some sort of absolute number like pi and again if, if you and I were studying the same phenomenon but we had different datasets and used slightly different models we should expect to get different numbers.  We’re not going to get the same odds ratio because the odds ratio is absolutely conditional on the data, the sample that you have, and it’s conditional on the model specification.  So any study that claims to estimate the odds ratio is misguided.  Okay.  And odds ratio indicates the sign and has sort of a sense of magnitude but it’s all conditional on the sample and the model.  

Second implication of beta being divided by sigma and that is that the odds ratios estimated from different datasets are not directly comparable.  Or if you take one dataset and you estimate the model a couple of different ways you add some variables, you throw some variables out, maybe you run fixed effects or do different things.  You can’t in any way compare the odds ratios from those different models.  And this is something that has been discussed by others in others’ papers but it’s a really important finding.  

So if a paper ever says the odds ratio is one and a half that’s just incorrect.  A more precise interpretation might be the estimated odds ratio is 1.5 conditional on the demographics and the health but a different odds ratio would be found if the model included a different set of explanatory variables.  This estimated odds ratio may not be used to compare odds ratios from other datasets with the same sample, explanatory variables, or even odds ratios estimated from the same dataset with different model specification.  Now that’s quite a mouthful and obviously people don’t generally say that but that’s important to keep in mind whenever you are writing or reading a paper that uses odds ratios is this is one number and it’s conditional on that dataset and that model specification.  

Some authors like to show robustness of their results by running a basic model and then progressively adding more variables to see if the results are robust.  Now in ordinary least squares this kind of makes sense if you add a lot more controls, you know hospital fixed effects, county fixed effects things like that, and your main coefficient stays the same, that indicates that your results are robust to controlling for all sorts of things.  But in logistic regression you cannot compare the odds ratios from these models.  As you progressively add more variables you’re changing sigma therefore you’re changing beta over sigma and the numbers are very, very different.  And you just can’t compare them and you don’t know how big sigma is.  

So then the implication is, this is a really important criticism of odds ratios that enhances the already strong criticism of odds ratios and interpretation.  And I think is actually far more fundamental.  As I said before if the only problem was well some people get confused with probabilities and odds ratios that we can work on communication.  This is not a communication problem.  And something that’s very fundamental and important.  Okay.  

So in summary these five implications I think are not widely appreciated in the literature and papers frequently will report findings of an odds ratio as if it were some sort of absolute number that can be estimated.  And they don’t point out that it’s explicitly conditional on the model and the covariates.  For more about this written in a less technical paper you can see our paper that came out also in 2018 in JAMA, this was written with Bryan Dowd and Matt Maciejewski.  

Okay.  So that’s kind of the main point I wanted to make today.  Now I want to talk about some other implications and some nuances around this.  First of all I don’t want you to walk away from here thinking oh odds ratios have no meaning.  In fact it’s just the opposite.  They have an extremely precise meaning, a very narrow meaning.  An odds ratio applies to that dataset and that model specification only but no other.  It is extremely meaningful in that one particular case and it is not generalizable to other situations.  So the fact that it has a very precise meaning not no meaning is a big difference.  But it’s not generalizable beyond that dataset and that model specification.  But you don’t want to say it has no meaning at all, that would not be correct.  

