vinci-090822

Andrew:	Please do. Thank you, Rob.

Rob:	Sound good.

Andrew:	Hi everybody. My name is Andrew. Welcome to this presentation about Query Optimization for Researchers. I’m on the VINCI data services team and I cover QA training and outreach for that team. So you’ve heard my voice before if you did other similar VINCI training hours on this kind of topic of come to VINCI office hours. Today I’m going to talk about how to efficiently query CDW. Research analysts often need costly SQL queries. My background is industrial engineering. I used to be a process improvement person in the VA and as part of that job, the queries I would write were highly localized both geographically and temporally. And so it was easier for me to have fast queries that work really well without needing tons of best practices. But research teams often deal with wide time reaches, nationwide studies, complicated criteria and so it is particularly important for research analysts to know how to safely and efficiently approach those heavy data needs. Because we are all using shared resources when we use SQL tags as our data. So in this presentation we’ll talk about how to do that, and we’ll troubleshoot some hopefully illustrative examples.

I’m going to assume that you know enough to know how to get yourself in trouble with SQL. If you don’t already know how to write basic to intermediate SQL queries, this presentation won’t be particularly useful to you. I also assume that you know basic CDW architecture. I will be talking about things like dimensions versus fact tables. I will mention foreign keys, so I hope that you already know what those things are so you can understand what I’m talking about. I also assume that you know how to ensure your queries return the correct results. Because we are going to talk about how to refine and improve your queries in this talk, but not to get better results. We’re going to be focused on getting the same results faster. This is a talk about optimization and query performance.

You’ve heard me talk about teaching and training before that you’ve seen this slide before. I use it on all of my presentations. This is the tree of knowledge. If I were to give you a list of 50 SQL dos and don’ts, to me, that would be like dropping off a wheelbarrow of twigs and leaves in your driveway. It’s hard to remember that stuff, to use it, to access it when you need it later. So instead what we will try to do in this presentation is start with background knowledge of the systems and principles that forms the trunk of the tree here. We’re going to…I’m going to do my best to give non-technical explanations of some pretty technical things. I’ll try. I’ll do my best. And so the idea is, by starting with systems and principles, when I start giving you tips and tricks and pitfalls to watch out for as I will in the second half the presentation, hopefully those things will be connected. How you can connect those onto the tree so that you can access them later when you need them, you can remember them and use them.

So the first principle I want to talk about is your colleague, the SQL query optimizer. If you have written code in any other…almost any other programming language, then what you’re used to is, you write a line, you write another line, you write another line, and the computer comes along, and it reads and performs exactly what you told it on the first line. And then it does the same thing on the second and the third line. This is called imperative programming because you are commanding the computer exactly what to do. SQL is not imperative. It is what they called declarative, which means you don’t tell the computer what to do. You tell the computer what you want. SQL decides for itself what to do to get you what you want. Therefore, every query you write is really a partnership between you and something called the SQL query optimizer. This query optimizer or query optimization engine reads your query and decides what it’s going to do to get you those results. And lots of SQL’s performance nuances have to do with what exactly the query optimizer is good at and bad at.

So I’m going to be talking about this a lot over the course of the presentation. What exactly the query optimizer does with the information you give it. It’s just really solid strengths. Searching and sorting in particular write you the SQL query writer, the CDW user. You don’t have to go complicated computer science things like how B-Tree works and what a hash match is. The query optimizer does those things for you to parse out what you need and fetch it out of the data system. But it has some weaknesses that you’re going to need to be aware of. Particularly common sense and context like all computers and when it comes to math, the query optimizer is really good at arithmetic like all computers, but really bad at algebra. I’ll show you what that means later in the presentation. But I just want you to know, every query is a partnership. You communicate with your colleague about what you want of writing a SQL query. Your partner communicates back to you what it will do by showing you an execution plan.

So at the top of SQL Server Management Studio near the execute button, there is this button here for the execution plan. That doesn’t run the query. It just asks your colleague the query optimizer, what he’d do if you ran the query and what you will see when you click that button is something that looks like this. It’s a graphical representation of the plan. The plan that will be performed to get you those results. How do we read that? So these icons are operations. Each operation is going to be performed and it’s going to pass rows to the other operation that is to the left. So the final over here, the final operation is the last thing that happens. And you can read this query plan sort of from right to left by thinking about each operation performing some kind of search for something and passing rows along.

Then arrows between the operations refer to different amounts of rows being passed along. And the cost refer to the total cost of that step compared to the overall cost. I’m not going to go super in-depth about all the different icons and what they mean. I will have a resource for you at the end of the presentation if you want to get into that. But for now, I just want you to watch out for things like this. These warnings will have a little exclamation point triangle or a little X. Those are bad. Those are things that you want to watch out for. I’ll talk a little bit more about that later. Each of these operations can be moused over to get more information and if you mouse over one of the operations, you will see a little pop up like what’s shown on the left.

So in this case what I’ve done is I selected the two queries you can see up at the top, and I hit that execution plan button. And just like when you run, if you have two things selected, both of them will be included. So in this case, I’ve got two different plans to look at because I highlighted two queries. I can see which query is cheaper by comparing the two numbers here. The query cost relative to the batch. That’s these and these. The batch in this case being the two queries I’ve got selected. So the first thing I tend to tell people to look at on an execution plan is the total cost of the query. You can find the total cost by mousing over that final step, that select that’s in the upper left. If you mouse over that and you look at the estimated subtree cost. That’s the total cost of the whole query. Because the subtree cost is a running total. It’s the cost of the thing you’re mousing over plus everything to the right. So this final step includes all the steps to the right in its subtree cost, so that’s the total cost of the query.

