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Rob:	I'm sorry. If you’re looking for slides, there were links in the email you received approximately four hours ago but I’ll be putting those in the chat. And it’s now 2:00 so, I'm going to turn things over to our host, Todd Wagner. Dr. Wagner? 

Dr. Wagner:	Thank you, Rob. So, I'm Todd Wagner. I direct the Health Economics Resource Center here in Palo Alto. Today the class is Quantile Regression and I get the great honor of presenting Diem Trans. So, Diem got her PhD at the University of California Los Angeles in 2018. Her dissertation was The Impact of Gentrification on Adult Mental Health. 

And then, she was a postdoc scholar here in Palo Alto and at Stanford, and I had the pleasure of working with her. And then, we were able to hire her as a health economist and investigator here at HERC. So, it gives me great pleasure to introduce her. And then, she and I have been luckily able to work on a bunch of projects together so, this is great.

And what I’ll be doing is monitoring the Q&A. So, if you have questions as Diem is presenting, please type those into the Q&A; not the chat where Rob is entering information now. There’s a separate panel for Q&A. And I will either answer those questions or I will ask Diem when she takes some pauses to answer those questions so, that’s how it’s going to work. 

So, Diem, I’m going to pass it over to you. 

Diem Tran:	Thanks so much, Todd. Hello, everyone. I'm Diem Tran. Thank you for joining us today. 

So, today’s seminar will provide an introduction to quantile regression. If you’re very familiar with this modeling approach, you might find that the information presented would be too basic. But if quantile regression is new to you, I hope that you will find this seminar to be useful.

Here is an outline of what we will cover today. I will first introduce quantile regression and then, review classical ordinary least squares. Then, I will describe what quantile regression is and how it is similar and different from OLS using an example by Hallock. 

I will then summarize some features of quantile regression. We’ll walk through estimating quantile regression together in Stata, go over some key points when interpreting the estimates of quantile regression, and then, I will share some additional examples of how quantile regression has been used in research.

Quantile regression is a statistical modeling approach introduced by Koenker and Bassett in 1978. This model estimates the association between X, the explanatory variable, and the dependent variable Y at various points in the conditional distribution of Y. 

So, in quantile regression, Y is usually continuous but it has been adapted for other data types like count and time to event data.

Quantile regression can be considered an extension of classical least squares estimation and I will show why later in the slide.

By itself, quantile regression does not address endogeneity so, that is something to still keep in mind. If you want to know more endogeneity, I would like to plug Dr. Kritee Gujral’s seminar on instrumental variables. 

So, here, we’re going to quickly review the OLS model. The conditional mean model predicts the expected value of Y given X. So, for each unit of i, we have an outcome variable Y. X is the explanatory variable of interest or treatment. E is the error term or the residual. And β is the change in Y associated with a unit change in X. To estimate this model, we minimized the sum of squared residuals; hence, the name “ordinary least squares.”

In many cases, we are interested in the conditional mean or averages. But what if we’re interested in more than the average of Y? Quantile regression can be used to study the distributional effects of a policy across household incomes, it can examine gender differences across wages, it can also look at price elasticity of demand for alcohol between light and heavy drinkers and that could be useful when you’re thinking about taxing and if that tax – and who that tax might impact more.

So, quantile regression models the conditional quantile function, the CQF, of Y given X. So, here, you have an equation that looks similar to OLS but instead of the expected value on the left-hand side, we have the quantile of Y. Here, this symbol τ represents that specific quantile. And I'm going to call it “T” just because saying “quantile of τ” is a mouthful.

And so, when we’re thinking about Q.25, we’re saying that 25% of the data have Y values below that value and then, 75% have Y values above. Another example is Q.25, which would be the median or the 50th percentile. And throughout the talk, I will say “percentile” and “quantile” interchangeably.

In summary here, though, in quantile regression, the relationship between the conditional quantile of Y and its Xs is linear.

Quantile regression also fits the linear model through minimization. So, in the case for the median regression where τ=.5, we minimize the sum of absolute residuals. And then, for al other τs, all other quantiles, we minimize the sum of weighted absolute residuals.

When interpreting the estimates, the intercept is the predicted value for quantile τ of Y, given that the Xs equal 0. And then, β-hat is the change in & at quantile τ given a unit change in X, controlling for other factors in the model.

I want to go back to the interpretation of the β-hat. So, if our study population are people, β-hat does not imply that a person at that quantile will be at the same quantile as therapeutic intervention Xs change. So, more on that as I go through the examples. 

