Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents & terminology</td>
<td>2</td>
</tr>
<tr>
<td>Dosing</td>
<td>3</td>
</tr>
<tr>
<td>Formulations</td>
<td>4</td>
</tr>
<tr>
<td>Routes of administration</td>
<td>5</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>6</td>
</tr>
<tr>
<td>Cannabis & chronic pain</td>
<td>7</td>
</tr>
<tr>
<td>Harms</td>
<td>8</td>
</tr>
<tr>
<td>Cannabis use disorder</td>
<td>10</td>
</tr>
<tr>
<td>Harm reduction strategies</td>
<td>12</td>
</tr>
<tr>
<td>Policy</td>
<td>13</td>
</tr>
<tr>
<td>Bibliography</td>
<td>14</td>
</tr>
</tbody>
</table>

Note: This packet was produced for the Veterans Health Administration by the Evidence Synthesis Program to help familiarize VHA clinicians with basic information about cannabis so that they might feel more comfortable engaging in discussions with their patients and answering questions. Current VHA policy stresses that clinicians should be prepared to engage in these discussions because cannabis is relevant to clinical practice, but the policy also stipulates that VHA providers cannot certify patients for, or recommend them to, state-approved medical cannabis programs. We interviewed and surveyed VHA clinicians and prioritized issues for inclusion here that they had voiced as important. This is meant to be a very broad, high level evidence-based overview of a very complex topic. There are undoubtedly subtleties and nuances to the information presented that are not adequately captured in this overview. The information presented in this packet is based on our current understanding of a rapidly evolving body of evidence; readers are referred to the bibliography at the end for more details.
The cannabis plant contains over 140 compounds

Cannabinoids
The two best-studied cannabinoids are:

Delta-9-tetrahydrocannabinol (THC)
- Produces much of the intoxicating effect or “the high” associated with cannabis
- Popularly thought to contribute to various potential therapeutic benefits

Cannabidiol (CBD)
- No significant intoxicating effect
- Potential anxiolytic and therapeutic benefits, but not well-studied
- May decrease the intoxicating effects of THC

Terpenes
A largely unstudied group of compounds that produce the unique aroma and flavor of cannabis, and may influence the intoxicating effects of cannabinoids in whole-plant products. These may be part of the reason that different cannabis products with the same THC and CBD content might have differing effects.

Sativa or Indica?
These terms are used colloquially to characterize the expected effects of a given product: Sativa products are purported to have energizing, uplifting, and creative effects (a “mind high”), while Indica products tend to be sedating, and relaxing physically and mentally (a “body high”). While these terms are commonly used, they are not scientifically grounded.

The degree to which a product will have energizing, intoxicating, or relaxing effects is most likely determined by the relative amounts of THC and CBD in the product.
The potency of a cannabis product is typically defined by the amount of THC in the product. There is no clear definition of a single “dose” of THC. A few states have defined a single dose as 5-10 mg of THC. However, cannabis dosing is complicated by the variation in bioavailability across formulations and across individuals, and by the complex interaction among the different compounds present in whole plant and plant extract products.

In studies
- Nabiximols is an oromucosal spray which has been effective in improving neuropathic pain in some studies. A single dose of nabiximols contains 2.5 mg THC and 2.5 mg CBD. Participants in these studies used, on average, 25 mg or less of THC over 24 hours.
- Dronabinol is a synthetic form of THC that has been FDA approved for treatment of AIDS-related cachexia, and refractory chemotherapy-induced nausea and vomiting. The recommended starting dose is 2.5-5 mg daily, with a maximum divided daily dose of 20 mg.

In dispensaries
- The concentration of THC in cannabis has been increasing over time and the amount of THC in dispensary products is much higher than the amount of THC in products studied in clinical trials.
- In one study, the median amount of THC in a 1.5 gram edible product in dispensaries was 54 mg
 - The median THC:CBD ratio was 36:1
 - Only 17% of product labels were accurate

Calculating the dose of THC
- Multiply the weight of the product by the percentage of THC in the product
- According to estimates, the average joint weighs about 0.32 to 0.66 grams. A high-potency cannabis product might contain 20% THC
 - Joint is 320 mg x 0.20 = 64 mg THC/high-potency joint
 - Joint is 660 mg x 0.20 = 132 mg THC/high-potency joint
Cannabis formulations