I’m going to give you a quick heuristic for what to look for there, but this is just a back of the napkin heuristic, don’t take this to the bank. If you’re in that dozens or less, that’s a very cheap query. You should expect that to complete in seconds. You’re probably using dimensions only or you’re using a fact table but with a very narrow range of and you’re using the partitions correctly. I’ll talk about that later. If you’re up into the hundreds, that query is fine. It might take a minute, or two, three, or five but that query is typically going to be fine in the hundreds.

Up into the thousands is what I think of as kind of the wheelhouse for research analyst in the thousands particularly the low thousands is where you’ll find query costs that are having to work with lots of records. You’re having to use fact tables; you’re having to do a heavy lift, but if you’ve written the query correctly and it is an efficient and good query, you will tend to find costs in low thousands maybe high hundreds. And those tend to be good queries. They might take a few minutes to run. If you’re up into five digits, that’s borderline. Those queries might be fine, but there is a decent chance that they’re not fine.

And if you’re up into six digits, those queries are almost certainly bad. Technically, the cutoff for a query that is subject to automatic termination is 300,000. But even if your total cost is 150,000, I would say you probably don’t want to run that query. You probably have a bad join somewhere. And even if you don’t have a bad join, you should strongly consider breaking that query up into more manageable pieces. So that’s the quick heuristic. Three hundred K is the absolute cutoff, but in my experience, you shouldn’t really ever be close to that. You shouldn’t be in six digits at all most of the time. The cost by itself is not necessarily good enough, you also want to look at the estimated number of rows, this next thing down here.

Similarly the ultimate cutoff there is 500 million rows if you’re not going to display that. It’s a quarter of a million if you are going to display them. In other words, these queries I’m writing over here, these are to select queries that are going to display the results down in the results pane. And you shouldn’t be trying to display more than a quarter of a million rows. There’s no way you’re going to…are you going to sit there and scroll and read that data with your eyeballs with a quarter of a million rows? No, of course you’re not. And just like with the 300,000 cutoff for the cost, you really shouldn’t even be close to that. There’s no reason to display 150,000 rows either. You’re not going to read that many rows. So use into, save into a tempt table or some other way of not displaying if you’re going to be working with that many rows.

What we’re seeing here with all of these arrow thicknesses and cost percentages, there just estimates. Remember this was the estimated execution plan that we clicked on. So here what I’m showing is an estimated execution plan up at the top and then what actually happened when I ran that query down at the bottom. So the thing that probably jumps out to you is these arrow. Look at how in the estimated the top one is skinny and the bottom one is medium. But in the actual, it’s the top one that’s thicker than the bottom. Similarly, the cost numbers are sort of a quantitative representation of the same thing. SQL estimated 212 rows coming out of this operation here. But it actually found three times that many. So these execution plans are just estimates. And I’ll talk more about that later.

Where does those estimates come from? Your colleague has access to table statistics. These are part of an index usually and they look kind of like this. This is just an illustration. I created these myself in a temp table by implementing table statistics in my temp tables I could show them to you. What I’ve got here is ICD codes and what we can see is, range hi key is telling us what the upper level of the range is for this index and then range rows is telling us how many entries there are in that. So you’d read this by saying, SQL knows that between A000 and A69.2, there are 450 rows there. SQL knows that. SQL will use that kind of knowledge to try to give you an efficient query if you asked for information based on ICD codes. But speaking of what kind of knowledge that SQL has about the tables, the most important thing that it knows and the most critical tool in your performance toolbelt is partition elimination.

Some I’m going to do this on from scratch as if you have no idea what partitions are or what partition elimination is. This is a picture of the Encyclopedia Britannica. Encyclopedia Britannica is organized with entries stored alphabetically. It is stored alphabetically across multiple volumes. The volumes are labeled right there on the spine with the endpoints. That’s important that they’re labeled right there on the spine because it means that if you know the entry you’re looking for, you can look at the spines and pull only the volume you need off of the shelf. You don’t have to even open any of the other volumes. You just pluck that one that you want off of the shelf. So in this case, we’re looking for London. We know that London is in 14 because we are reading that down here off of the spine. The SQL stores the CDW fact tables in the exact same way as this.

In the context of the CDW, we’re going to call these partitions instead of volumes. But they’re the same thing. So in this case it is not the Encyclopedia Britannica, it is Outpat. Visit. In Outpat. Visit, the entries are stored by date and the partitions are labeled with the endpoints. Again the critical feature here is that the endpoints are labeled right there on the spine. Though SQL doesn’t even have to look at what’s inside, it can just go straight to the right one and pull that one off the shelf and not touch any of the others. So just like we did with the Encyclopedia Britannica, we can sort of mentally think to ourselves, oh, okay. We want a visit January of 2018. SQL knows that that’s in volume 75. It’s going to pull this volume by itself and not touch any of the others.

If you remember this principle, your queries will be much much better. This is the biggest most important performance tool that we have to make our queries work correctly. If you imagine somebody telling you hey, can you go to the encyclopedia and pull an entry and they tell you something about the entry that’s not its name, just like something else about it you’re like, what? You want me to pull every single book and read all the way through? Read every entry to find this? It would be totally unreasonable. With SQL, it’s kind of the same thing. It’s pretty unreasonable to expect SQL to read through every single entry across every volume to find what you’re looking for. So you really have to use the partitions.