Our first example is a study of low birth weight. This study was investigated by Jason Abrevaya and then, revisited by Koenker and Hallock. The population were singleton births to a black or white parent, the person who gave birth, residing in the US. 

The outcome is birth weight in grams and there were 15 covariates where that included parent age, marital status, race, education, timing of first prenatal visit, etc.

The researchers estimated 19 quantile regressions from the fifth percentile where τ=.05 to the 95th percentile. 

Figure 4 in their paper plots the regression estimates for each of the 15 covariates. 

And here, we have the plot for parent equals – race equals black compared to white. 

On the X axis, we have the quantile and then, on the Y axis is grams. Each dot here represents the quantile regression estimate and then, the gray area represents the confidence intervals. 

For comparison, the OLS estimate is represented by the dashed lines and then, the dotted lines indicate the 90% confident limit.

So, we’re looking at just the OLS estimates. We would interpret that, on average, the weight of infants born to black parents is about 200 grams lower than those born to white parents controlling for other factors. 

We see here that the estimates at different quantiles deviate from that OLS estimate. And if we look at roughly the 10th percentile, the difference is roughly minus 300 grams. This figure suggests that the disparity between infants born to black and white parents is greater at lower conditional quantiles; in other words, at lower birth weight, infants born to black parents have even lower weight. And OLS underestimates the difference at the lower end of the distribution.

This is the plot for the no-prenatal care covariate. Again, OLS underestimates the association between no prenatal care and birth weight at low quantiles and overestimates at the highest quantiles. Because the quantile estimates and confidence intervals at the gray areas are outside the 90% confidence limit for the OLS at different parts of the distribution, we might say that the effect of no prenatal care on birth weight is not constant across the distribution.

Finally, here’s the plot for high school graduation. For this covariate, the quantile regression estimates and their confidence intervals overlap the OLS, 90% confidence intervals, which suggest that the effects of high school graduation on the weight of the infant is perhaps uniform across the conditional distribution of birth weight.

Features of quantile regression. Estimates from quantile regression are less sensitive to non-normal errors, as well as outlier observations of Y compared to OLS. 

Quantile regression works with skewed data. 

And this modeling approach is also invariant to monotonic transformation, which means that you can transform their Y, run a quantile regression, and then, re-transform back to the original scale. Sometimes when we’re running OLS, we might need to transform Y by taking the log, and this is common when we’re looking at cost per income. 

But after running OLS, if we want to transform the expected values back to the original scale, we need to use some kind of _____ [00:11:58] estimator, and this is not necessary for quantile regression. 

Outliers on the Xs can be influential in quantile regression. And as a reminder that quantile regression estimates may be biased due to endogeneity from omitted variables, sample selection, or simultaneity.

So, we might wonder, if we’re interested in the certain groupings of Y, what if we just create subsets based on its unconditional distribution and then run separate OLS models? 

And then, if you’re thinking about that, you might consider; does doing that truncation create sample selection bias? 

And then, two; sub-setting on Y artificially reduces the variation in our outcome, and that’s problematic. 

What if we want to create a dichotomous outcome from Y and then, use all of the data? Personally, I would recommend doing this if there is a meaningful cutoff. So, in the low birth weight example, there is a definition for low birth weight, and that is less than or equal to 2,500 grams. There are many studies that examine likelihood of low birth weight.

Another example is the federal poverty level, which is connected to eligibility for benefits. So, maybe that cutoff is meaningful and makes sense. But if you’re interested in like the bottom 25th percentile over time and that value will likely change over time, you might want to stick with quantile regression.  

Before I walk through implementing quantile regression in Stata, I'm going to pause to see if there are any clarifying questions.

Dr. Wagner:	Yeah, yeah, you’re doing a great job and so far, nothing on the Q&A.

Diem Tran:	Okay, thanks. So, right now, I’m going to walk through how to estimate quantile regression in Stata. I used a sample data set available from Stata and there are 6,000 observations in this data set. My dependent variable Y is wage in dollars, my explanatory variable of interest is an indicator for college degrees. I also have job tenure and age group as covariates. 

So, here’s my equation and here are the outputs from an ordinary least squares regression. The referenced age group is 20 to 29 so, I would interpret the constant as the expected or average wage for a worker age 20 to 29 with zero tenure and no college degree, and that value is $12.95. Having a college degree is associated with a wage increase of $7.55, controlling for age and tenure.

