vinci-020824


Andrew:	Uh-oh.

Rob:	That was strange. 

Andrew:	Can you hear me? 

Rob:	I can hear you. Yes, I can hear you, Andrew. Yes, Andrew, I am not sure if you can hear me. I can hear you. 

Andrew:	I hear you. I hear you. I am back in the practice session it says. 

Rob:	What is going on? Somehow we ended up back in the practice session. I am not sure what is going on, Andrew. I am sharing the slides again, Andrew. 

Andrew:	Okay. 

Rob:	I do not know what happened. 

Andrew:	I have a spinning connecting to audio message on the screen. 

Rob:	I do too. I do too. We are talking. 

UF:	I can hear both of you just fine. 

Rob:	Yes. I think if we can just ignore that, let me hit cancel and see what happens here. It looked like it disconnected me when I hit cancel. Can you see the slides now, Andrew? 

Andrew:	Okay. I see them. I still have the audio thing in the way. I am going to cancel it and reconnect, I guess. 

Rob:	I just did the same thing, and I could not hear anything. I could not see anything, so I am leaving it up. 

Andrew:	Okay. 

Rob:	Actually, if you can move the whole Webex window off to a side like if you have a second monitor, you cannot move that connecting to audio pop-up, but you can move the whole Webex view. 

Andrew:	Okay. All right. Fair enough. I am just going to ignore it, I guess. That is fine. 

Rob:	We love technology. 

Andrew:	Yeah. We have a question in the Q&A about not seeing the slides. Somebody else please chime in. Can you see the slides? 

Rob:	I can see them. 

Andrew:	Thanks. 

Rob:	Okay. Hopefully, we are all right. Let us just keep going, I guess. Right? 

Andrew:	I think so. 

Rob:	Okay. As I was saying, this is an intermediate-level presentation. What that means is that I am making some assumptions. I am going to assume that you know how to write basic to intermediate SQL queries in the CDW, which means you need some CDW architectural knowledge. When I say more data facts table, I am going to assume you know what that means. I am going to assume you know how to use foreign keys to join the tables together. Also, this assumption is going to do a lot of heavy lifting for us today. I assume that you know how to get the correct results in your queries. This presentation is about getting the same results faster. We are talking about query optimization here and not results-based query troubleshooting. If you want more information about getting the better results if you are getting wrong results, then check out the recent debugging presentation. In this one, we are going to talk about optimizing for speed and cost. 

	If you have ever seen a presentation from me before, you have already seen this slide. This is my sort of presentation style. I am going to give as many non-technical explanations of systems and principles as I can, because that gives you something to which you can attach the actual dos and do nots of querying the CDW. This presentation in particular is going to have a little less tree trunk knowledge and more twig and leaf knowledge. Again, it is intermediate level and making some assumptions about you. I am still going to do my best to give a grounded and kind of holistic principle-based approach so that you understand why things are the way they are wherever possible.

	The first core principle I am going to tell you about is that you have a colleague helping you get data out of this CDW. You do not do it by yourself. You do it with a colleague. That colleague is the SQL query optimizer or query engine or query optimization engine. Technically, there are two, three, or maybe even four different algorithms there. I am going to lump them together into one thing. That one thing, just like you, has some strengths and weaknesses. It handles the technical details of fetching information. It has basically all the computer science knowledge that you might not have like searching in syntax, computing hash values, and things like that. It critically does not have common sense or context. SQL does not know anything about anything when it comes to the content of the data that it is fetching. We are learning that it is good at arithmetic but bad at algebra. I will show you examples of that later. 

	The important point here is that you are a team. Every query that you write is a collaboration between you and that query engine. Henceforth, I will just call that SQL for simplicity. The division of labor is that you describe what you want. You declare what it is that you want. You do not command the server what to do. Your statements are declarative and not imperative. Those are programming language terms. Most languages that you might be familiar with are imperative. That computer does exactly what you tell it to do and nothing else. That is the case for R, Python, the C-family, and basically every other programming language that you might use outside of markup languages or data languages like this. 

Here, SQL decides for itself what to do. SQL is going to read your query to understand what it is that you are asking for. It will come up with a plan to fetch those records. Then after the server is done executing that plan, it will grab you those results and show them to you. Every single query you write is a collaboration. Being a good SQL user really comes down to understanding this division of labor and understanding how you can help your colleague to do well at their job. 

	The downsides of this kind of collaboration are the performance problems are obfuscated, and Erasmus just can be unhelpful. To give you a couple of examples, it would be intuitive if changing the order that you join tables together had a performance characteristic to it. If you say from Table A join B instead of from Table B join A, intuitively we want that to make a difference to the speed of the query. It does not. SQL will decide for itself in what order to join the tables. Similarly, when you put criteria in your where clause, SQL will decide for itself in what order to apply those criteria. A lot of the things that you might think will make a performance difference actually will not. 

Rob:	Andrew, I am sorry to interrupt. We are getting complaints that it seems to be still stuck on slide number one. I have taken control of the slides. Please, when you are ready, just tell me next slide, Rob. 

Andrew:	Sure. Are you on slide five right now? 

Rob:	Yes, help your teammate. 