Now one last thing while we’re on the tree trunk. Researchers in particular have to translate object names and that’s because if you are doing IRB research with provisioned views through the normal DART process that VINCI creates reviews, you are going to have to translate the object names. So every time I talk about how to look up information about partitions, about indices, using metadata all that kind of thing, they will look like this. Those resources we’ll be talking about stuff like CW Work. Outpat. Visit. And so you, it is up to you as the research analyst to know that this translation is happening. It’s not the Outpat schema for you. It might be the SRC schema and instead of the Visit table, it is Outpat_Visit.

This translation piece is happening, but just know that all the partitioning and indices and everything still apply. And if you tune into for example, this whole SQL office hours, which I’ll have a link to at the end at the resources section, just have to remember that you’re going to have to do this translation piece. You’ll be seeing tips and tricks and best practices. They’ll all be in the context of this upper format, and you will have to use them in the context of this lower format. Also, your execution plans have an extra join to cohort. They might also have an extra time range. So for that reason, I’m going to be showing execution plans using the top format because I want fewer operations so that it’s a little clearer what I’m talking about.

Alright, tree trunk stuff done. Let’s finally talk about actual best practices here. The central pillar of being a responsible CDW user is simply, don’t be greedy. That’s all it is. Just don’t be greedy. Select the rows you need just like the columns you need and that’s it. So you look at your query, you got a select clause at the top, look at that select clause and think, do you need all those columns? If you have a star like this and you’re using a fact table like this, the answer is almost certainly no. No, you do not need all the columns out of a fact table. There’s a ton of columns in ever fact table, and frankly, some of them are not that useful. You do not need all the columns out of a fact table.

So you should not use select star. Instead, you should particularly select the columns you’re going to use. Put those ones and only those ones into your select clause. And you can iterate on that process. You can have more columns and then refine your results and then once you’re happy, then you reevaluate. Do I still need all these columns? Maybe no, I don’t. Maybe you will chop it down further. So that’s an iterative process. Similarly in the where clause, here instead of trimming down our results horizontally and getting fewer columns, we use the where clause to trim vertically and get fewer rows. So you look at the where clause and you think, do I really need all these rows? Again, the idea is just don’t be greedy.

So that’s the central pillar, but like I mentioned, the most important tool is partition elimination. So this is the thing that I was talking about with the Encyclopedia Britannica. CDW fact tables are partitioned typically on a date like I showed you Outpat. Visit. How do you use partition elimination? Alright, so partition elimination is the phrase that we use to mean, SQL can pull the volume you want off-the-shelf and only that volume and it will ignore all the other ones. So if partition elimination is being used, that means it's correctly using what’s written on the spine to pick a certain partition or set of partitions for you. How do you figure it out? You use metadata.

So this is the metadata table that you use. It contains one row per table that exist in the CDW and filter it various ways by the viewed name or by the schema name, et cetera. And what you want to pull out is the partition key—hat’s the column being used—and the partition key data type because you have to match the data type exactly in order to allow your colleague to use proficient elimination. So the process is just like this. You write this query we can see on left here to pull the partition key and the data type. You see that result, in this case we’re looking at appointment and then when you use the corresponding facts table, you’re going to want to put that in your where clause. Again, you have to convert, so we’re using the data type here. We’re converting to the right data type. And this is how you enable SQL to use partition elimination, which will dramatically increase the performance of all of your queries.

So how do you know if you’ve done this correctly? Remember how I moused over operations earlier? We’re just doing that same thing again here. So in this case, I can see this operation up here is a column store index scan and you can see that it’s on an appointment object. Typically, when you’re heading a fact table, you will see an operation that looks like this. You mouse over that object, and you see at the bottom that it says, seek predicates. Seek predicates is what SQL uses for its partition elimination. So if you see this, you know that it worked. But next best practice. Use temporary dimensions.

It is very useful to build yourself temporary dimensions and save just the SIDs that you need. And what that will allow you to do is rapidly iterate on queries that use only the dimensions. And you can run with wildcards with other stuff. You can run them over and over again until you’re happy with the results. And then instead of taking all the wildcards and whatever logic in or not in you’re using in the dimension and doing that while joined to the fact table, you instead save the SIDs you want based all that logic and then you join to the fact table using only the SIDs that you saved. So in general, because fact tables are huge and unwieldy and dimensions are tiny and fast, you should try to keep your wildcard searches on dimensions only and avoid using any wildcard searches on fact tables. You can use the same kind of trick for temp tables full of patient cohorts. So you can save temp tables out with patient ICNs or SIDs or both and use those to join to fact tables down below. Let’s look at an example of that.

These are the two queries that we looked at the execution plans from before and you might have noticed that the top one was something like two or three times more expensive than the bottom. And again, they get the same results here. I’m not going to show you a lot of examples where the results change. It’s just that the bottom one completes a lot faster because it’s a lot easier for SQL to perform this bottom type query than it is for it to perform the top. And that’s just because when we do this join using the fact table, this wildcard dramatically increases the cost of what we’re doing. Whereas, using the wildcard when we’re touching the dimension by itself is supercheap. So this is the best practice.