But wages and income are often skewed. So, maybe a typical worker may be better represented by the median as opposed to the average. 

So, here is the output for quantile regression at the 50th percentile or τ=.5. The _____ [00:15:21] data is qreg and I specified in the options the quantile of .5. You can change that to any other quantile between 0 and 1. 

I omitted the iterations to save space but you can see that the iterations stop at the minimum sum of absolute deviations or residuals of 6719. In this case, the constant is interpreted as the 50th percentile of workers age 20 to 29 with zero tenure and no college degree, and that would be $13.07. So, compared to the average, it is slightly higher. At the average at the 50th percentile of wages controlling for other factors in the model, obtaining a college degree is associated with a wage increase of $7.68. 

You can repeat the quantile regression for the 25th percentile and 75th percentile, or you can use the SQA command to simultaneously run multiple quantile regressions. _____ [00:16:35] estimate is done separately and then, displays the estimates in the table. So, constant represents the average wage, wage at 25th percentile, the median wage and the wage at the 75th percentile for, again, workers 20 to 29 just starting off with no college degree. 

Because the estimates for college degree are different across the different progressions, we might think that wage – the effect of wage is not homogeneous across the distribution of wage. One way to investigate whether the effects are homogeneous is to plot the estimates are various quantiles, and we’ve seen these plots in the low birth weight example.

I used the qregplot command to estimate quantile regressions from the 5th to the 95th percentile at 5% increments. A nice feature of this is that it can plot the OLS estimates and the confidence intervals as a reference. 

So, here are all my – for estimates for all my covariates. And on the bottom right plot, we observed that a greater effect of college on wages for those above the 80th percentile than if we had used the OLS estimate. Tenure seems to have a homogeneous effect across the conditional distribution. 

You can formally test the equivalence of quantile regression estimates and here, I tested the equivalence of estimates after a simultaneous quantile regression. In the first test, I tested the null hypothesis that the association between college and wages is equivalent at the 50th and the 95th percentiles. Here, the F statistic is large enough so that I can reject this statement with some confidence. 

In the second test, I tested the null hypothesis that the association between tenure and wages is equivalent at the 25th, 50th, and 75th quantiles. And in this case, I cannot reject the statement. 

Finally, you can also run interquantile range regression, which is a regression of the difference in two quantiles using the iqreg _____ [00:19:15]. Here, I wanted to estimates differences in associations between the 10th and 90th quantile. So, here is where you can change the two different quantiles that you want to compare. 

And then, the coefficients are difference of coefficients at these two quantiles. So, when I go to the coefficient on college, you see that there is a 68% difference in the effect of college on wages between 10th and 90th quantiles. In addition to P values, we get 95% confidence interval.

Want to return to interpreting quantile regression estimates or coefficients because they can be tricky. To quote Angrist and Pischke, “Quantile coefficients tell us about effect on distributions, not individuals.”

So, the β-hat does not move individuals away from the conditional quantile. It moves the distribution so that the value of that quantile is changed. 

So, let’s again think about the estimate for a college degree at the 95th percentile. Another way of interpreting this is that at the 95th percentile, it would be $8.42 higher if a worker had a college degree than if they did not have a college degree.

I'm going to pause here just to see if there are any questions before I go into more examples.

Dr. Wagner:	Thank you, Diem. There is a question. What would you do – and you might’ve answered this with your interpretation on the last slide – what would you do if, as you repeated your model for multiple quantile regressions, the explanatory variables that significantly contribute changed greatly? And then, would it be necessary to consider the fit or other things that you referred to perhaps the interpretation?

Diem Tran:	What is it that changed greatly?

Dr. Wagner:	The values of explanatory variables.

Diem Tran:	To the point of the quantile regression, right? We are assuming that if we use OLS, we see – we get one estimate. I mean, that’s saying on average, this is how the explanatory variable affects Y. 

We can see differences in how the explanatory variable affects the distribution of Y. So, maybe at the 10th percentile, college degree matters a lot. But then, at the 95th percentile, it matters not at all. And that is the information that we’re interested in because that’s how the different stories end if we just look at the average.

Dr. Wagner:	And then, what happens if you – just to clarify – if in one of those model runs, you see that the values, the covariate is significant but for the next quantile, it’s not significant? Or the next regression, it’s not significant?

Diem Tran:	Oh, I see. Yes, we’ll see that, actually, in this example suggesting that, just that very thing. So, if I go through this example, I would not – I would report that as-is and suggest that one; I would look to see if I had enough of a sample size because maybe that is influencing whether we see the significance. 