<table>
<thead>
<tr>
<th>Form</th>
<th>Other Terms</th>
<th>Development</th>
<th>Route of Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
<td>Flower, bud</td>
<td>The highest concentration of cannabinoids are found in the flower, not the leaf, of the female plant; topical preparations and rectal suppositories can be made with dried flower or plant extract</td>
<td>Smoking Vaporization Topical Rectal</td>
</tr>
<tr>
<td>Edibles</td>
<td>Brownies, cookies, candy</td>
<td>Typically butter or oil used to extract cannabinoids and put into a variety of edible products</td>
<td>Oral</td>
</tr>
<tr>
<td>Tincture</td>
<td>Golden dragon, green dragon</td>
<td>Alcohol or glycerin used to extract active ingredients</td>
<td>Oral Sublingual Oromucosal</td>
</tr>
<tr>
<td>Oil</td>
<td>Rick Simpson oil</td>
<td>Alcohol used to make highly viscous concentrated extract</td>
<td>Oral Topical</td>
</tr>
<tr>
<td>Resin</td>
<td>Hash, dry sift, kief</td>
<td>Concentrate made by mechanically separating trichomes (hair like protrusions on flower with high concentration of cannabinoids) from the plant</td>
<td>Smoking Vaporization</td>
</tr>
<tr>
<td>Nabiximols</td>
<td>Sativex™</td>
<td>Pharmaceutically prepared whole plant extract in spray form; 1:1 THC:CBD concentration; approved for prescription use in many countries outside the US</td>
<td>Oromucosal</td>
</tr>
<tr>
<td>Dab</td>
<td>Wax, shatter</td>
<td>Ultraconcentrated extract made with solvents such as butane; very high levels of THC; risk of overdose and acute psychosis</td>
<td>Dabbing (concentrate placed on very hot metal rod and inhaled)</td>
</tr>
<tr>
<td>Pharmaceutical cannabinoids</td>
<td>Dronabinol™, Nabilone™, Epidiolex™</td>
<td>Dronabinol and nabilone are FDA approved synthetic THC (chemotherapy induced nausea/vomiting; AIDS related cachexia); Epidiolex is a highly purified CBD plant extract and is FDA approved for the treatment of two rare epilepsy syndromes</td>
<td>Oral</td>
</tr>
</tbody>
</table>
Routes of administration: compare & contrast

<table>
<thead>
<tr>
<th>Route</th>
<th>Smoking</th>
<th>Vaporization (“Vaping”*)</th>
<th>Oral/Edibles</th>
<th>Topical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Combustion of dried cannabis flower using several methods: cigarettes (joints, spliffs), pipes, water pipes (bongs)</td>
<td>Vaporizer is used to heat dried flower or concentrated extract (oil, resin) and the resultant vapor is inhaled</td>
<td>Variety of edibles available; often dose/single serving is a fraction of the product (ie, one part of a cookie or brownie)</td>
<td>Many forms available: creams, ointments, patches, poultices, oils</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>Rapid onset and peak</td>
<td>Rapid onset and peak similar to smoking</td>
<td>No inhalation; broad range of products; slower onset and longer duration of action</td>
<td>None of the pulmonary effects associated with inhalation; probably much less intoxicating</td>
</tr>
<tr>
<td>Cautions</td>
<td>Bronchial irritation; cough; sputum; production contains carcinogens; potential for adverse effects on lung function with heavy use over many years</td>
<td>Substantially higher blood THC concentrations achieved at a given dose than with smoking; higher risk of adverse effects in novice users; long term lung safety is unknown; need for potentially costly equipment; potentially fatal vaping-related pulmonary illness</td>
<td>Onset and peak are delayed and effects can last many hours which makes it more difficult to titrate dose; oral metabolite of THC (11-OH-THC) may have four-fold more powerful psychoactive effect; risk of overdose; caution especially in novice users</td>
<td>Very little is known about topical preparations; unknown systemic absorption</td>
</tr>
</tbody>
</table>

At this time, providers should caution patients against vaping given the lack of certainty regarding the cause and scope of the recently described series of severe vaping-related pulmonary illness cases.
The pharmacology of cannabis

Pharmacokinetics

Note: The graph is meant to illustrate relative differences in time to peak concentration. The actual concentration of THC at different time points varies markedly across individuals and is influenced by patient characteristics, dose, and frequency of use. Low levels can persist for days to weeks in frequent users.

Cannabis-drug interactions

Cannabis has the potential to compound the sedative effects of different drug classes, including anticholinergics and CNS depressants. The sedative effect of cannabis combined with antidepressants or lithium is unpredictable.