In my opinion, you should pretty much always treat your code sets this way, your ICD codes, CPT codes, health factors, your lab chems. All of those kinds of codes in my opinion, you are best off treating them this way. It’s useful not just for performance reasons, it’s also useful for any kind of further processing you might want to do. Say you have a bunch of codes here and you want to put them into buckets, you can add your case when right up here to bucket the codes into whatever categories you want. And then down below, you can use that bucket that you’ve already created. Again, that type of preprocessing is very expensive to do as part of the fact table hit, but it’s very cheap to do as part of the dimension. It’s cleaner and easier up here iterate across different kinds of case plans or different kinds of buckets or whatever. And you look at…once you’re happy with what you want, then and only then do you go to the fact table.

Alright, next best practice. Joining multiple fact tables in one query is not generally recommended. If you do it correctly, it’s okay. But in general, I don’t recommend that you do that. It is typically better to refine a cohort over multiple queries. I’m going to briefly step out of my performance only and not correct this mode here just to say, one of the more common incorrect type of query and practices I see of new research analysts is doing this incorrectly. If you want diagnoses and procedures for example, and you want to find patients who had both a certain procedure and a certain diagnosis and you’re doing a nationwide level study where you’re dealing with going across stations, if you join those fact tables together directly, the thing that they join on is patient SID. And that means that you will be limited to only cases where the patient got the procedure and diagnosis of interest in the same station.

If you want to be able to find them across stations, you have to use your crosswalk to traverse the ICN and SID interface. And it’s much easier, it’s much more straightforward to do that and to be sure that you’re doing it right if you just do these things in different steps. So you just hit one fact table at a time, you pull out the SIDs and translate them to ICNs. You can take all those ICNs and get all the SIDs for them and then hit the next fact table. So it’s just much easier to be sure you’re doing the right thing. Now back into performance mode. It is also much easier to make sure that you are being efficient and safe with your creative practices if you do it that way. The main reason why that is, is that people don’t always use the partitions for multiple fact tables. So let me show you an example here.

If you do use multiple fact tables in one query, remember to use the partition key for each one. This is counterintuitive for people sometimes, because it doesn’t change the results. So on the screen right now is two different versions of a query. And again, I’m showing the two execution plans and you can see the two different costs here. So this top one is five times the costliness of the bottom one and all I’ve done is I’ve added what’s shown in the box at the bottom is extra visit date time filter. But if you notice, I’m joining on Visit SID, which means that the records I’m joining together, they refer to the same visit. But if it’s the same visit, then of course it happened at the same time. The same visit doesn’t get multiple visit date times in different tables. So it might be counterintuitive that you would add this boxed requirement here because you don’t expect it to change anything about the results. And indeed when I run these two queries, they do return exactly the same rows. It’s just that the bottom one is way faster because SQL doesn’t know this is an example of your colleague not having context and common sense of where it is. Your colleague doesn’t know that those will always be the same.

So from your colleague’s perspective, it’s using what’s on the spine to grab exactly the right records out of V diagnosis, but when it comes to V provider, it thinks it has to look across every single volume. Even though that table is proficient in the same way, using visit date time, SQL doesn’t know that that’s the same. You the human know that that’s the same and so you have to help your colleague by putting in this extra requirement because you know the visit date time is the same in both places, but your college does not. This is going to be the first example of a few where you’re adding something to your query not for correctness, just for performance.

Alright, let’s talk about functions. The functions are one of the main ways that people prevent SQL from using partition elimination. In general, you want to avoid using functions on columns especially in the where and the join clauses. In the select clause is okay. So instead of putting a column inside a function, what you do is you compare the column as is to a function. Though you can treat functions like math. You want to do all the math away from the column, but it’s okay if it gets complicated because remember, your colleague is good arithmetic. The bottom line is the column should be by themselves on one side of the operator. Your where clause should look like column, operator, other stuff. It doesn’t really matter what the other stuff looks like. Well, it does but right now, you want it to be column, operator, and then other stuff.

If you’re comparing two columns to each other though, you will sometimes need logic applied to one of them. So this is a common pickle that I hear research analysts talk to me about where they have some kind of comparison they need to make between columns, and it doesn’t seem like they can do that without a functional on the column. So here’s the rule of thumb. Leave the fact table columns as it. If you’re comparing a fact able to a dimension, put the function on the dimension sides column that’s not super costly. That’ll be okay. Leave the fact table columns as is. In particular, you must leave the partition and column as is. Don’t change that one.

If you do anything to the partition column, then you will prevent SQL from using the partition and then you’ll force it to read across all the rows, across every partition _____ [00:31:43]. In general, the best way to accomplish these kinds of column-to-column comparisons is to just pre-do that logic. So you do it in CTE or a temp table. You prefilled or you pre-calculate. That’ll mean moving your functions into the select. So you’re doing the functional column in the select clause of a previous query so that you don’t have to do it in the join or where of your next query.

So here’s an example of that. In this case, what we want is visits from the calendar year 2020. And you could do that this way to get the right result, but it would be very slow. So you change this top one into what we’re doing down here on the bottom. In this case, what I’ve done is I’ve used a greater than or equal to and then a less than and in both cases, I’m converting an explicit date into a date time to for this comparison to work correctly. Note that same function on a column up in my select clause. This is fine. Totally fine to use functions on columns in the select clause like this. Especially avoid functions like the date diff.

Date diff is a function that seems like it should be really useful because it has an intuitive seaming function. You’re like oh, yeah. I want to compare these two date columns. I’ll use date diff. Date diff is garbage frankly, and you should almost never use it. Not only is it not intuitive, not as intuitive as you think in terms of the results, it’s really bad for performance. It is borderline impossible to convince SQL to run an efficient query when you’re using date diff. So in this case, it’s extra bad because you’ve got multiple columns in the same function. At the very least, you should be splitting columns onto opposite sides of the operator. So let’s look at how you would do that.