But two; if we do feel like we have a sufficient sample size and that our model is correctly specified and you don’t see a significant association, then, I would report that as a finding. But I would investigate it. 

Perhaps [interruption] if I go – if I go through this example and the additional examples, that would help.

Dr. Wagner:	Yeah, that would be great. And two other questions come in; one of them is just related to what you were just talking about, which was sample size issues. And could you speak a little bit to does quantile regression require bigger samples than OLS when you’re estimating these things?

Diem Tran:	Yes, it is true that quantile regression will require additional samples than if we were just running an OLS, especially you will need more – a larger sample if you’re trying to – if you’re looking at the extreme percentiles, right? So, if you’re looking at the 5th quantile or 95th quantile.

I haven’t seen a rule of thumb of how much you would need. I’ve seen a lot of suggestions for simulation but that is something to pay attention to. Your estimates – not only your confidence intervals but your estimates can be biased if you do not have an adequate sample. And then, as you go farther away from the median, your results will be more biased without an adequate sample size.

Dr. Wagner:	What I liked about your earlier figures – and not to suggest you should go back – is you plotted the confidence intervals in gray. And what was clearly shown there is that as you got closer to the edges of your distribution, you tend to get much wider confidence regions. Not always on these, for example, but there were some earlier ones that you presented where the confidence region gets – you know, so, if you look there, it’s going up quite wide early because you just don’t have a large sample. 

Diem Tran:	That is true.

Dr. Wagner:	And that makes sense because there’s not a whole lot of babies that survive at extremely low birth weights.

Diem Tran:	Yes, I do think that you’re using information from the full distribution but if you’re looking at that – but there is more emphasis on that condition, conditional quantile. And so, without additional – enough sample, then, you will have wider intervals. 

Dr. Wagner:	I have one more question, which has to with a result that you were sharing. So, let me just ask this and you can clarify and move on to the next example, which is the $8.42 increase. Is that the marginal effect of the 95th percentile to the 10th percentile or the 90th to the 10th? How exactly – could you just be a little bit more precise in what that estimates?

Diem Tran:	Yeah. So, it is definitely not the marginal effect. So, I do mention this later in the slide and it becomes more difficult in trying to move from the conditional from these estimates to a marginal effect. 

Here, the way I picture it is I would see a shift in what would be – what would’ve been the 95th percentile. So, if we’re just looking at these two numbers, no college, the 95th percentile of no college would be $18. But if there was college, that 95th percentile would be $8.42 more, which would be around – oh, math - $26.42. 

Dr. Wagner:	Okay. Let’s go through your next example. There’s a couple of questions coming in but I'm going to hold on those because I think they’re slightly bigger questions.

Diem Tran:	Okay. So, I think it is helpful to see how quantile regression has been used in health services research. This study was led by one of our colleagues at HERC, Dr. Jean Yoon. The study population are commercially insured patients with hypertension. The outcome is adherence to antihypertensive drugs measured as medication possession ratio, or the MPR. The MPR indicates the amount of time a patient has their drug supply so, that can range from 0 to over 100% if they have overlapping prescription.  

The explanatory variable of interest is patient cost-sharing measured as categories of copay or percent coinsurance. 

Covariates in this study included patient characteristics such as age and sex, comorbidities, health plan type, and county-level demographics.

And here are the results in Table 2. We see that the reference group is copayment being less than or equal to $5 and then, the other groups are higher patient cost-sharing. 

At the 50th percentile, higher cost-sharing is associated with lower adherence, and this association is more negative at the 25th quantile and then, even lower at the 10th quantile. Cost-sharing is not significantly associated with adherence at the 75th and 90th quantiles. 

So, here, the author has concluded that cost-sharing had a substantial negative association with adherence for low adherers. 

In this study, the researchers examined changes in healthcare expenditure during the Great Recession, which began in December of 2007. They had a nationally representative sample of surveyed adults in the medical expenditure survey. They had two years of data. Their outcome is annual healthcare spending per person and the explanatory variable of interest is an indicator for the Great Recession. 

The researchers also interacted with the variable with respondent race and ethnicity. Covariates included demographic and social characteristics, insurance coverage, health information, and geographic location.

Here are the results on Table 4. We see that the reference group is before the recession. And if we look at the estimate for recession, we see that the greatest recession was significantly associated with reductions in healthcare expenditures at the 10th through 50th quantiles and was not significant at the 75th and 90th quantiles. 