Cannabinoids can induce or inhibit CYP enzymes and can, therefore, decrease or increase the levels of pharmacologic drugs. For example:

- THC may reduce levels of the following drugs: aminophylline/theophylline, clozapine, ropinirole
- CBD may increase levels of the following drugs: clobazepam, diazepam, proton pump inhibitors, phenytoin/fosphenytoin

Since THC and CBD are substrates of different CYP enzymes, their levels can also be increased by certain drugs. For example:

- Boceprevir, Ritonavir, Clarithromycin, Conivaptan, Ketoconazole, Posaconazole, and Voriconazole can increase levels of CBD
- Carbamazapine, Phenobarbitol, Phenytoin, Rifampin, and St. Johns Wort can increase levels of THC
Chronic musculoskeletal pain
• Insufficient information because these populations have largely not been included in well-done studies

Spasticity in multiple sclerosis
• Products with precisely defined amounts (in a 2:1 or 1:1 ratio) of THC and CBD were associated with improved spasticity and pain in MS patients at up to 15 weeks
• Longer-term effects have not been studied
• The formulations that have been effective are different from what is often available in dispensaries

Neuropathic pain
• Products with precisely defined amounts of THC and CBD were associated with clinically important effects on neuropathic pain in a small subset of patients over hours to a few weeks
• Longer-term effects are unknown
• The formulations that have been effective are different from what is often available in dispensaries
Cannabis hyperemesis syndrome
- Increasingly recognized form of cyclic vomiting syndrome seen in those using cannabis on a regular basis
- Hallmark is improved symptoms with hot showers, though this symptom is not present in all individuals
- Treatment is discontinuation of cannabis (may take weeks)

Cannabis Use Disorder (CUD)/Substance Use Disorder (SUD)
One in three cannabis users meets criteria for a CUD. See page 10 for details.

Cognition
- Active, regular cannabis use is associated with negative effects on cognition
- Particular concern in the developing brain (adolescents and young adults), and possible risk of neuropsychiatric symptoms later in adulthood
- Effects of past use are unclear

Mental health
- Increased risk of acute psychosis, especially with high-THC products
- Long-term cannabis use has been linked to an increased risk and earlier onset of chronic psychotic symptoms, especially in at-risk individuals (eg, those with a family history of psychotic illness)
- May increase the risk of mania

Cannabis hyperemesis syndrome
• Increasingly recognized form of cyclic vomiting syndrome seen in those using cannabis on a regular basis
• Hallmark is improved symptoms with hot showers, though this symptom is not present in all individuals
• Treatment is discontinuation of cannabis (may take weeks)

Motor vehicle accidents
• Acute intoxication has been associated with a 35% increased risk

Cannabis withdrawal syndrome
• Can present up to a week after discontinuation and persist for several weeks
• Symptoms include dysphoria or depression, anxiety, insomnia, chills, and restlessness

Lung function
• Light smoking (weekly or less) has not been associated with a decline in lung function over 20 years in younger individuals
• Daily use over many years may reduce lung function
• The impact of smoking in older patients or those with multiple medical comorbidities is unknown
• Smoking is also associated with bronchitis symptoms

Cardiovascular
• Impact on risk of MI and stroke are unknown
• Associated with tachycardia, hypertension, and hypotension

Cognition
• Active, regular cannabis use is associated with negative effects on cognition
• Particular concern in the developing brain (adolescents and young adults), and possible risk of neuropsychiatric symptoms later in adulthood
• Effects of past use are unclear

Mental health
• Increased risk of acute psychosis, especially with high-THC products
• Long-term cannabis use has been linked to an increased risk and earlier onset of chronic psychotic symptoms, especially in at-risk individuals (eg, those with a family history of psychotic illness)
• May increase the risk of mania

Cardiovascular
• Impact on risk of MI and stroke are unknown
• Associated with tachycardia, hypertension, and hypotension

Cannabis Use Disorder (CUD)/Substance Use Disorder (SUD)
One in three cannabis users meets criteria for a CUD. See page 10 for details.