Typically date diff will become a date add. Thought what we’ve got here is date diff and then we’re going to do a date diff in months and we’re comparing appointment daytime to today. That data is function it gives you today. And then say between and we’ve got some numbers in there. In this case by the way, these two queries don’t return the same results because of the way that date diff calculates…date diff for a month is actually going to say, are the two dates in the same calendar month? If so, result zero. Are they in a calendar month that’s next door? If so, give result one, et cetera.

So today’s the eighth and a day from seven days ago or the beginning of the month of the first it’ll give a zero. But one day before that, and it sort _____ [00:34:45] the one so it’s integer output. It’s not useful. It’s hard to get the correct result that way and it will always be inefficient. So what you do instead is use date add. So what we’ve got here is, we are inputting…got date. That’s today’s date. We’re date adding month minus one which means, go a month into the past and then take that result, convert it into the daytime two and finally compare it to appointment daytime. So this bottom query is good. It gives a more intuitive result and performs much faster.

And I don’t know why you would write a query like this, but just to illustrate how persnickety SQL is about the partition columns. Even this simple plus one over here is enough to prevent SQL from using the partition. So these queries have the same result, but the query on the right is something like one twentieth the cost of the query on the left. Even this simple plus one breaks SQL’s ability to use the partition. So the patient table is partitioned by station, and it can’t…SQL doesn’t know how to do algebra, So it can’t look at this and say, oh, you’ve got a plus one next to the column. I’m just going to make that a minus one on the other side. It can’t do that. SQL can’t do algebra. So this breaks the partitioning. So SQL just really wants the column by itself okay. that’s what your colleague wants you know is, please just put the column all by itself.

But even though he can’t do algebra, he’s good at arithmetic. So you don’t have to worry about functions and math getting complicated. This is an example of using your colleague’s strengths as strengths and avoiding their weaknesses. So instead of having any algebra in there, you can do any of these things. Alright so here’s an example where I just got a whole located pile of things. I’ve got nested functions and I’ve got math in there. It looks like kind of a mess. Totally fine. SQL is fine with this. Or you could do that same conversion and math and stuff as part of a local variable. This is a fine query too. Or you could do the calculation yourself and just put out the exact value that you’re looking for. Also totally five. All three of these grades are efficient because you’re using your colleague’s strengths as strengths here. So one more time just to make sure that functions and math are isolated from the columns if at all possible.

Alright, so here we’re going to start getting into some queries where it is not so straightforward how to do what I’m telling you to do. So I keep saying you got to use the partition key. We’re going to look at some queries where it’s not obvious how to get SQL to use the partition key. So in this first example, we are using the inpatient table and in the inpatient table, the discharge date time is the partition key. So I want recent hospitalizations. I’ve got this where discharge date time is after and then put in date. This is a fine query. It will run quickly. It’s fine. But what if I want to include the patients that haven’t been discharged? But discharge is the partition key but it’s totally realistic for there to be no’s in that column if the patient is still in the hospital as of last night when the ELTs populate all the new data. If they’re still in the hospital, they have a null discharge date because it hasn’t happened yet. So how can I bring that information in? Here are a couple of examples queries that are almost exactly or very much like what I’ve seen in the wild were people try to solve this problem.

So first thought, what if we use an _____ [00:38:43] function? What we’re doing here is we’re replacing the null discharge dates with today and then we’re comparing that to our date time that we wanted to use for a comparison. So this is no good because putting the column inside the function is going to prevent SQL from using the partition key. This is a very inefficient query. Don’t run it. Plus there’s some weird old records with no discharges and so you get suspect results this way too. Alright, so here’s a really common way of doing it in the second example. What I’ve got here is an or. So we’re going to say okay, well, we’ve got this time cut off. Let’s say if there is no discharge date well, then at least give us the record where the admit day time is after that.

So here we’re running into our colleagues weakness of contact to get. This is intuitive as a human to read this because we know that discharges are after admission. Your colleague does not know that. So when your colleague reads this pair of predicates with an or, it can do the checking very efficiently for the first part for the discharge date time. But to include additionally everything that’s in the second predicate the one after the _____ [00:40:01], it’s going to re-read through every single partition. It’s going to go through every single record not looking at the spine because SQL doesn’t know that the discharge is supposed to be after the admission.

So this bottom way is the way to do it. We still have an or with sort of two different predicates going on, but this time, we are explicitly telling SQL in the second one instead of looking at the admission by itself, let’s only look at the admission if the discharge date time is null. So in this case, we’ve still got the or so there’s two different things happening here. But in both of them independently, we are using the discharge date time in a way that will allow partition elimination. So this third one is the good version that gives you a good result very efficiently. In general, the generalized sort of best practice here is, when you have ors and you’re using them to deal with something like this, just make sure that you’re using the partition key independently inside of each different predicate that you’re using.

Alright, here’s a couple more recommendations. I don’t have time to get into examples of all of these, but here’s a couple more. If you use many similar subqueries, I’ve seen a bunch of queries that have lots of subqueries either in the where clause or in the select clause to make a flat file whereas you’re de-normalizing. You’re getting a really wide result. If you have a lot of similar subqueries, you are almost certainly better off trying to do that logic in a prior step. Either in a CTE or a temp table or something and then down below when you’re putting everything together, you can just efficiently join instead of having to go back to the well over and over so to speak. Multiple subqueries inside of the same query, will essentially force SQL to reevaluate all those different subqueries every time. So you get significant savings by doing it once and then using those results _____ [00:42:11].