We see that relative to white respondents, non-white respondents had lower expenditures at nearly all quantiles of expenditures. But the differences were greater at lower quantiles here at the 10th and 25th. 

The coefficients on the interaction variables were nearly 0 and nonsignificant at all quantiles, which suggests that the reduction in expenditures during the recession was similar for all racial ethnic groups.

Here, you might conclude that the recession did not change racial ethnic differences in healthcare spending. We know that there are differences across race but during the recession, the reduction in the spending was not different across the – was not different across different races.

For this last examples, authors used VA data; specifically, Veterans Affairs Surgical Quality Improvement Program or VASQIP data. The study population included veterans who underwent unilateral initial inguinal hernia repair. The primary outcome was 30-day complication and the secondary outcomes was operative time.

There were three treatment groups; laparoscopic repair under general anesthesia, open repair under local anesthesia, and open repair under general anesthesia.

Researchers found small, but nonsignificant, reduction in complications associated with laparoscopic repair under general anesthesia and open repair under general anesthesia. There was no difference in complications between laparoscopic repair and open repair under local anesthesia.

Here are the results for the secondary outcome operative time. We’re seeing here a different way of explaining the results but all of the information is still there. With the curves and arrows, I think it’s a helpful reminder that we’re referring to distributions of operative time. 

So, when we’re comparing to laparoscopic repair to open repair under general anesthesia and local anesthesia, we see that laparoscopic repair increases operative time by a few minutes at the lowest conditional distribution, and perhaps these are the less complicated cases, with a difference around at the fifth percentile for about one to two minutes. 

But as you move up the distribution of operative time, the differences increased and, at higher quantiles, have some more complex cases. The increased times associated with laparoscopic repair could be substantial. So, we’re seeing at the 95th percentile, it could be a 17-minute difference or a 31-minute difference. 

The researchers suggested that when choosing laparoscopic or open repair, surgeons should weigh the risks and benefits of both options. Perhaps one of the factors to consider is how long the patient might be under anesthesia.

So, this seminar provides an introduction to quantile regression. Quantile regression information has greatly advanced since 1978. I talk a lot about conditional quantiles, which are quantiles positioned on the Xs. For more information about estimating unconditional or marginal quantiles, I would recommend checking out these papers. You can read about censored quantile regression here, and this is often talking about survival analysis. 

And then, here is also an example of how instrumental variables was implemented to estimate quantiles of earnings. There’s really a lot more if you search quantile regression.  

And here are some resources that may be useful for getting started. There is a chapter on quantile regression in Mostly Harmless Econometrics. There are books on quantile regression, and this is just one of them.

Much of today’s seminar was informed by the Koenker and Hallock paper listed here. 

And I also listed resources for estimating quantile regressions in R and in SAS.

So, in summary, quantile regression is a powerful tool for characterizing relationships with Y across the conditional distribution of Y. This approach allows researchers to examine a complex story beyond the conditional mean. 

And quantile regression works with skewed data. 

It's also more robust to non-normal errors and outlier observations of Y compared to OLS.

And as a reminder, quantile regression estimates refer to distributions of Y, not individuals. 

And this is my email and I am happy to take more questions.

Dr. Wagner:	Sounds great, Diem. So, perfect timing. Of the questions that comes in, let me just read it to you. Because these focus on distributions and not individuals, the comprehension becomes a little bit trickier, especially for those who don’t have a quantitative background. How do you weigh sort of pros and cons of this related to OLS? And how do you justify using quantile regression over OLS, let’s say, because OLS is often more intuitive to policymakers and the output is something that they’re more familiar with?

Diem Tran:	Yes, that is true. Thanks for that question. Yeah, people and policymakers are more familiar with OLS and maybe the implications of that. But as I mentioned in the talk, we’re looking at the average, let’s say, person. And if we’re looking at – if we’re thinking about a policy and we see that there is no impact on one end and great impact on the other, I think policymakers would want to know that.

And here, what I really focused on is to show the coefficient. And I do like the plot, right? Because it kind of shows us here – we’re saying, “This is the difference at this condition.” And I appreciate the difference. We’re not saying that the person will move away or we’re not guaranteeing that that person who was at the lowest quantile will change. But the distribution could change. And often, in politics or, you know, when thinking about taxing, that’s a thing that we do think about. You know, are we impacting certain income groups more versus others?