Andrew:	Yeah, thank you. All right. As I was saying, your optimization is going to come down to setting your colleague up for success. Every once in a while, that will mean getting out of your lane a little bit, so to speak, in terms of that division of labor. The first tool on your toolbelt to get into your partner’s business and figure out what they are doing is grabbing an estimated execution plan. Next slide, please. 

	There is a button up at the top of the SSMS window near the execute button. If you click that, it does not run the query like the execute button would. Instead, it just asks your colleague, what would you do if I were to run the query. The result, you will see, is pictographic like you are seeing on the screen here. You will see something that says select if it is a select query in the upper left. You will see some arrows, and you will see some icons which represent operations that SQL will perform to get you the results that you are looking for. 

	That button is a command. You click it, and SQL fetches the execution plan right away. There is also a toggle that you can click on the next slide called live query statistics. That is a toggle, so if you click that it will not do anything right away. As soon as you run the query with that toggle enabled, you will see a live animated execution plan. It is the same plan that you would see if you clicked the other button, but in this case it is happening live. My static picture does not really do it justice. What it looks like in practice is the dotted lines are moving. That is huge. Let me see if I can remember how. The percentages are ticking up as you sort of watch the query plan work. 

	Let us talk about how to read that thing a little bit. What is this talking about? Each operation is passing rows from right to left. If you Google it, you will find actually some disagreement on if you are supposed to be reading this plan from left to right or from right to left. My background is in industrial engineering, so this is actually quite intuitive for me. It is a poll system if you know what that is. That means that information flows the opposite direction from product. In this case, product is the rows. What I mean by that is each step here is going to ask something from the previous step. Hey, please get me some stuff. Hey, please get me some stuff. Hey, please get me some stuff. When it reaches the end of the line, this step back here says there is nobody for me to ask. I guess it is up to me. It starts pulling rows. 

	It then passes those rows from right to left until the whole thing is completed and the select query then shows them to you. That is how this system works. The icons represent different operations. There are a bunch of those. I am going to talk about a couple of important ones that we might look for, but I am not going to give an exhaustive list in this presentation. I will include a resource you can go to if you want to know what they all are. 

	The other thing to point out here is that the size of the arrows is SQL’s prediction for how many rows are going to be passed along in that particular set of steps. That is just an estimate. Remember, this is an estimated execution plan that we are looking at. More on that later. 

	That is the basics of what is going on here. If you mouse over any of these specific pieces, or any of these operations I should say, then you will see more information. On the next slide, you can see more information from query plans by mousing over. In this case in the screenshot, I have moused over that last step – the select step. We see two things to point out here. The estimated subtree cost and the estimated number of rows. I have just realized, since Rob took over maybe you cannot see my pencil tool. Rob, can you see that when I draw on the screen? 

Rob:	I am not sure. I am sorry. 

Rob:	I see it. 

Andrew:	Do you see it? Okay, I will keep using it then. Okay, there are these two things. The estimated subtree cost on this last step is the total cost. What the subtree language is trying to say is it is a running total of the entire tree up to this point. The execution plan with its arrows is kind of like a sideways tree. This last step in the upper left, whatever it is, the cost shown there is the total cost for the whole query. The percentages that you see under each operation are percentages of that total. 

	Looking at this top query here, I can see that the overall cost of the query is about 80 – a predicted 80-ish. SQL’s prediction is that the costliest step is this upper right one looking at the ICD table. It will predict about 60 there because 60 is about 75% of 80. 

	The other percentage I want to show you is this batch one – these two right here. What I have done is I have selected both of these queries, and I have hit that execution plan button. When you do that, SQL will tell you query cost relative to the batch. In other words, each individual query is a portion of the total cost of what you have selected. In this case, it is telling me that the upper query is about three times more expensive than the bottom query. That is because this is an example of a best practice that I am going to show you in a few slides. This can be one tool to evaluate. What version of a query is going to be better? You can have SQL tell you by just selecting multiple queries and hitting the execution plan button. 

	On the next slide here, I am going to give you a quick heuristic of what that cost is.

Avery:	Andrew? 

Andrew:	Yeah. 

Avery:	Could you just announce which slide you are on whenever you change the slide? 

Rob:	We are on slide 11 now. 

Andrew:	Yeah. 

Rob:	Thank you. 

Andrew:	Yeah. Sorry, I am trying to give Rob clues as we go without breaking the flow too much, but I can say the numbers if that is easier for everybody. 

Rob:	People just asked. That is all. That is why Avery jumped in. We are on slide 11 now. 

Andrew:	Yeah, fair enough. All right. This total cost gives you an idea of if this is a good query or not according to SQL’s prediction of the cost. Here is a quick back of the napkin heuristic. If you are down in the two digits, that is a very cheap query. It should run really fast. You are probably only running dimensions if it is that small. If you are looking at hundreds, then that is still a cheap query, but now you are probably hitting a fact table like we are doing in this example on the screenshot. Thousands is borderline. Those might be slow queries. In the research space, this is where real work gets done. It is usually in the thousands. If you are using a big cohort and you are pulling longitudinal data from a lot of years, your query is probably going to cost in the thousands even if it is a well optimized query. This is borderline, but it is kind of the wheelhouse for research analysts. 