I’m going to try and provide some nontechnical intuition for why the odds ratio changes.  I found when teaching this some students find this useful, some do not, so I’ll give it a shot and then either way we’re going to move onto some other points.  So let me, let’s imagine that we have a dataset where we have information on whether someone tested positive for COVID-19.  Okay.  Not just any dataset imagine that you have data on every single person on the planet.  So we have like seven billion observations.  We have observations on sheep farmers in Peru, in schoolgirls in India, construction workers in Sweden, people in nursing homes in China, all sorts of people, everybody in the whole planet.  So we have this incredible dataset, extraordinary variation.  And we all know that there are lots of explanations for why some people test positive for COVID-19.  Some people are more at risk, some people wear masks, some people are more careful, some people wash their hands more carefully, some people are in an environment with lots of other people that they interact with who may be positive.  Extraordinary number of explanations.  Suppose some people are given a vaccine and many are not we want to test in this incredible dataset the, whether the vaccine is actually working.  So we have this incredibly heterogeneous dataset with all sorts of reasons why some people are positive and some are not.  And in that case you know a lot of things are going to predict and maybe the vaccine predicts but if you think back to the S-curve that we had before the S-curve is going to be pretty shallow for the vaccine because it’s only one of many, many, many possible explanations for why seven billion people are or are not positive.  Let’s start adding other controls.  Well obviously age is an important factor, we want to control carefully for that.  We want to control for whether people wear masks, we want to control for the household composition, and so forth.  I’m going to add more and more and more controls.  Another way of thinking about what does adding controls mean is it makes the sample more homogeneous.  So for example if I say I want to know the effect of this vaccine on this big dataset and you say well age matters, okay we’re going to control for age.  So now mentally you’re thinking I’ve got a dataset that’s basically imagine people all the same age.  And then well I’ve got some people wear masks and some don’t.  Okay let’s control for that.  Okay, now I’ve got a whole dataset of people who have the same mask-wearing tendencies.  And we’re going to control for household composition.  So imagine people in the same household, et cetera, et cetera.  You control, control, control, control and eventually you end up with identical people whose only difference is some get the vaccine and some don’t.  And as you do that and you’re removing all possible explanations except for the one that you really care about which is the vaccine essentially the S-curve gets really, really steep and that becomes the one thing remaining that explains what’s going on.  When the S-curve gets steep it’s the same as beta or beta over sigma becoming really big.  Okay.  I don’t know if that helps a lot of people or not.  If it didn’t you may want to think about it for a while.  I’m going to move on.  

Another thing I don’t want you to think is that you should never use odds ratios.  That is also not true.  There are a lot of cases where it is a wonderful thing, the only game in town.  It is entirely appropriate for case-control studies where you have mapped samples of people who are very, very similar except for one characteristic.  That’s basically how odds ratios came into being in epidemiology, for rare events.  In the economics literature these same kind of models are called Chamberlain fixed effect logit models, named after the late Gary Chamberlain.  So again I don’t want you to think that you should never ever, ever use odds ratios or logistic regression.  There are times when it’s very appropriate.  In these kinds of models though what you’re estimating, it’s really hard to directly estimate the underlying probability because you don’t have a general sample.  The case-control nature of the study means that you have an unbalanced sample and that inherently is going to allow you to estimate odds whether one person is more or less likely than another to have the outcome.              


Okay.  So having pointed out some fundamental challenges with odds ratios for many kinds of studies I now want to point out an alternative, often called marginal effects or sometimes called incremental effects for a dummy variable or risk difference.  These have an interpretation of a percentage point change.  Not a percent change, a percentage point change.  And the great thing about marginal effects in logit models is that they are not sensitive to changes in sigma.  So as you add more variables marginal effects stay the same.  That’s an enormous difference, with compared to odds ratios.  So therefore whenever possible I would recommend using marginal effects and wrote about this last year in JAMA, again with Bryan Dowd and Matt Maciejewski.  

Okay.  To try and give you one example from a simulation to show what happens when you have logistic regression, you add more variables.  I’m going to show briefly part of a table from our health services research paper that gives hopefully a clear example of what happens.  

This table’s a little busy so let me try and walk you through it.  The first two columns are from a linear probability model that is ordinary least squares regression where the dependent variable is binary.  The first column has the simple model with only three covariates.  The second column has an additional two variables that are highlighted in green in the lower left.  They’re creatively named X three and X four.  The corresponding logit models are in the third and fourth columns and so here’s what I want you to see.  When you run ordinary least squares and add variables to the model look down at the bottom you see the R squared goes way up in this case, from point two to almost point six.  So the extra two variables are adding a lot of explanatory variable.  The root-mean-square error that is the variance, goes way down.  And yet the estimated coefficients in the linear probability model stay the same.  It’s about, it’s just under point five for XD, it’s about point one for X one, and about point two for X two.  So the point here is that in a regression model you add additional variables, the original coefficients don’t change.  Moving over to the logit we see something very different.  We see that when we add the additional two variables beta over sigma goes way up.  And IE which means incremental effect like a marginal effect, that stays the same while the odds ratio goes way up.  So take the first dummy variable there XD.  The odds ratio goes from 1.3 almost to 2.3, that’s a huge difference after adding some variables.  That’s nowhere near the same thing even though those two variables are completely unrelated and in regression there’s no difference in the coefficient.  But amazingly the incremental effect or marginal effect of that variable stays at about five percentage points, or four and a half to five percentage points for that variable.  And we see the same thing with X one and X two.  The estimated beta over sigma changes a lot, the odds ratio changes a lot, but the marginal effect stays the same.  So it’s a very important difference and why marginal effects are much more stable than odds ratios when you’re comparing different models.  

