Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Cloning of ground-state intestinal stem cells from endoscopic biopsy samples.

Duleba M, Yamamoto Y, Neupane R, Rao W, Xie J, Qi Y, Liew AA, Niroula S, Zhang Y, Mahalingam R, Wang S, Goller K, Ajani JA, Vincent M, Ho KY, Hou JK, Hyams JS, Sylvester FA, Crum CP, McKeon F, Xian W. Cloning of ground-state intestinal stem cells from endoscopic biopsy samples. Nature protocols. 2020 May 1; 15(5):1612-1627.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

''Adult'' or ''somatic'' stem cells harbor an intrinsic ability to regenerate tissues. Heterogeneity of such stem cells along the gastrointestinal tract yields the known segmental specificity of this organ and may contribute to the pathology of certain enteric conditions. Here we detail technology for the generation of ''libraries'' of clonogenic cells from 1-mm-diamter endoscopic biopsy samples from the human gastrointestinal tract. Each of the 150-300 independent clones in a typical stem cell library can be clonally expanded to billions of cells in a few weeks while maintaining genomic stability and the ability to undergo multipotent differentiation to the specific epithelia from which the sample originated. The key to this methodology is the intrinsic immortality of normal intestinal stem cells (ISCs) and culture systems that maintain them as highly immature, ground-state ISCs marked by a single-cell clonogenicity of 70% and a corresponding 250-fold proliferative advantage over spheroid technologies. Clonal approaches such as this enhance the resolution of molecular genetics, make genome editing easier, and may be useful in regenerative medicine, unravelling heterogeneity in disease, and facilitating drug discovery.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.