	If you are up into five digits, that is probably not good. Especially if you are over 20,000, it is probably a bad query. Technically, the cutoff at which you are going to get auto killed is 300,000. I will tell you; I personally have never seen an acceptable query into six digits at all. If you are over 100,000 – if I see 100,000 on my execution plan, I am probably not going to run that query. I am going to find something that I can do to make it better before I run it. 

	Next slide. We are on 12. I have mentioned a couple of times that it is just an estimate. This is what it looks like if you use that live plan. After the query is finished, it will look like what is on the bottom. You see all these numbers here. I am going to tell you what that means really quick. What I want to point out is just it is different. Look at the estimate, and then look at the actual one. You can see right away from these arrows that it is different. Right? SQL thought that the upper arrow was going to be small, and the bottom one was going to be bigger. The truth was the bottom one was smaller and the top one was bigger. 

	The costs shown up at the top under the operations are the same ones we saw from the estimated plan. Those are costs. They are estimated costs. Those do not get updated for this. What does get updated on the actual plan is these two numbers and corresponding percentage, but annoying, SQL does not tell you what those are. I am here to tell you that those are number of rows. Originally, SQL predicted 212 rows right here. This arrow corresponds to 212 rows. That is the original prediction down here. What it actually found was 650. That is about three times more, so that is why this says 300%. These are numbers of rows. As you can see, SQL’s estimate was not great here. It was three times off over here, and it was only 3% on the bottom one. 

	I am going to show you a few examples as we go along of cases where these estimates are wrong. Most of the time, the estimates being a little off like they are here is not really a big deal. In a few particular cases, it gets you in big trouble. I am going to show you an example of that later. 

	Where do those estimates come from? On slide 13, I have a little screenshot of what table stats look like. I am going to gloss over this a little bit for the sake of time because we are having technical difficulties here. In a nutshell, what is going on is SQL will take a column or multiple columns. It will calculate how many rows there are in a range of certain values. Here we can see that in my little ICD code example, SQL knows that in between A000 and A6920 there are 454 rows. If I use that ICD code column in my query, then SQL can predict how many rows roughly will be found by that particular part of the query. It can use that to construct a smart execution plan to efficiently get me the rows I have asked for. 

	This style of looking at ranges and seeing how many rows are between certain values is generally how SQL works to formulate a plan. The most important version of how SQL does this is called portioning or partition keys. That is what we are going to talk about next on slide 14. 

	CDW partitions are where CDW fact tables are organized – physically organized – by date. The architects have chosen a date column out of that particular table, and they have physically ordered the rows on the table by that date. Then they have divided up all the rows into partitions or into sections of rows. SQL can see what the endpoints are just like we saw on that last screenshot. What that means is that if you give SQL a query with that column being used in your query, then it can use those endpoint labels to avoid grabbing any rows out of the partitions it does not need. We call that partition elimination. It is the most important optimization tool on your toolbelt. 

	You may have seen these slides before because I have reused them a few times. Really quick, I am going to do this fast because it is an intermediate kind of talk. How partitions work is exactly the same as how a physical encyclopedia works. Seen here is the Encyclopedia Britannica. I am realizing looking at this now that if you are in your twenties, you have maybe never seen or touched a physical encyclopedia. I hope that you at least understand what they are. 

	The way this works is that the Encyclopedia Britannica has entries stored alphabetically, and the volumes of the encyclopedia are labeled with the endpoints. That labels on the spine system is the killer feature because it means that if you know the name of the entry you are looking for, which is to say you are looking for an entry using the same kind of information by which the encyclopedia is organized. Then you can grab a single volume off the shelf and not even touch the other ones. Right? London is L-O-N. That is in volume 14. If you pull that one off the shelf, we do not even touch the other ones. 

	Now we are on slide 16. That description is exactly how CDW fact tables are organized. Now we call them partitions instead of volumes. We call it a table instead of an encyclopedia. We have chosen a date column and quarters as the endpoints instead of alphabetical. Besides that, everything I just said still applies. If you use _____ [00:22:04] visit, then you are supposed to use the visit date time column. If you do so, then SQL can do this exact same process of saying you want a visit from January 2, 2018. I am going to pull volume 75 off the shelf, so to speak. I am not going to touch any of the other ones. That is called partition elimination. It is the most influential of the best practices. You can imagine how annoying it would be to have to search through every single volume, so do not do that to your colleague. Set them up for success by making sure you always use whatever the column is that the architects have chosen to order the records by. 

	Now one more thing before I get into nuts and bolts. That is it for most of the core systems and principles type of information. I am on slide 17 now, by the way. Before I get into nuts and bolts, I just want to say this. You probably all already know this. As research analysts specifically, we have to remember this correspondence in our minds if you have Vinci provisioned data. The objects you use will look like what is down here on the bottom. It has a study database name. It has SRC as the schema. It has the source schema underscore source table. 

You have to remember this because almost all of the helpful resources you can use for optimizing queries will refer to the original source, not your provisioned source. I am going to have links to the CDW team’s resources like the Six Simple Steps, the Easy Eight, and their SQL on demand training. All of those things will refer to this upper object, CDW work _____ [00:23:58] visit. Similarly, when you pull meta data, which I will do in a screenshot in a second, that will refer to this upper table. All of those best practices – the meta data and everything – also refer to your source. 