Similarly, if iteratively create many temp tables while refining the data set and like I mentioned earlier, I do recommend this approach of refining data sets using sort of separate queries and separate fact tables. It’s common to end up with more big temp tables than you need. So maybe you go from table A, and you make a temp table, and you say, alright. From table A, join to something else and do another into and make another temp table and maybe do that again and again and again. Now you’ve got five big temp tables. And if there small, no big deal. If they’re millions, then you’re both using up way more temp space that you need and that’s a shared resource for everybody. And it’s not necessarily going to be efficient querying. So consider using an update. You can just update the same tables.

One good approach is to design the table you want first. So _____ [00:43:08] into, you’d create the create table with all columns you want and then you can go through it iteratively fill up that table with what you need. Or alternatively, turn those steps that were creating all the temp tables into CTEs. CTEs will behave kind of like temp tables except that they go away right away after you’ve used them. So you could make those iterative steps CTEs instead and then put all the result into one big table at the bottom. I don’t have time for examples of all that. I’m going got go through an example where it is not straightforward how to convince SQL to use partition elimination. And along the way, we will get a couple of different lessons learned I help.

So in this example, we are using date diff, we’ve got an absolute value, so you know based on what I’ve already told you that this top query is bad. We know that query is bad. Date diff is garbage. We’ve got functions and columns, it’s like, this is clearly bad. It’s not going to use the partition key. So instead based on what I’ve told you so far, you would change it to the bottom version. But note that what we’re comparing to is also a column. It’s this temp. index date. So will SQL use the partition key here? And if not, what can we do? So first step is check out the execution plan to see if it’s using the partition. So we mouse over…what I’m doing is mousing over this operation. And I don’t see seek predicate. Remember in our example where the partition elimination was being used, there was a seek predicates at the bottom? This time no see predicates. So Homer is not happy with this, neither am I.

Why not? Well, remember the metaphor of pulling only the volume you want off the shelf? If you’re going to do something like that, it has to be the first step. Because remember, the whole point is that you’re pulling off the right volume having not looked inside of any books yet. And so that’s the whole point that has to be done first. So in this case, you can’t do that for something that’s being evaluated every row and that’s because the joint is going to happen here. And then this comparison is going to be…need to be made for each row because you’ve got columns on both sides. So maybe it’s natural to ask, should we even be using the partition? Let’s do some human context exploration. So let me pull the minutes max index date using date add to get a month before and a month after because remember, on the example query that’s what we’re doing is we’re checking for visits within a month of these index dates on either side.

So I do that minute max, and indeed, look at my narrow range. So we should use the partition. But how? A good query plan here would use those max and min dates to pull just the right partitions off the shelf and then to the rest of it. This is the sort of thing that your colleague can’t do. This kind of contextual do this part first, look at what you’ve got, and now decide on the plan. SQL can’t do that. So how can we help? One intuitive thought would be to create an index. Another intuitive thought would be to create statistics. Both of these things again, don’t help so here’s another option. Let’s try this one down at the bottom where I add another requirement where I say select min in a subquery. This also doesn’t work. Are you surprised that that last one didn’t work?

If you replace the index date in this query with, get date or function out, SQL would be able to use the partition elimination. And it seems obvious to us as humans that this should work because select min is only going to give you one value. The select min subgrade only gives you one thing. It’s not going to be different for each row. But again, that’s the sort of contextual information that SQL doesn’t know. SQL doesn’t know to do this part first. So what are some intuitive ways that you might ask SQL to do that part first? Here are things I’ve heard people suggest in the past. How about we move that line up to be the first thing in the where clause instead of the last thing? How about if we change it in the join order to use that first? Or how about if we move the where clause criterion altogether into the join clause?

None of these things are going to make any difference. Because again, your query is merely declaring what you want. You are not telling SQL what to do. SQL decides for itself what to do. That applies to the join order, that applies to the order in which the where criteria are applied. My SQL decides for itself what to do. So you can change the order around here all you want, doesn’t make any difference to the execution plan. Does that mean order doesn’t matter? Yes, it does. Yes, it does. Remember that your script should be readable for you and other humans. This is a nice thing about SQL syntactical flexibilities that you can write queries that are readable. But it doesn’t matter to your colleague. It doesn’t matter to your colleague. So what can we do? Here’s the actual solution that I would recommend in a case like this.

Go ahead and use a variable. So up at the top, I’m declaring a variable. I’m going to go ahead and use those subqueries like I showed on the previous screen and just read those into variables. Once this is done…this is a separate query from down below. Once this is done, now these are single values that SQL knows are single values and are precalculated. Now when I use them in the where clause, we will indeed get proper partition elimination and we will get a much faster query. Note again that this is another example of adding more criteria that don’t change the results. If this top part is true, then obviously this third one is also true. But we’re adding it there purely for performance reasons.

As a brief aside, in general, using variables in your SQL script is a bad habit. It’s a habit that we bring with us from other programming languages. If you’re used to Python or .net or R or almost anything else, you’re used to using variables for everything. In general, SQL scripts are better off without variables. They’re not a good habit. You should minimize the use of variables. But in this kind of context where you are trying to convince your colleague to do a certain part first, they are very useful. You don’t have to do it this way. You could have precalculated in a different way for example with a temp table, RCT or something. But because the max and min dates here are single dates, just to single values, I think that using a variable in this case is totally reasonable.