Cannabis hyperemesis syndrome
• Increasingly recognized form of cyclic vomiting syndrome seen in those using cannabis on a regular basis
• Hallmark is improved symptoms with hot showers, though this symptom is not present in all individuals
• Treatment is discontinuation of cannabis (may take weeks)
Cannabis & overdose

• While cannabis has not been associated with death from overdose, intake of a high amount of THC can cause symptomatic overdose often manifesting as acute psychosis. There have also been recently described fatalities associated with vaping cannabis.
• Acute psychosis from THC overdose has been reported, particularly with edible cannabis
 - Patients can inadvertently take too high a dose because the peak effect of edible cannabis is delayed (usually about 1-3 hours), and they may take more than the recommended dose after feeling nothing initially
 - Oral ingestion produces a particularly potent metabolite of THC
• In a case series of patients hospitalized for cannabis-induced psychosis, patients had ingested 100 mg or more of THC

Non-prescription synthetic cannabinoids: BEWARE

There have been several large overdose outbreaks associated with non-prescription synthetic cannabinoids.
• Products go by the name of “K2” or “Spice” and can be purchased on the street, or at convenience stores and gas stations
• In one large outbreak, cannabinoids were adulterated with brodifacoum, which potentiates cannabis effects and is a coumarin derivative
 - Numerous hospitalizations and several deaths related to bleeding complications
• Two “zombie” outbreaks associated with ultrapotent street cannabinoid AMB-FUBINACA
• These compounds are not detectable on urine drug screen
Cannabis Use Disorder (CUD)/Substance Use Disorder (SUD)

- The prevalence of CUD among those reporting cannabis use in the past year is about 1 in 3
- Cannabis use is associated with a two-fold increased risk of future alcohol use disorder or any SUD

Assessing for Cannabis Use Disorder

There are a variety of CUD assessment tools, although they have not been as broadly tested in clinical practice as tools for other substance use disorders. The following short screener is one option.

Stepwise assessment of cannabis use disorder

Step 1. Do you currently use cannabis? Yes No

Step 2. If yes:

1. How often during the past 6 months did you find that you were not able to stop using cannabis once you had started?
 (1) Never
 (2) Less than monthly
 (3) Monthly
 (4) Weekly
 (5) Daily or almost daily

2. How often in the past 6 months have you devoted a great deal of your time to getting, using, or recovering from cannabis?
 (1) Never
 (2) Less than monthly
 (3) Monthly
 (4) Weekly
 (5) Daily or almost daily

3. How often in the past 6 months have you had a problem with your memory or concentration after using cannabis?
 (1) Never
 (2) Less than monthly
 (3) Monthly
 (4) Weekly
 (5) Daily or almost daily

Total score _______
Positive screen = 2 or higher
Step 3. Confirm with DSM5 criteria for cannabis use disorder

- Using a larger quantity or over a longer duration than intended
- Unsuccessful attempts to limit/quit
- Significant amount of time spent obtaining cannabis
- Cravings
- School/occupational impairment
- Social/interpersonal impairment
- Reduction of social/occupational/recreational activities
- Recurrent use in physically harmful situations
- Continued use despite recurrent physical or psychological harms
- Tolerance
- Withdrawal

<table>
<thead>
<tr>
<th>Mild</th>
<th>2-3 criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>4-5 criteria</td>
</tr>
<tr>
<td>Severe</td>
<td>6 or more criteria</td>
</tr>
</tbody>
</table>

Cannabis use disorder is an increasingly recognized harm. Daily users, young adults, and men are at higher risk. The risk of frequent non-medical cannabis use and the risk of cannabis use disorder is also higher among patients with chronic pain.

<table>
<thead>
<tr>
<th>% with any past year cannabis use who met criteria for CUD</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of those with prior cannabis use who develop CUD (incidence)</td>
<td>25</td>
</tr>
<tr>
<td>Odds of developing any other substance use disorder</td>
<td>2.1</td>
</tr>
<tr>
<td>Odds of developing alcohol use disorder</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Treatment of Cannabis Use Disorder

A number of medications have been tested, but there are none with adequate evidence to support routine use in treating CUD yet.

The mainstay of treatment is psychological: cognitive behavioral therapy, motivational enhancement therapy, and contingency management. These are accessed through specialty substance use disorder treatment programs.
While VA providers may not provide medical recommendations for cannabis use, in many states patients have ready access to cannabis through medical and/or recreational dispensaries. For patients who are using cannabis, there are several strategies that may help mitigate potential harms:

• Ask patients about cannabis use: formulation, dose, frequency, route
• Consider assessing for cannabis use disorder (see previous section)
• Keep cannabis out of reach of children and adolescents
• Educate patients about:
 o Cannabis withdrawal syndrome and that the symptoms of withdrawal are similar to some of the symptoms patients may be using cannabis to help treat
 o Avoiding prolonged, daily use
 o Avoiding products with high levels of THC
 o Cannabis-naïve individuals should be especially cautious starting use of edible products, use low doses, and avoid rapid dose escalation
 o Dabbing is best avoided by everyone
 o Advise patients at risk for psychotic spectrum disorders and severe anxiety to avoid cannabis, especially high-THC products
 o Vaping has been associated with severe, life-threatening pulmonary illness, and should be avoided
 o Avoid products sold outside of state-licensed dispensaries given the greater potential for unknown content including synthetic cannabinoids
Cannabis policy