Now let us get into best practices. We are on slide 18 now. The first and most fundamental best practice, in my opinion, is do not be greedy. That is it. Just do not be greedy. Select the rows and columns you need, especially out of fact tables, and do not grab the stuff you do not need. In your select clause is where you choose which columns to pull. You can read your select clause and think to yourself, do I really need all these columns? Spoiler alert. If you are selecting star out of a fact table, then the answer is no. You do not need all those columns. Nobody needs every column out of a fact table. 

Similarly, when you read your where clause, you can think to yourself do you really need all these rows. If you are pulling more rows than you need, then that is bad. You should add more criteria to your where clause. Intuitively, it might seem like adding more stuff to your where clause and making your query longer would make it more expensive. The opposite is true. The more criteria you add and the narrower you make your focus and the fewer results you expect because of it, the cheaper your query. The best practice is do not be greedy. Pick the columns you need out of select and add more where clause criteria. All right, next slide. 

The most fundamental best practice is not being greedy, but like I said, the most important tool on the belt for making queries cheaper is using partition elimination. I talked about what that is. Here is how you actually do it. Step one is determining what column was used by the architect to organize the table. You do that with a meta data query like we have on the screen here. The result of that query will show you these two important columns. The partition key is the column that you use. The data type of that column, you have to convert your input to match. This is the pattern. You run a query like the one shown. You find those two pieces of information. You use them in the query like so. 

You always have to convert your input. I have put this here as my input. You always have to convert your input to exactly match the data type. Zero included. Right? Date time too with a zero in parentheses. It needs to say exactly what it says in the table here. As long as you do that, SQL will then be able to use partition elimination and give you a really cheap query. If you do it right, then you can see what that looks like on slide 20.

When you mouse over this operation which has most of the cost of the query, you will see at the bottom seek predicates. This is the standard pattern of a query. We expect most of the cost to be pulling the records out of a fact table. Here we can see the appointment table. Going and grabbing records out of that table is generally going to be a scan if it is in a fact table like this. We mouse over this operation which has most of the cost, and we see seek predicates. Then we are happy. Seek predicates at the bottom like this means that it correctly used the partition and dramatically lowered the cost of the query. 

Next best practice is using temp. This is on slide 21. The best practice is – this, by the way, is the example of the two queries that we saw earlier where one was three times more than the other one. The best practice is to build yourself a temporary dimension with the SIDs you need. Typically, you do this out of a CDW dimension like the ICD code one from our example. 

What we are doing is we are going to find all the rows that we need and pull the SIDs for those ICD codes. When we use a wildcard to search the dimension, wildcard searching is expensive, but the dimension is really small. You can do wildcard searching as much as you want as long as you are only connected to the dimension. You iterate to your heart’s content. Right? You just try your wildcards, refine them, loosen them, and tighten them again until you are happy with the result. Then you just add a little into to your query to save the SIDs that you want. 

You do not join to the fact table while you are doing the wildcard search. The query that has the wildcards is the one where you connect to the dimension by itself. That way when you connect to the fact table, you do not have the wildcard search. What we are doing is separating the expensive kind of operation, which is wildcard searching, from the big table which is the fact table. You can see an example of that on slide 22. 

These are the two queries that we were looking at before where the upper version costs three times more. You can see in this upper one we are hitting the fact table, and we are doing a wildcard search in the same query. That is what makes it not best practice. In the bottom version, the wildcard is only being used in the dimension, and there is no wildcard happening down here in the bottom version when we are touching the fact table. Full disclosure. The query up at the top is okay. It does not cost a ton. It will run and complete just fine. The reason for that is it is doing the two most important things. It is not being greedy, one column, relatively narrow date range, and it is using the partition key. Because it is doing the two most important things, this is an okay query that will work. You can make it three times faster by using the format down below. If you had a wide time range and you had a big cohort, then it would be more and more and more important the bigger those things are to use the bottom style. The best practice is to separate your wildcard searches from your fact tables as shown here. 

Next best practice is slide 23 now. Avoid, if you can, joining multiple fact tables together. If you look at the CDW team’s recommendation, I think it is on the Easy Eight document. You will see that four is their cutoff. You should not use four or more, but three or fewer is okay. For research analysts where we have big cohorts and we want 12 years of data at a time and stuff, really you should stick to one or two. Most of the time, you can get away with one. If you need to join two, that is fine. You can probably use two and not use three. Three fact tables at a time is technically okay, but not recommended by me at least. 

If you do use two or three, then the best practice is on slide 24 now. It is to make sure you use partition elimination for each one. Again, I have two queries here with their plans. Similar to before, we can see that the upper one is way more expensive. It is about four times the cost. The reason for that is we are only using one of the partition keys. In the bottom version we have both of them being used. 