Here’s a little party trick.  If you want to have a quick way of estimating a marginal effect after estimating a logit model.  Take the estimated coefficient, actually that should be beta over sigma and multiply by the sort of average probability times one minus the probability.  So beta times P times one minus P that’ll give you a pretty good sense of what the marginal effect is.  Now you’d always want to check it more precisely with your software but suppose that the overall, the mean of the dependent variable was about 10% then P times one minus P is point zero-nine or also you know roughly 10%.  And so if beta is point two then the marginal effect for the variable associated with that beta is going to be 10% of point two or about two percentage points.  It’s a very effective way of looking at output from a logit model and if you’re good at multiplying P times one minus P in your head you can quickly come up with a rough approximation for the marginal effect of that variable.  

Okay.  So starting to wrap-up so I’ll be able to take questions in a moment.  Odds ratios often reported without the proper discussion of conditioning or arbitrary scaling.  You need to remember that odds ratios are conditional on the data and the model specification and therefore you cannot just compare odds ratios across different studies or across different models.  And when possible would recommend estimating marginal effects which are not that sensitive to any changes in sigma.  

Here are complete references to the three papers I mentioned.  These all have references to other papers and the literature that have discussed these and similar issues in the past.  I hope that you think about these things and think about how you can improve best practice for your own research or in what you’re reading and be a more critical reviewer of papers and research.  

Thank you very much for coming to this talk.  Here’s my contact information at the University of Michigan.  And I would welcome a chance to ask any questions that you have.  

Dr. Libby Dismuke:  Edward, this is Libby.  You have quite a few questions.  

Dr. Edward Norton:  Okay.

Dr. Libby Dismuke:  So I don’t know if we’ll be able to get through all of them but we’ll get through as many as we can.  

Dr. Edward Norton:  Okay.  

Dr. Libby Dismuke:  And then when we get off hopefully people can contact you to ask questions if their question is not answered online.  

Dr. Edward Norton:  Great.  

Dr. Libby Dismuke:  In this seminar.  So the first one we have is, will a multinomial regression provide you with a risk ratio if in fact you exponentiate the likelihood estimates or is it still an odds ratio?  

Dr. Edward Norton:  It’s still an odds ratio.  You have to do a little more work to get a risk ratio.  So the short answer is that gets you an odds ratio not a risk ratio.  But with modern computing if you want a risk ratio it frankly doesn’t, it’s not that hard to compute a risk ratio.  

Dr. Libby Dismuke:  The next one is, what are the options, many software generate only odds ratios especially for more complicated designs like survey data.  

Dr. Edward Norton:  Right.  And so that software dependent, I’m most familiar with Stata where you have the option of reporting the coefficient or the odds ratio.  I’m less familiar with other software.  So that’s sort of software specific.  And I’m sorry I won’t be able to answer that for non-Stata.  

Dr. Libby Dismuke:  Can the implications of odds ratios be compared across studies?  

Dr. Edward Norton:  You cannot compare the magnitude of odds ratios across different studies.  So if, Libby let’s say you and I were both looking at the effect of, I don’t know smoking on lung cancer and I have a population and study them and you have a population that’s different and study them.  I come up with an odds ratio, I don’t know 1.8.  You end up with an odds ratio of 1.3.  It’s really hard to know how to compare those numbers because we may have controlled for different things see, the underlying variation may be different.  We can’t say that in my study it’s, the odds are necessarily much, you just can’t compare those numbers.  

Dr. Libby Dismuke:  Okay.  Next question is, an odds ratio estimated from nested case-control design, incidence density sampling is alike incidence rate ratio.  What are the limitations of interpreting these odds ratios?  