Alright, so that was the most complicated example we’re going to look at. I’ve got a few more tips and tricks for you before we are done here. First bad estimates. Now I mentioned that those were just estimates and then we saw an example of them being slightly wrong. Here is a case of them being egregiously wrong. I’m going to use some background knowledge that maybe you don’t have right now, and say, I can tell this is a terrible execution plan because I know that nested loops are a good join operation for small numbers of rows. And a bad join operation for big numbers of rows. And what happened here is that SQL decided to use a nested loop because it only thinks it’s going to get one row. But because it’s going to get way more than row, this query is probably never going to finish. It’s going to site there spinning and spinning and spinning and spinning trying to do this nested loop operation. This sucks.

So what can you do about something like this? Here’s an example of a warning. If you see this kind of warning, you mouse over, and you’ll see the warning displayed to you in that pop-up. In this case, it’s saying that there’s a column with no statistics. So this is the reason why I was getting bad estimates on the previous screenshot. This is the same query plan but taken from a different part of it. If you see this in your own project or temp table, you should consider indexing or potentially reindexing them. The other thing you can do about bad estimates is to add more criteria on an indexed column like station.

So remember sometimes we want to add criteria that don’t change the results just for performance. If you filter to just the ICD-10 SIDs of a certain station, then you know that when you use those in the fact table, you’ll only get results from that station. But you will change the estimate that SQL gives you if you also used the station as a predicate in that fact table hit. This does not necessarily always increase the performance of the query. Before we had CCI implemented across the CDW, it always did. You always wanted a station in every single fact table hit. Nowadays, adding the station is not necessarily going to improve anything. Generally, it doesn’t hurt. But the cases where it does improve stuff, it’s because of this. It’s because it’s giving you a better estimate and that will allow SQL to choose a better plan for you.

So the way that you can identify problems like that, that last one is using live query statistics. Here’s a bonus tip. Earlier I talked about the execution plan button that’s this. The best practice is to use that button to look at the execution plan for every query you write before you write the query or before you run the query, you look at the execution plan. If you have the discipline to do that every single time, then I applaud you. I’m a realist. I live in the real world; a lot of people don’t do it every single time. I don’t do it every single time. But here is the compromise that I will offer you. Turn on this. Live query statistics. It is a toggle. So it won’t do anything right when you click it except to be highlighted like it’s show in the screenshot here.

Once that toggle is on, then for any query you run, it will show you the execution plan and animate it. So this is live animated if you saw this in SQL, the dotted lines would be moving indicating that it’s still feeding the rows along. And then it becomes a solid arrow like this when it’s done. And you’ll see these numbers ticking up, up, up, up, up. But here’s the compromise. Turn on live query statistics and then spend the first five or ten seconds of the query’s run time looking at the execution plan. If you see any of the little red X, then you’re probably missing some join criteria. You should stop the query, fix it, and then try it again. If you see the warnings, you should mouse over and get some more information. You should probably stop query and rerun.

And looking at the live, you will be able to identify problems like this. Crazy bad estimates giving you bad stuff. Theoretically, you could know that you have bad estimates when you look at the execution plan without running it, but that requires you to have a really solid understanding of the data that you’re looking at for you to be able to predict the number of rows better than SQL. I don’t think that’s an entirely realistic expectation for a research analyst. So instead, use the live query statistics and it will show you if your query is really going sideways and you’re getting percentages way up into the thousands, you should consider stopping that query and fixing it. Adding more predicates or fixing the join somewhere or something like that. So use live created statistics just of like the compromise.

Key takeaways. The central pillar of being a good CDW analyst is to not be greedy. The most important tool you have for efficient queries is to use partitions. You should separate functions and columns whenever you can. And you should work with your colleague. You have strengths and weaknesses, so does your colleague. I’m going to go over some resources real quick and then we’ll have just a few minutes for questions. So some VINCI resources. VINCI University will get you all kinds of information and training materials about VINCI stuff. The VINCI eventually training, and office hour page has a link for the office hours. It happens every Wednesday at 3:00 eastern, but also some different training hours. In particular, I recommend this managing research data one because good queries are a two-part process. It’s both good queries like we talked about here, and good underlying objects those queries hit. Public awareness all clear for the water outage. Okay. Alright, I’m back.

So this is a companion training hour because it’s about how to be responsible with your table creation inside of your study database. So if you create bad tables that are huge with no indexes and stuff, then here’s not going to be any good queries you can write against those objects. And so sort of a companion training material. Lots of good BISL resources about querying, so here’s the query best practices. There’s the six steps. The BISL training page has lots of good links. The SharePoint search function works really well on that website, so go up to the top and type in things and you’ll find lots of resources. Especially SQL office hours on Tuesdays and Fridays, super useful.

Again, remember that you have to do a translation piece between the objects they’re using and the objects that you have in your study database. One last resource. This is a book about execution plans. It is free, so go to this website, download it, keep on your virtual bookshelf. It’ll have lots more information about those different operations and what they do and what they mean and what you can look for. And I have taken basically the whole time. I apologize. You can always reach out to me directly with questions if you want. vinci@va.gov is a resource as well. And I guess we’ll take; I don’t know a couple of questions. Rob what do we have time for?

Rob:	Well, we’ll get as many in as we can. And we can go over by a couple minutes if it’s okay with you. First up, is it better to use temp tables versus CTEs?