Remember how context is a weakness of our colleague. We, the human, know that when we join on visit SID, it means we are talking about the same visit. We know that each visit only has one visit date time. We, the human, know that this is not going to change the results. There is no logical reason for us in the division of labor where we describe what we want for us to add this extra criterion. There is no reason to do that because we know it will not change the result. That is only because we understand the context of visits only having one date time each, and they are the same visit because we do it on visit SID. Our colleague does not know all that. We help them out by adding the partition to each fact table we use. Even though that does not change the result, we add it anyway just to make our colleague’s life easier. 

Next best practice here is slide 25 now. We are talking about functions. You should avoid using functions on columns, which is to say the column is inside the function. You should not do that in the where or the join clauses. In the select clause, it is totally fine. Put columns inside a function in your select clause. No big deal. In the where or the join, that is bad. The reason, by the way, that that is bad is because it messes up the estimates. Remember how we saw those table stats. The table stats only work if SQL can compare your input to what it knows from its table stats. If you put a column inside of a function, then SQL cannot do that comparison unless it is to run that function against every entry it finds in the table. Hopefully, that makes it intuitive that you should never do that. 

Instead, the correct way is to compare a column to a function output. In other words, leave the column alone on one side of your comparison operator, and do all of your processing whether that is math, functions, or whatever. Do all of that on the other side of the inequality or whatever it is. 

We are on slide 26 now. Every once in a while, you will need to compare two columns to each other. Maybe what you are actually trying to do is compare an index date to a visit date or something. In that case, if at all possible, leave the fact table column, assuming only one of them is a fact table column, as is. Especially if it is the partition column of the table, then it is critically important that you leave that column as is. You can often get around this situation by pre-filtering or pre-calculating an SETE or a temp table. There is an edge case where this is really difficult. I have included working through that example in appendix slides here. At the end of the presentation, I am going to stop early and there will still be some more slides left. There is going to be a sort of case study where we solve this exact problem. It is just because I do not have time for it in this presentation. 

We are on slide 27 now. Here are the examples of what I was talking about. I hope these did not come in too late. I hope you still have the description in your head. Here is what we are talking about. I have the visit date time in a year function here. This is bad. We do not like doing it this way. Again, logically in terms of describing what we want, this seems okay. We need to set our colleague up for success by not doing it this way. Leave that partition column alone. Put it on one side of the inequality here. Then do all of our processing or whatever we need to do on the other side. Here we are converting these inputs into the right format, and we are using two different comparisons here – two different criteria instead of just one. Again, intuitively maybe this looks more expensive because there are more lines and stuff, but this is way cheaper than the other version. 

Next slide is 28 here. You do not want to use functions like date diff. It makes sense logically that you would want to, but you should not. Date diff basically just sucks. SQL hates date diff because it always takes two different columns in its input and screws up its estimates. It does not like it, so do not use date diff. Instead, use date add. 

Here is an example on slide. I just mis-clicked and went way down below 28. Here on slide 29, I should say, there it is. On slide 29, we have a date diff where we are trying to do some comparison. This actually gives the wrong result too for reasons I do not have time to get into right now. The bottom version is better. What we are doing here is using date add instead so that we can leave our columns alone on one side. This is the best practice. 

On slide 30, I am showing the simplest example I can think of of how it messes up the estimates. Even just doing this station plus one screws SQL up and makes your query may more costly than it should be. SQL is good at arithmetic, but it is terrible at algebra. It cannot even do this to take a plus one and move it to the other side. It cannot even do that. Just leave that column alone and set your colleague up for success. 

Do not worry if the math and functions you are using are nested and complicated. We are on slide 31 here. Just make sure that it is isolated from the column. Here are some examples on slide 32 where I have just put some unnecessarily complicated junk on the other side of the inequality, but this is fine. These are all cheap queries. They all have the same cost, and they all run fast. These are all fine because we have isolated the column from our arithmetic. 

Slide 33 now. Please just make sure your functions and math are isolated from the columns. Slide 34. What about nulls? This is a really common question I get asked when it comes to using partition keys all the time. Remember, you are supposed to use that column, whatever it is, all the time. Here is a query where it is well-written. It is efficient. But we are worried about it giving us the right results because what about patients that have not been discharged? If somebody is still in the hospital as of yesterday, they are not going to have a discharge date filled in. It is going to be null. If you know how SQL works, then you know how this query will filter those out because no comparison to null is ever true. This criterion here will filter those records out. 

How do we make sure we capture the records that we want? It is slide 35 now. Here are a couple of intuitive examples that people might try that are wrong for one reason or another. I am trying to hustle here because I think I am going to run out of time because of the technical difficulties earlier. Read the comments there to see why exactly they are wrong. The way to do it is the third example. You want to use that partition key explicitly in each section of independently evaluated criteria. If you have an or, that means SQL has to evaluate those things independently. We are using the partition key here. Good. Then we say or, and I have an open paren, and then we are using the partition again here. This is the right way to do it. Use that partition key. If you have to use it multiple times like this because you have an or, it is totally fine. This is how you do it. Again, adding more criteria does not make your query worse. It actually makes it better. 