Dr. Edward Norton:  So when you have case-control studies you do want to interpret it as an odds ratio.  And that’s fine.  You would not really be able to compute a marginal effect and you just need to keep in mind what I said before, it’s hard to compare those numbers to other studies but it would be appropriate to report odds ratios in those, in that kind of study.  

Dr. Libby Dismuke:  Are meta-analyses biased using odds ratios since most pool results from studies where models control for different covariates?  

Dr. Edward Norton:  Yeah.  I think, how do I say this, bias implies that there’s some sort of systematic effect of either being too high or too low.  I’m not sure I’d say that but it really doesn’t make any sense to do a meta-analysis when you’re trying to compare the magnitude of these odds ratios across different studies.  Now if you look at a bunch of studies and they all have odds ratios above one and they’re you know statistically significant at a high level, then you’re pretty sure the direction of the effect.  But you really can’t compare this specific number, this magnitude from this study with that study.  So that’s where you could run into problems.  You can’t sort of look, you can’t use a meta-analysis to compare a bunch of studies and say well the overall average odds ratio is 1.5 and sort of therefore that’s the right number, that you can’t do.  

Dr. Libby Dismuke:  Someone is interested in getting a copy of the Stata code for Norton Dowd 2018 paper.  

Dr. Edward Norton:  Yes.  You should be able to, well you can certainly send me email I’d be happy to send it to you.  I think it’s also available on the Health Services Research website.  But if they just send me email I’m happy to send it to you, send you the code, the sample dataset.  You can reproduce everything in the paper and check it out.  

Dr. Libby Dismuke:  Okay.  Let’s see, I’m going to get through here.  We’ve already talked about implications from different studies.  That was a question.  Oh, can you give an explanation of the meaning of marginal effects?  

Dr. Edward Norton:  Sure.  

Dr. Libby Dismuke:  And how to interpret marginal effects in a paper.  

Dr. Edward Norton:  Sure.  So an example of a marginal effect would be if I change one of the explanatory variables by one unit how will the probability of the dependent variable change.  So for example, if I have someone and they go from non-smoking to smoking what is the probability, what’s the change in the probability of getting lung cancer.  And maybe the change in that probability, I’m just making up a number here, is like 20 percentage points higher.  Or you could, another example might be, what’s the marginal effective age on having a hip fracture.  And in a dataset you might find that for every additional year of age the increase in probability of hip fracture is another one percentage point, again I’m making up these numbers.  So the interpretation is if I change this variable by some amount, usually one unit, what is the change in the probability in a percentage point term.  It’s the same as a risk difference.  

Dr. Libby Dismuke:  There’s another question, do these limitations about odds ratios also extend to hazard ratios?  Like in survival models.

Dr. Edward Norton:  In survival models, I’m not sure.  I would have to think about that.  I don’t know.  That is a great question.  

Dr. Libby Dismuke:  For the limitations noted for odds ratios do you have a general preference in using risk ratios when appropriate?  For example, cross-sectional studies where authors sometimes choose one versus the other.  

Dr. Edward Norton:  So I think for any sort of reporting whether you want to go with an odds ratio when it’s appropriate or a marginal effect or a risk ratio, any of these things it’s always important not to stop at a single number but to provide some context.  So you know the underlying mortality rate if you get COVID-19 is kind of one to two percent, what is the additional risk for some sort of risk factor?  Well that, and so you start off by saying what the underlying risk is and then provide more information on top of that.  You wouldn’t just say well the odds ratio for this vaccine is point six, or the marginal effect is one percentage point.  Anything you do you want to provide some context around the underlying probability.  

Dr. Libby Dismuke:  How does sigma behave for large datasets, for example, more than a thousand observations?  

Dr. Edward Norton:  It’s really not, sigma does not shrink to zero with more data, as dataset goes to infinity.  If you just add more data and don’t change the model sigma should be fairly stable.  So it’s not one of those things that disappears or goes away as you get a larger dataset.  It changes primarily as you add or subtract variables to the model.  

Dr. Libby Dismuke:  Someone here says, others can use_ 

Maria:  Dr. Norton, it’s_

Dr. Libby Dismuke:  _likelihood ratio tests, ope sorry.  