Andrew:	Great question. There is no one-size-fits-all answer to that. If you have troubles with one or the other from a performance perspective, it’s worth trying the opposite one. Remember that you can make indices on your temp tables. So if you’re working with lots of records and that’s why your CTE is slow, it’s worth changing the CTE into a temp table and putting an index on that temp tables so you can more efficiently use it in the next step.

Rob:	Thank you. Regarding adding multiple date time filters, when is the redundancy redundant or is adding all possible date time filters good for performance and not deleterious in any way?

Andrew:	You should always do it when it will allow for partition elimination. If the query has partition elimination in one version but not the other, that’s the time when you always do it. If you are already getting good partition elimination, then further filters will typically only help if they’re limiting your results better. So it just comes down to not being greedy. Don’t return rows you don’t need and use partition elimination if at all possible. Those are the principles that help you decide if more criteria are warranted or not.

Rob:	Thank you. I think I know the answer to this one is a yes, but this person is asking, do the va.gov links in the slides only work on a VA machine? Those are public links, aren’t they? Intranet.

Andrew:	I believe that those are all intranet sites. Certainly those BISL _____ [00:59:37] SharePoint links are. The external one, this one is certainly not. This is just a website that you can go to.

Rob:	If you create a subset temp table of a large view, do the partitions get inherited or recalculated for the subset or does that have to be added manually?

Andrew:	Yeah, great question. So views will inherit the index information of other views because you’re just hitting the underlying table. This idea applies to the partitioned views in your study database. But tables temp or otherwise do not behave that way. So if you create a table in your study database or a temp table, you do not get any of the indexing and compression that existed on the underlying object, and it would be up to you to implement those yourself. Though, one of many reasons why views can be really useful compared to tables.

Rob:	This one is a long one so bear with me. I’m working on a project that uses a date time variable that isn’t the partition column. I am working with the appointment table, and I know the petition date is the appointment date time, but my requirement is to use the appointment made date to pull my data. What would be recommended in these situations? Is it fine to use my where statement with appointment made date?

Andrew:	Yeah, so it’s a two-part answer. One, the best practice is to use your contextual awareness as a human to attempt to use the partition key anyway. So for example, if you need all the appointments that were made after a certain date, January 2017, who knows. Whatever. Go ahead and add that the appointment date time is after that date as well. Because the appointment date time should be after the appointment made date. You as a human know that SQL doesn’t. So you would put that in, and it would allow you some significant savings because you’re going to use the partition. So if you can, you should just use the partition anyway based on your knowledge of the way that the date times compare to each other and what your time window looks like. That said, if you omit that partition key and you look at the execution plan and it’s safe, it’s in the hundreds or something, then it’s okay. You should always use the partitions, if at all possible, but sometimes you can’t and that’s why you just have to be responsible about looking at the cost before you run stuff.

Rob:	Thank you. I’m not exactly sure how to read these, but again, bear with me. For datatypes, is using it looks like cast open and close paren as effective as convert? Same thing. Same symbol.

Andrew:	Yeah. Yeah, same thing. That’s like ANSI standard syntax versus Microsoft syntax. Doesn’t matter. Use either one.

Rob:	Okay, thank you. Let me look through the chat because those were all the Q&A questions that we got, but oftentimes we get a number in the chat. It’s a little bit harder to navigate. Does the location of the where for the partition key matter? I’ve seen it both as the end of the query but also nested within the joint statement.

Andrew:	You probably have seen things in the joint clause instead of the where if they’re left joins instead of interjoins. Remember the left joins are supposed to have nulls on certain columns if there’s nothing in there from the right-hand side table. And so in order to use the partition key on the right-hand side table if you’re left joined to that table, you have to put that predicate in the joint clause. If it’s an inner joint, then it doesn’t matter if you put that predicate in the where or the joint. Doesn’t make any difference. That’s the kind of thing that SQL is going to do it its own way for you no matter what you do. But if it’s a one-sided, it’s a left join, then it does matter and you for correctness should put in the join clause.

Rob:	Thank you. How do you saved temporary files to join later within SQL?

Andrew:	How do you save temporary files? Well, you can make a temp table by using an into statement. Let me see. I have an example on one of these screenshots. Maybe not. Into is the keyword that you use, so it goes after the select and before the from. And then you would use that…oh, I know where I’ll have an example. Up above in the Dim one. And then you would use that in the exact same way as you would use a normal table. So here it is. So this is the into to select into a temp table and then you join it down below as if it was any other kind of table.

Rob:	Neat. This person is asking, can we get the links for the references at the end of the presentation please? And I think if you download the slides and I just put the link to download the slides, you should be able to use those links within the slides or at least copy them out of the PDF and paste them in somewhere. But that was the last of the questions. Right. Yep, that was the last of the questions that we have. Would you like to make closing comments Andrew before we close?

Andrew:	Nope. I would like to thank you all for your attention of course and for being responsible stewards of our shared resources. If you get a lot of queries killed against the research servers, then you are in danger of having your access terminated. You’ll probably get email from me offering to help you out. So please be responsible. If you getting queries killed, remember to change them and try to implement some of these best practices before you rerun them. And you can always come to the office hours with me the VINCI one or the BISL one or email vinci@va.gov for help with those kinds of queries. Thanks everyone.

Rob:	Well, thank you and VINCI for all that you do and for preparing and presenting today. Attendees, when I closed the webinar momentarily, a short survey will pop up. Please take a few moments and provide answers to those questions. We do count on them to continue to provide high-quality cyber seminars such as this one. Once again, Andrew Holbrook, thank you for today. Have a good day everybody.

Andrew:	Have a good day.
Page 1 of 5