Veterans Health Administration

VHA policy is that:

- Providers discuss cannabis use with Veterans due to its clinical relevance.
- Providers make individualized decisions about modifying treatment plans based on cannabis use.
- There is no policy mandating specific action for those being prescribed opioids who are also using cannabis.
- Providers document discussions regarding cannabis in the medical record.
- Providers cannot recommend, refer to, or complete forms related to state-approved medical cannabis programs.
- Veterans must not be denied VHA services solely because they are participating in state-approved cannabis programs. However, an individual's treatment plan may be modified as clinically indicated due to cannabis use.

Federal law

- Cannabis remains a Schedule 1 substance under the Controlled Substance Act, which means that the federal government classifies it as a substance with high potential for dependence or addiction and no accepted medical use.
- Research on cannabis in the US is very challenging because of the scheduling of cannabis.

State policy

- In 2019, cannabis is legal for medical purposes in 33 states and the District of Columbia (see https://medicalmarijuana.procon.org/view.resource.php?resourceID=000881).
- It is legal for recreational purposes as well in 10 of those states and DC.
- Monitoring, labeling, and quality control requirements vary substantially across states.
- Chronic pain is the most commonly approved medical indication for cannabis.

Cannabis policy & opioids

- Widely publicized ecological studies in the US initially suggested that states with medical cannabis legalization saw an accompanying decrease in opioid prescription and overdose deaths. However, the same analyses extended through 2017 actually found a reversal of that trend, and suggest caution in applying the results of these ecological studies.
- Data from individual patient-level studies are mixed, but have not shown a consistent decrease in opioid use among chronic pain patients using cannabis. Some studies show that cannabis has no impact on opioid use, while others show higher opioid use in those using cannabis.
- The use of cannabis as an opioid substitute has garnered interest, but there has been little evidence examining this practice.
Bibliography

Terminology, pharmacology, dosing, formulations, routes of administration

Effects on chronic pain

Harms, general

Harms, physical health

Tetrault JM, Crothers K, Moore BA, Mehra R, Concato J, Fiellin DA. Effects of marijuana smoking on pulmonary function and respiratory complications: a systematic review. Archives of internal medicine. 2007;167(3):221-8.

Harms, mental health

Cannabis use disorder

Cannabis & opioids

Shover CL, Davis CS, Gordon SC, Humphreys K. Association between medical cannabis laws and opioid overdose mortality has reversed over time. PNAS. 2019;116(26):12624-12626.

Acknowledgements
Developed by the Portland Evidence Synthesis Program, and supported by VA HSRD ESP #05-225

We welcome questions, suggestions, and corrections: Devan.Kansagara@va.gov
Devan Kansagara, MD, MCR
Director Portland Evidence Synthesis Program, VA Portland Health Care System
Associate Professor of Medicine, Oregon Health and Science University

We thank the following content experts for their extensive input and editorial suggestions:

Kendall Browne, PhD
Core Investigator, Center of Excellence in Substance Abuse Treatment and Education (CESATE), VA Puget Sound
Assistant Professor of Psychiatry and Behavioral Sciences, University of Washington

Joseph Bubalo, PharmD, BCPS, BCOP
Assistant Professor of Medicine, Oregon Health and Science University

Michelle Cameron, MD, PT, MCR
Associate Professor, Department of Neurology, Oregon Health and Science University
Co-Director, MS Center of Excellence-West, VA Portland Health Care System

Kim D Jones, RNC, PhD, FNP
Professor of Nursing, Oregon Health and Science University
Dean, Linfield-Good Samaritan School of Nursing

Salomeh Keyhani, MD, MPH
Core Investigator, Center for Healthcare Improvement and Medical Effectiveness (CHIME), San Francisco VA Health Care System
Professor of Medicine, University of California, San Francisco

Andrew Saxon, MD
Director, Center of Excellence in Substance Abuse Treatment and Education (CESATE), VA Puget Sound
Professor of Psychiatry and Behavioral Sciences, University of Washington

Special thanks to Lynn Kitagawa, MFA, at the VA Portland Health Care System, for the illustrations and graphic design, and to Julia Haskin, MA, at the VA Portland Health Care System, for editorial support.