And so, it does – I think when you do quantile regression, you have to be very careful in your wording and in your interpretation and how you communicate that to policymakers.

Dr. Wagner:	And I would just say that a lot of the work that we do related to what you just answered this is trying to understand; does the policy or treatment have what we think of as being a homogeneous treatment? And frequently, it doesn’t, and it relates to an earlier question, which was about sample sizes and hours. The more you start digging into these, you know, action effects, if you will, or the smaller groups, you can find differences. Or where you might have ones that are very big. 

So, another question that was brought up has to do with; if you start running – so, if you look at your presentation here, when would you – if you start running this for tenure and college and age group, when would you penalize your P values? 

Diem Tran:	In my readings, I haven’t seen – I think it happens in the estimation; essentially, in the simultaneous quantile regression. I think I would have to study up on that more before I give an official answer in this seminar.

Dr. Wagner:	Okay. Just one thing that I was going to – what I sort of throw back on the person is; my interpretation is, because you’re looking at a single outcome and it’s just – it’s conditional mean. And one of the things that we’re particularly interested in is just relationships across that conditional mean, which, if you get into very small differences, let’s just say you do percentile changes, you’re going to have great estimates but they might be very imprecise because we might have very few people in that particular one on time. 

And then, so, you’re going to have this sort of pressure to say, “Maybe we’ll take a 25th percentile of one model,” I should say. So, you’re going to group people together. And so, again, you’re sort of making an assumption that it’s okay to group those folks together but you’re going to have perhaps less accuracy but smaller standard errors to get more people in that sample size.

And so, but you’re still looking typically at the same Y value where I tend to think it’s where you could penalize your Y value is where you’re running a huge number of estimates with different outcomes to see if you have an effect in the report of one outcome. In theory, you could do that sort of heterogeneous treatment effects, too, and just report the ones that are significant. But that’s – usually, it’s just that conditional single model that you’re running [mumbling].

Diem Tran:	Yeah. I think it intuitively makes sense. Also, I would – if you’re a cross-user, I would go into the resource that I shared for SAS. The SAS function has a feature where – I didn’t read into it because I'm a Stata person – where it can help you find the optimal cutoff, the optimal conditions based on your data, quantiles based on your data. So, I would read into that and see how exactly SAS chooses those cutoffs. 

Dr. Wagner:	That’s all the questions that I have so far. I'm just making sure that [mumbling] – see if we have any other questions coming in.

Diem Tran:	Yeah. Definitely go here, I thought this was very helpful, as well. 

Dr. Wagner:	I loved the figures. Thank you for all those.

Diem Tran:	Yeah, I think figures are very helpful to just kind of also communicate the information. Yeah, because visuals is the best way for me and I can see how here, this could’ve been a very big table. But you can summarize everything in a bigger, and then, kind of intuitively move people towards like what you’re trying to say.

Dr. Wagner:	So, one more question came in. Are there any recommendations you would have about measuring model fit? Would you follow the same practices if you were using an OLS approach?

Diem Tran:	There is a paper by Koenker and I want to say Machado for goodness of fit measures. Stata offers kind of like a pseudo R-squared, which is kind of like analogous to an R-squared from OLS where you’re looking at the – some of the residuals over the total. I mean, you kind of interpret it as also like the percent of variance explained. It is not exactly the same as an R-squared in OLS. This is more local to that quantile. 

So, you could use that but I would go to that paper by Koenker and, I believe, Machado. 

Dr. Wagner:	Awesome. So far, there’s one other comment; it says, “Great presentation, quite clear.”

Diem Tran:	Thank you. I’ll just put my email up and, yeah, please feel free to email me. 

Dr. Wagner:	So, Rob, I think we’re going to turn it back to you a little bit early.

Rob:	Okay, thanks. I was just looking to see if anything came into the chat and there was one question but I saw it actually in the Q&A about 8.42 increase. I'm pretty sure you answered that one already.

Diem Tran:	Yeah.

Rob:	So, thank you very much, both of you, for your preparing and presenting for today. Attendees, when I close the webinar momentarily, a survey will pop up in a separate webpage. Please take a few moments and fill that out. We appreciate it. We count on those answers to continue to bring you high-quality cyberseminars such as this one and the whole HERC series. 

If you guys don’t have any other closing comments, then, I’ll just go ahead and close.

Diem Tran:	Thanks, everyone. 

Dr. Wagner:	Thanks, Rob. It’s great, appreciate it.
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