I have mentioned a couple of times that those things were just estimates. Here is an example of bad estimates. Look at how egregiously wrong these estimates are. SQL thought it was only going to get one row, and instead it is getting hundreds of thousands. Very bad. The thing that makes it bad though is actually this. It is this nested loop. A nested loop is a kind of join as SQL is telling you here. This kind of join is only good for small numbers of rows. If SQL thinks it is going to get one here, five, or 12, then a nested loop is a good way of doing it. For a small number of rows, it is a very efficient way of joining. If you have hundreds of thousands, or even worse millions, then this is really, really slow and the query is going to get killed. This is one example of something to look for on your execution plan. 

If you see an estimated execution plan that says this and you are like, wait, I do not think I am only going to find one person. I think I am going to find more than that. Then you should evaluate your query and see if you can change it around. I will give some strategies in a second. If you cannot make that prediction, which I recognize maybe you cannot, then please just get in the habit of turning on the live statistics. When you do that, you will see these percentages spinning out of control live while the query is happening. Then you will see SQL get to this step, and just go and go and go. After a minute or two, you will be like, what is going on here? Then you will stop the query yourself. If you do not stop this one yourself, then it will get killed by the automated sub-routine. 

Next slide here. On 37, watch out for these nested loops. If you see this scenario, step one is try adding a predicate, which is to say a filter or criterion in your where clause on an indexed column like station. If you are not sure what columns to use, then I would say in order station, any kind of date times, and any kind of SIDs. If you have any way to filter on any of those things, then try to do so. Also, look for columns inside of functions and look for bad joins. Those are two sources of this kind of bad estimate giving you a nested loop join. There is also one specific thing that will make that happen, which is or, in your joins. Good timing, Rob. 

It is common to try to hit fact tables fewer times. That is a good instinct. You should try to hit fact tables fewer times. However, or in your join is almost always a mistake. The two scenarios I see this commonly is in stop codes and in ICD codes. In stop codes, we use it because we have primary and secondary stop codes in two different columns, so it makes sense to join the stop code dimension to that visit fact table with an or. Say primary stop code equals this or secondary stop code equals this. That is a bad query. 

Similarly, ICD-9 and -10 SIDs are in two different columns in the visit table. You might want to join with an or for the same reason. You should not do that. It is admirable to try to hit the fact table only once, but hitting the fact table once with a bad join is much worse than hitting it twice or even three or four times with good joins. 

On the next slide, this is what the execution plan looks like for this or-based join. I could not find a way to fit the whole query on here, sorry, so I have some ellipses. The important part is this or in the join. It is going to give us the exact scenario we were just looking at with percentages spinning out of control and a nested loop at the end. We do not like that. Instead, on slide 40 now, we are going to see hitting the table twice using a union. This is the best practice, so do it this way. It is going to be mean duplicating your query, basically. You have to run the query twice with this union inside, but this is way better than the other version because you are going to hit the table twice with efficient queries that run really fast and use a hash join instead of a nested loop join. That will make your query finish very quickly instead of never finishing. 

That previous example, I forgot to say, is another one that will get killed. That query will never finish. If it did finish, it will take a long time, but it probably never would have. It would probably get killed. Do this way instead, and it will complete in seconds. 

If you see this nested loop join problem and you cannot figure out how to fix it, next slide, you have tried adding more predicates and that did not work. You have checked for bad joins. You made sure you have no columns inside of functions. You have made sure there is no or in your join criteria. You can, as a last resort, use a query hint. I really went back and forth on whether or not to even include this slide because seriously, in general, query hints are a bad practice. In general, do not use these. You are not supposed to use them. The division of labor is good. You want SQL to be able to work independently to come up with the right kind of join. 

In this specific scenario – will you do me a favor, Rob, and go back a couple of slides to the query plan? That one. In this specific scenario where you see your nested loop spinning out of control and you cannot figure out how to get rid of that, in this scenario only you have my permission to use a query hint. 

Now back to slide 41. The way you just add the word hash before the word join. This will force SQL to not use a nested loop right there. Instead, use a hash join which is the one that it should have chosen anyway in this situation. We just could not get it to do so. Again, please, as a last resort you are really not supposed to do this in general. In researchers’ queries, I have seen this scenario pop up a bunch of times where I have not even been able to figure out how to get SQL to pick the right join. If it is really impossible to do the right thing, then you can use this query hint. It is a join hint to force it to do the right thing. 

All right, next slide. We are almost done now. Key takeaways. Remember, do not be greedy. Select the stuff you need. Do not be greedy covers a wide range of best practices from not pulling in columns you do not need in your select clause, not pulling rows you do not need because your where criteria were too wide, not hitting more fact tables than you need, et cetera. Try to be narrow in your focus even if that makes your query longer. Use partitions. The partition elimination feature of fact tables is the number one way that you can make a slow query fast. Just get in the habit of always running that little meta data query that gives you the information you need to write your query with partition elimination, and then do so. If you are not sure, remember that you can check out the execution plan and mouse over the columns or index scan – the _____ [00:47:33] columns to scan and CC predicates at the bottom. 

Separate functions and math from columns, please. In general, set your colleague up for success. Right? You have weaknesses and strength. So does your colleague. Work together and try to do well by SQL. SQL will do right by you. 