Maria:  Oh no, it’s okay.  I just wanted to say it’s the top of the hour_ 

Dr. Edward Norton:  Okay.

Maria:  _if you still have a few more minutes to answer a couple more questions we can go beyond that.  But I wanted to let the audience know to please fill out the feedback form if you have to leave and close out.  And this is a recorded session so they’d be able to see anything that they missed.  And I also wanted to say that this is the last HERC seminar for, until summer.  So the next HERC seminar will be in September.  So we’ll just, Libby you can go on with the questions now.  

Dr. Edward Norton:  Great.  

Dr. Libby Dismuke:  So this one is, I learned to use likelihood ratio tests to compare logistic regression models, is this acceptable practice?  

Dr. Edward Norton:  Yes, it is as long as you’re not using robust standard errors, which you probably should be in most cases anyway.  So the problem with using likelihood ratio tests to compare different models is about the standard errors and whether you’re using robust standard errors or clustered standard errors has nothing to do directly with what I talked about today.  

Dr. Libby Dismuke:  Is it possible to estimate sigma?  

Dr. Edward Norton:  [laughs]  Not in a logistic regression.  If you run ordinary least squares regression then you can estimate sigma.  But then you need to have the underlying continuous variable that we often do not have.  You know for example, if you’re estimating trying to predict mortality we don’t have the underlying continuous variable associated with that.  So in many cases it’s completely impossible to even try and do this sort of related least squares regression.  

Dr. Libby Dismuke:  So related to that I guess there’s a question about normalizing sigma.  So I guess that would be the same.  

Dr. Edward Norton:  Yeah.  So again the problem that a lot of textbooks do is they really sweep this under the rug.  They say let’s just assume sigma is equal to one and we go on our merry way and we forget that as we change the model we’re inherently changing sigma and therefore beta over sigma, which is what’s actually getting estimated.  And that is kind of the main message from today’s talk is that logistic regression estimates beta over sigma, sigma’s unknown therefore good luck trying to interpret beta over sigma.  It’s slightly better than that but the_ 

Dr. Libby Dismuke:  Literature_ 

Dr. Edward Norton:  Yeah, go ahead.  

Dr. Libby Dismuke:  Oh, I’m sorry.  Do you want to finish?  

Dr. Edward Norton:  Just it, we can say a little more than that but it’s really, it’s really challenging to interpret the magnitude of beta over sigma because we don’t really know what sigma is.  

Dr. Libby Dismuke:  There was a question regarding interaction terms.  

Dr. Edward Norton:  Mm.  Yeah that’s another whole, I mean I could do another whole talk on interaction terms.  They get complicated in the same kind of way that interaction terms are fairly straightforward in a basic regression model, they actually become much more complicated in logit or any non-linear model.  And that is really its own separate topic about how to interpret interaction terms.  But it requires taking a double derivative or double difference instead of just looking at the one coefficient.  That’s another talk. 

Dr. Libby Dismuke:  Maybe we can_ 

Dr. Edward Norton:  Mm-hmm.

Dr. Libby Dismuke:  Maybe we can invite you back to do a lecture on interaction terms.  

Dr. Edward Norton:  I’d be glad to do that.  

Dr. Libby Dismuke:  Great.  Thank you.  Well there’s still questions coming in but I know we’re, you know we’ve already taken more of your time.  So would you be just willing for people to email you if their questions have not been answered so far?  

Dr. Edward Norton:  Absolutely.  Please have them email me, I’ll be happy to do my best to answer all the questions.  These were a whole great set of questions, again I just wish I could be there in person to meet people and answer people directly.  But we’re doing what we can.  

Dr. Libby Dismuke:  Thank you so much, Professor Norton.  

Maria:  Well thank you very much.  

Dr. Libby Dismuke:  It’s been wonderful.  

Dr. Edward Norton:  Thank you very much.  

Maria:  Dr. Norton do you have any closing remarks?  

Dr. Edward Norton:  Again, people are, I’d be happy to answer people’s questions.  Thank you for listening and just be very, very careful whenever doing anything with logistic regression around the interpretation.  
 

[ END OF AUDIO ]