All right, next slide. Final thoughts here. Premature optimization is the root of all evil. This is a David Knuth quote. Actually, I like the full quote with all the context. That is why I included it in the comments, which you can see hopefully in your handout. The point is you should use the basic best practices of not being greedy in partition elimination and stuff like that. Beyond that, do not worry too much about optimization. If your query completes in a minute or two, then do not worry about it. We have a hard enough time just getting the right results out of our huge data warehouse, which is pretty messy with scattered information. It requires lots of joins. We have a hard enough job just getting the right stuff. 

Optimization is fun for some people. I mentioned I am an industrial engineer background, so I love it. I am an optimizer by nature and training. You want to be careful and not spend all your time optimizing a query that is already okay. Query optimization is difficult. You may have noticed that those execution plans and understanding what is good or bad about a certain one requires both technical specialized knowledge that you probably do not have and contextual nuance from experience that you may or may not have. That combination makes it really difficult to optimize a stubborn query, so please ask for help. You can do so in the Vinci office hours that we run every week. You can do so in the SQL office hours that the CDW data services team runs. You can reach out for help from your colleagues. Please do so. You want to crowdsource and get experienced people on it. Just banging your head against the wall yourself will take a lot of time and be really frustrating. 

I have a few slides here of resources. On slide 44 is Vinci resources. As I mentioned, the office hour we do that every week. At the top of the talk, I mentioned last month’s managing research data are two sides of the performance coin. Go check that out if you have not. The next slide is the IT side of the house has a lot of good stuff on SQL query optimization. Go to the share point page for data services and field support over there, especially Six Simple Steps and Easy Eight. I hope that if you have joined this talk, you are already familiar with those two documents. If you are not, go grab them, please. They contain the basics of all these best practices. There is nothing in there that conflicts with anything that I have said here, except perhaps that hash join thing. It serves as the foundation for what best practices are in the CDW. This talk was meant to be an extension. If you have not seen those things, please go look at them. Similarly, the on-demand SQL training is a nice resource. Sorry Rob, I jumped the gun a little bit there. 

Next slide. If you want to get into the weeds about what those execution plan operations were and more information about how to use them, you can go grab this. This is a book, but it is free. It is free to download. You go to that URL, and you can grab that book to read to your heart’s content. It is probably more than you want to know, but just in case. 

All right, the second to last slide here are just quick acknowledgements. You hear me on these talks a lot, but I have a whole team of smart people helping me with this. That is Vinci Data Service, my team. Then CDW data services and field support, I am relying on their stuff a lot. Like I mentioned, there is Six Simple Steps, Easy Eight, partition elimination, and all of that stuff. Then in this particular case, the SQL and CDW boot camp alumni helped me with some of these examples and some of these bad practices. If you are on the call, thank you for being vulnerable and showing me your bad queries so that I could use them in this talk. 

That is it. Now we are going to go talk about questions and just quickly reiterate a bonus example that I did not have time for after this. We will go through those slides if you want to. 

Rob:	Andrew, there has only been one question that did not pertain to the technical issues. Avery actually answered it in text. I have asked her to keep an eye on the questions. Anyway, Avery perhaps you could read that question to Andrew and see if there is any more detail. I bet more questions will come in once we do that. 

Avery:	Yeah. The question was basically, how often does cost of query directly correlate to the length of time it takes for the query to run? 

Andrew:	Yeah. Yeah, I see your answer there that it depends. In general, in a perfect world it would correspond perfectly. In that world, SQL’s estimates are always great. Then if SQL gives you a cost in the hundreds, then that query will take two minutes or less. If it gives you a cost in the thousands, then that query will take maybe five minutes or less if it is 5000 or less. If it is 5000 to 10,000, maybe it would take up to 15 minutes. That is a quick back of the napkin heuristic. In practice, SQL’s estimates are sometimes perfect like that and sometimes not so good. It will vary greatly depending on your query how exactly that correspondence happens. I would not worry too much about trying to protect the time. Instead, try to optimize the cost sort of as presented in this slide deck. Then just let the time take care of itself. 

The exception to that is if you have taken my advice to turn on the live animated execution plan, then you can watch that spin. When you see the percentages spin out of control, I would give it five minutes, if that, and then stop the query yourself. That is where you can use the time. If you are watching the plan, and you are like this is, maybe you walked away, refilled your coffee, and you came back. You are like this is not looking good. Give it a few minutes. Maybe it will finish anyway. Then kill it after five or so. 

Rob:	Andrew, I am perfectly fine staying for a few extra minutes if questions necessitate that. However, at this moment, we do not have any more. I think actually one just came in. 

Jim:	Rob, I do have some on the chat that are not on the Q&A. I saw about four that are over there if you want me to read those off. 

Rob:	Sure. If you can see them, absolutely. 

Jim:	Okay. Yeah. We had a question here that was, what are your thoughts on sub-queries? 

Andrew:	Yeah, great question. There are a few different kinds of sub-queries. You can imbed a query in your query in the where clause or in the from block. Or you can use something called a CTE, which is also a kind of sub-query. In general, sub-queries and the CTEs are my favorite way of doing it. They are a little more readable. You use sub-queries like that to save yourself from having to join too many fact tables together at the same time. When they are used in service of that goal, they are generally a good thing. It is good to save yourself from having to join four fact tables together by using a CTE, two or three, to do those joins and kind of pre-process what you want down to just what you need out of that fact table. Then join from the CTE to the other fact table so that you have a smaller more manageable join for SQL. In those cases, I think it is a great idea to use those kinds of sub-queries. In other cases, it can be a good idea or can be a bad idea. It is really case-by-case. It is complicated, so that is all I have for you there. 

Jim:	Awesome. I know we only have a minute left, so I am trying to look at a couple of them. I think people cannot see the Q&A. That is why they are in the chat. I am just going to read them off really quick, and you can choose which one you want to answer. 

Rob:	We can go late, Jim. We can go late. 

Jim:	Okay. Is there a way to force estimates to update to become more accurate? 

Andrew:	No. Great question. You have remarkably little control over that estimate. If you change your query, then the estimate that the plan may or may not change. For example, changing the order of the tables you have joined will not change it. Adding a new predicate to your where clause probably will change it is pretty unpredictable. When it comes to pulling that actual execution plan from the live one, the cost percentages remain estimates even after the query has run. This is a frustrating feature, I guess you could call it, of the way SSMS works. 

	There is another button I did not tell you, which is include actual query or something like that up near the buttons I showed earlier. That one will give you a tabular form. You can use that to get some more concrete information. That is not a better estimate. Those are figures from the completed query. You have to run the query to completion to get that actual set of query costs. 

Jim:	Thanks. All right. The next one is, will the results of the union lose its index? I assume this is when you use two unions versus hitting the fact table twice. 

Andrew:	I am not sure I follow. You are going to utilize the indexing on those SID columns because you are joining on the SIDs as you are supposed to. The lack of an or makes those joins efficient. The union just cobbles together the results at the end. If you mean, does the resulting temp table if you made one not have an index? That is true. It is still better to do it that way. If you are going to create a big table and use it for more processing, you can always index it on that column yourself. See the talk from last month on exactly how to do so. 

Jim:	Excellent. Okay. Also perhaps counterintuitively, code length and complexity does not correspond to query execution time, which I think you just talked about. 

Andrew:	Yeah. The query costs – yeah, the cost is unitless. Microsoft just made it up, basically. SSMS gives a query cost. It is just some random meaningless numbers. It only means anything in comparison to other query costs. It is a totally meaningless made-up number besides that. As far as the complexity and cost, you are right. The cost and time vary with the complexity of the plan. There is an obfuscated relationship between the query you have written and the plan. That is how that works. 

Jim:	I found one more here as I am trying to go through. Is the convert date time to zero a function? Should we just write out the date time to format, i.e., “2019-1-1-00?” 

Andrew:	Right. Great question. If you do not mind, Rob, can you go back to one of the slides where we did that? I do not know, 22 is one. Great question. The key thing about the functions is that what you are not supposed to do is put the column inside the function. Here, the column is by itself. That is what we care about. The function only has an explicit value inside. That is fine. You can always put explicit values inside of functions. You can do that anywhere in your query and it will be fine. It is about the function containing or not containing the column. This is the way to do it. Use the function like this with an explicit value you have put inside. You did see an example on one of these slides where I used get date. Get date is a funny exception to that rule because SQL does have the ability to run that get date function first, convert it to an explicit value essentially, and then run the function. That will work okay. 

Jim:	There is a question from a person named Zack. Avery, do you see that? 

Avery:	Yeah. The question is, if you need two different columns that can only be linked across multiple fact tables, is there a best practice to link those columns? 

Andrew:	Yeah, good question. The kind of example you are talking about might be the same as my appendix case study where I have to use a sort of index date that I have calculated from a fact table to search another fact table. I go through how to do that there. My method in that case is indeed to use a temp table. I am going to use a temp table to grab the stuff I need out of one fact table and do whatever processing I need to make the index date I am going to use. Then I can very carefully do some sleight of hand to convince SQL to use the partition key in the other fact table. That is my method. I do use temp tables to do it. That said, if you are joining two fact tables together on the proper foreign key like visit SID from the visit table out to the V-procedure table, for example, that is fine. You can totally do that. Do that join between the two fact tables. Make sure you use the partition key for both, and you will be set. 

Rob:	We do not have any other questions at this time, Andrew. It is about five minutes past. We could stay a few minutes longer because of the technical issues, but I do not think it is really all that necessary. 

Andrew:	Okay wonderful. Just a couple of closing comments. Thanks everybody for coming to this talk. Please let your colleagues know that help is available. People get queries killed a lot in the research sphere. Send them my way. Send them to the office hour. Send them to the SQL office hour. I apologize about the technical difficulties at the top of the hour here. Thanks for working through it with us. 

Rob:	I appreciate everybody, especially you Andrew. The best way to get in touch with anybody at Vinci is to email Vinci@va.gov. That is the easiest way. They will route it to wherever it belongs. Yes, it is not up to you to apologize for the technical issues. It is my fault – not fault, but it is my responsibility. Attendees, thank you for sticking around. A short survey will pop up when I close the webinar. Please provide answers to those questions, even if it is just to complain about the technical issues. Once again, thanks everybody. Have a good day. 











 

		[image: Logo

Description automatically generated with medium confidence]

CONFIDENTIAL - Page 1		Transcribed by Research Transcriptions	
image1.png




